Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = ultra-long-distance communication

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4549 KiB  
Review
Research on Tbps and Kilometer-Range Transmission of Terahertz Signals
by Jianjun Yu and Jiali Chen
Micromachines 2025, 16(7), 828; https://doi.org/10.3390/mi16070828 - 20 Jul 2025
Viewed by 579
Abstract
THz communication stands as a pivotal technology for 6G networks, designed to address the critical challenge of data demands surpassing current microwave and millimeter-wave (mmWave) capabilities. However, realizing Tbps and kilometer-range transmission confronts the “dual attenuation dilemma” comprising severe free-space path loss (FSPL) [...] Read more.
THz communication stands as a pivotal technology for 6G networks, designed to address the critical challenge of data demands surpassing current microwave and millimeter-wave (mmWave) capabilities. However, realizing Tbps and kilometer-range transmission confronts the “dual attenuation dilemma” comprising severe free-space path loss (FSPL) (>120 dB/km) and atmospheric absorption. This review comprehensively summarizes our group′s advancements in overcoming fundamental challenges of long-distance THz communication. Through systematic photonic–electronic co-optimization, we report key enabling technologies including photonically assisted THz signal generation, polarization-multiplexed multiple-input multiple-output (MIMO) systems with maximal ratio combining (MRC), high-gain antenna–lens configurations, and InP amplifier systems for complex weather resilience. Critical experimental milestones encompass record-breaking 1.0488 Tbps throughput using probabilistically shaped 64QAM (PS-64QAM) in the 330–500 GHz band; 30.2 km D-band transmission (18 Gbps with 543.6 Gbps·km capacity–distance product); a 3 km fog-penetrating link at 312 GHz; and high-sensitivity SIMO-validated 100 Gbps satellite-terrestrial communication beyond 36,000 km. These findings demonstrate THz communication′s viability for 6G networks requiring extreme-capacity backhaul and ultra-long-haul connectivity. Full article
Show Figures

Figure 1

12 pages, 2912 KiB  
Article
A Method for Rapid Deployment of Ground-Based Ultra-Long-Range Terrestrial Optical Communication Links
by Xuan Wang, Junfeng Han, Chen Wang and Xiangsheng Meng
Appl. Sci. 2025, 15(8), 4489; https://doi.org/10.3390/app15084489 - 18 Apr 2025
Viewed by 814
Abstract
With the growing demand for high-efficiency and secure information transmission, ultra-long-range optical communication has demonstrated significant potential. This paper proposes a method for establishing ground-based fixed-point ultra-long-range atmospheric optical communication links, aiming to overcome challenges such as atmospheric turbulence, transmission loss, and environmental [...] Read more.
With the growing demand for high-efficiency and secure information transmission, ultra-long-range optical communication has demonstrated significant potential. This paper proposes a method for establishing ground-based fixed-point ultra-long-range atmospheric optical communication links, aiming to overcome challenges such as atmospheric turbulence, transmission loss, and environmental interference. Through theoretical analysis and experimental validation, we developed a high-precision optical communication terminal installation model, determined the terminal’s optical axis direction via stellar calibration, and established a coordinate transformation model from geodetic coordinates to initial pointing angles. By analyzing initial pointing errors, we designed a laser link scanning strategy to compensate for uncertainties in the initial pointing region. The feasibility of this approach was verified through near-field validation and a long-distance link acquisition experiment exceeding 100 km. Experimental results demonstrated successful 100 km/100 Gbps ultra-high-speed optical communication. This breakthrough study is expected to play a critical role in future space-localized optical communication networks. Full article
(This article belongs to the Special Issue Novel Approaches for High Speed Optical Communication)
Show Figures

Figure 1

30 pages, 4371 KiB  
Review
Optoelectronic Oscillators: Progress from Classical Designs to Integrated Systems
by Qidi Liu, Jiuchang Peng and Juanjuan Yan
Photonics 2025, 12(2), 120; https://doi.org/10.3390/photonics12020120 - 29 Jan 2025
Cited by 2 | Viewed by 1593
Abstract
Optoelectronic oscillators (OEOs) have emerged as indispensable tools for generating low-phase-noise microwave and millimeter-wave signals, which are critical for a variety of high-performance applications. These include radar systems, satellite links, electronic warfare, and advanced instrumentation. The ability of OEOs to produce signals with [...] Read more.
Optoelectronic oscillators (OEOs) have emerged as indispensable tools for generating low-phase-noise microwave and millimeter-wave signals, which are critical for a variety of high-performance applications. These include radar systems, satellite links, electronic warfare, and advanced instrumentation. The ability of OEOs to produce signals with exceptionally low phase noise makes them ideal for scenarios demanding high signal purity and stability. In radar systems, low-phase-noise signals enhance target detection accuracy and resolution, while, in communication networks, such signals enable higher data throughput and improved signal integrity over extended distances. Furthermore, OEOs play a pivotal role in precision instrumentation, where even minor noise can compromise the performance of sensitive equipment. This review examines the progress in OEO technology, transitioning from classical designs relying on long optical fiber delay lines to modern integrated systems that leverage photonic integration for compact, efficient, and tunable solutions. Key advancements, including classical setups, hybrid designs, and integrated configurations, are discussed, with a focus on their performance improvements in phase noise, side-mode suppression ratio (SMSR), and frequency tunability. A 20-GHz oscillation with an SMSR as high as 70 dB has been achieved using a classical dual-loop configuration. A 9.867-GHz frequency with a phase noise of −142.5 dBc/Hz @ 10 kHz offset has also been generated in a parity–time-symmetric OEO. Additionally, integrated OEOs based on silicon photonic microring resonators have achieved an ultra-wideband tunable frequency from 3 GHz to 42.5 GHz, with phase noise as low as −93 dBc/Hz at a 10 kHz offset. The challenges in achieving fully integrated OEOs, particularly concerning the stability and phase noise at higher frequencies, are also explored. This paper provides a comprehensive overview of the state of the art in OEO technology, highlighting future directions and potential applications. Full article
Show Figures

Figure 1

21 pages, 1684 KiB  
Article
A State-Interactive MAC Layer TDMA Protocol Based on Smart Antennas
by Donghui Li, Jin Nakazato and Manabu Tsukada
Electronics 2024, 13(11), 2037; https://doi.org/10.3390/electronics13112037 - 23 May 2024
Cited by 1 | Viewed by 1623
Abstract
Mobile ad hoc networks are self-organizing networks that do not rely on fixed infrastructure. Smart antennas employ advanced beamforming technology, enabling ultra-long-range directional transmission in wireless networks, which leads to lower power consumption and better utilization of spatial resources. The media access control [...] Read more.
Mobile ad hoc networks are self-organizing networks that do not rely on fixed infrastructure. Smart antennas employ advanced beamforming technology, enabling ultra-long-range directional transmission in wireless networks, which leads to lower power consumption and better utilization of spatial resources. The media access control (MAC) protocol design using smart antennas can lead to efficient usage of channel resources. However, during ultra-long-distance transmissions, there may be significant transport delays. In addition, when using the time division multiple access (TDMA) schemes, it can be difficult to manage conflicts arising from adjacent time slot advancement caused by latency compensation in ultra-long-range propagation. Directional transmission and reception can also cause interference between links that reuse the same time slot. This paper proposes a new distributed dynamic TDMA protocol called State Interaction-based Slot Allocation Protocol (SISAP) to address these issues. This protocol is based on slot states and includes TDMA frame structure, slot allocation process, interference self-avoidance strategy, and slot allocation algorithms. According to the simulation results, the MAC layer design scheme suggested in this paper can achieve ultra-long-distance transmission without conflicts. Additionally, it can reduce the interference between links while space multiplexing. Furthermore, the system exhibits remarkable performance in various network aspects, such as throughput and link delay. Full article
(This article belongs to the Special Issue Recent Advances in Wireless Ad Hoc and Sensor Networks)
Show Figures

Figure 1

10 pages, 4979 KiB  
Article
Path Loss Characterization in an Outdoor Corridor Environment for IoT-5G in a Smart Campus University at 850 MHz and 3.5 GHz Frequency Bands
by Juan Muñoz, David Mancipe, Herman Fernández, Lorenzo Rubio, Vicent M. Rodrigo Peñarrocha and Juan Reig
Sensors 2023, 23(22), 9237; https://doi.org/10.3390/s23229237 - 17 Nov 2023
Cited by 5 | Viewed by 2346
Abstract
The usage scenarios defined in the ITU-M2150-1 recommendation for IMT-2020 systems, including enhanced Mobile Broadband (eMBB), Ultra-reliable Low-latency Communication (URLLC), and massive Machine Type Communication (mMTC), allow the possibility of accessing different services through the set of Radio Interface Technologies (RITs), Long-term Evolution [...] Read more.
The usage scenarios defined in the ITU-M2150-1 recommendation for IMT-2020 systems, including enhanced Mobile Broadband (eMBB), Ultra-reliable Low-latency Communication (URLLC), and massive Machine Type Communication (mMTC), allow the possibility of accessing different services through the set of Radio Interface Technologies (RITs), Long-term Evolution (LTE), and New Radio (NR), which are components of RIT. The potential of the low and medium frequency bands allocated by the Federal Communications Commission (FCC) for the fifth generation of mobile communications (5G) is described. In addition, in the Internet of Things (IoT) applications that will be covered by the case of use of the mMTC are framed. In this sense, a propagation channel measurement campaign was carried out at 850 MHz and 5.9 GHz in a covered corridor environment, located in an open space within the facilities of the Pedagogical and Technological University of Colombia campus. The measurements were carried out in the time domain using a channel sounder based on a Universal Software Radio Peripheral (USRP) to obtain the received signal power levels over a range of separation distances between the transmitter and receiver from 2.00 m to 67.5 m. Then, a link budget was proposed to describe the path loss behavior as a function of these distances to obtain the parameters for the close-in free space reference distance (CI) and the floating intercept (FI) path loss prediction models. These parameters were estimated from the measurements made using the Minimum Mean Square Error (MMSE) approach. The estimated path loss exponent (PLE) values for both the CI and FI path loss models at 850 MHz and 3.5 GHz are in the range of 2.21 to 2.41, respectively. This shows that the multipath effect causes a lack of constructive interference to the received power signal for this type of outdoor corridor scenario. These results can be used in simulation tools to evaluate the path loss behavior and optimize the deployment of device and sensor network infrastructure to enable 5G-IoT connectivity in smart university campus scenarios. Full article
(This article belongs to the Special Issue Internet of Things for Smart City Application)
Show Figures

Figure 1

6 pages, 2985 KiB  
Proceeding Paper
Development of a Monitoring System against Illegal Deforestation in the Amazon Rainforest Using Artificial Intelligence Algorithms
by Thiago Almeida Teixeira, Neilson Luniere Vilaça, Andre Luiz Printes, Raimundo Claúdio Souza Gomes, Israel Gondres Torné, Thierry-Yves Alves Araújo and Arlley Gabriel Dias e Dias
Eng. Proc. 2023, 58(1), 21; https://doi.org/10.3390/ecsa-10-16188 - 15 Nov 2023
Cited by 3 | Viewed by 2279
Abstract
The Amazon Rainforest represents one-third of the world’s tropical forest area. This makes it indispensable for maintaining global biodiversity. However, the increasing occurrences of wildfires and deforestation in the region are notorious. In this sense, it is essential to protect forests to ensure [...] Read more.
The Amazon Rainforest represents one-third of the world’s tropical forest area. This makes it indispensable for maintaining global biodiversity. However, the increasing occurrences of wildfires and deforestation in the region are notorious. In this sense, it is essential to protect forests to ensure quality of life for future generations and prevent damage that affects the entire planet. In this work, a real-time monitoring device is proposed to identify attempts at deforestation through audio signals from tractors and chainsaws, using embedded artificial intelligence (AI). Additionally, it is capable of communicating with a base station, reaching distances close to 1 km in dense forest, through long-range (LoRa) communication. A user interface is also developed, providing daily alerts such as attack identification, occurrence times, device locations, and battery status. The system has an average power consumption of around 300 nA, employing power management methods defined as ultra-low power mode, sleep mode, prediction mode, and transmission mode. Hence, the device has the potential to promote the sustainable preservation of the Amazon Rainforest, helping to prevent large-scale illegal deforestation. Full article
Show Figures

Figure 1

32 pages, 419 KiB  
Article
The 6G Ecosystem as Support for IoE and Private Networks: Vision, Requirements, and Challenges
by Carlos Serôdio, José Cunha, Guillermo Candela, Santiago Rodriguez, Xosé Ramón Sousa and Frederico Branco
Future Internet 2023, 15(11), 348; https://doi.org/10.3390/fi15110348 - 25 Oct 2023
Cited by 48 | Viewed by 5967
Abstract
The emergence of the sixth generation of cellular systems (6G) signals a transformative era and ecosystem for mobile communications, driven by demands from technologies like the internet of everything (IoE), V2X communications, and factory automation. To support this connectivity, mission-critical applications are emerging [...] Read more.
The emergence of the sixth generation of cellular systems (6G) signals a transformative era and ecosystem for mobile communications, driven by demands from technologies like the internet of everything (IoE), V2X communications, and factory automation. To support this connectivity, mission-critical applications are emerging with challenging network requirements. The primary goals of 6G include providing sophisticated and high-quality services, extremely reliable and further-enhanced mobile broadband (feMBB), low-latency communication (ERLLC), long-distance and high-mobility communications (LDHMC), ultra-massive machine-type communications (umMTC), extremely low-power communications (ELPC), holographic communications, and quality of experience (QoE), grounded in incorporating massive broad-bandwidth machine-type (mBBMT), mobile broad-bandwidth and low-latency (MBBLL), and massive low-latency machine-type (mLLMT) communications. In attaining its objectives, 6G faces challenges that demand inventive solutions, incorporating AI, softwarization, cloudification, virtualization, and slicing features. Technologies like network function virtualization (NFV), network slicing, and software-defined networking (SDN) play pivotal roles in this integration, which facilitates efficient resource utilization, responsive service provisioning, expanded coverage, enhanced network reliability, increased capacity, densification, heightened availability, safety, security, and reduced energy consumption. It presents innovative network infrastructure concepts, such as resource-as-a-service (RaaS) and infrastructure-as-a-service (IaaS), featuring management and service orchestration mechanisms. This includes nomadic networks, AI-aware networking strategies, and dynamic management of diverse network resources. This paper provides an in-depth survey of the wireless evolution leading to 6G networks, addressing future issues and challenges associated with 6G technology to support V2X environments considering presenting +challenges in architecture, spectrum, air interface, reliability, availability, density, flexibility, mobility, and security. Full article
(This article belongs to the Special Issue Moving towards 6G Wireless Technologies)
15 pages, 3008 KiB  
Article
A Fault Location Analysis of Optical Fiber Communication Links in High Altitude Areas
by Kehang Xu and Chaowei Yuan
Electronics 2023, 12(17), 3728; https://doi.org/10.3390/electronics12173728 - 4 Sep 2023
Cited by 9 | Viewed by 3051
Abstract
Breakage and damage of fiber optic cable fibers seriously affects the normal operation of fiber optic networks, and it is important to quickly and accurately determine the type and location of faults when they occur. Unlike the old traditional methods, the advantages of [...] Read more.
Breakage and damage of fiber optic cable fibers seriously affects the normal operation of fiber optic networks, and it is important to quickly and accurately determine the type and location of faults when they occur. Unlike the old traditional methods, the advantages of wavelet transform in singular signal detection and signal filtering are used to analyze the Optical Time Domain Reflectometer curve signal and the fault detection method of fiber communication links with no relay and a large span in a high altitude area is given, which realizes the accurate detection and location of optical fiber communication link fault events under strong noise. The proposed technology detects fiber optic faults in high-altitude environments, with an average measurement accuracy improvement of 9.8%. The maximum distance for detecting fiber optic line faults is up to 250 km, which increases the system power budget. In the simulation experiment results, the infrastructure nodes of the Wuhan FiberHome Laboratory successfully verified the superiority of this technology. The method has been directly applied to the on-site detection of ultra long optical fiber links in high-altitude areas, which has good financial significance and has certain reference significance for the future real-time detection of optical fiber cables. Full article
Show Figures

Figure 1

14 pages, 3899 KiB  
Article
Beam Scanning and Capture of Micro Laser Communication Terminal Based on MEMS Micromirrors
by Xuan Wang, Junfeng Han, Chen Wang, Meilin Xie, Peng Liu, Yu Cao, Feng Jing, Fan Wang, Yunhao Su and Xiangsheng Meng
Micromachines 2023, 14(7), 1317; https://doi.org/10.3390/mi14071317 - 27 Jun 2023
Cited by 13 | Viewed by 2571
Abstract
With the development of space laser communication and the planned deployment of satellite Internet constellations, there is a growing demand for microminiature laser communication terminals. To meet the requirements of size, weight and power (SWaP), miniaturized terminals require smaller drive components to complete [...] Read more.
With the development of space laser communication and the planned deployment of satellite Internet constellations, there is a growing demand for microminiature laser communication terminals. To meet the requirements of size, weight and power (SWaP), miniaturized terminals require smaller drive components to complete on-orbit scanning and capture, which must be fast and efficient to enable satellite laser communication networks. These miniaturized laser communication terminals are highly susceptible to the impact of the initial pointing accuracy of the laser beam and microvibrations of the satellite platform. Therefore, this paper proposes a laser scanning-capture model based on a Micro-electromechanical Systems (MEMS) micromirror that can provide a fast, large-scale scanning analysis. A scanning overlap factor is introduced to improve the capture probability under the influence of microvibrations. Finally, experimental analysis was carried out to verify the effectiveness of the proposed model, which can establish a theoretical basis for future ultra-long-distance microspace laser communication. Full article
(This article belongs to the Special Issue State-of-the-Art CMOS and MEMS Devices)
Show Figures

Figure 1

29 pages, 6858 KiB  
Article
Integrating Conformational Dynamics and Perturbation-Based Network Modeling for Mutational Profiling of Binding and Allostery in the SARS-CoV-2 Spike Variant Complexes with Antibodies: Balancing Local and Global Determinants of Mutational Escape Mechanisms
by Gennady Verkhivker, Steve Agajanian, Ryan Kassab and Keerthi Krishnan
Biomolecules 2022, 12(7), 964; https://doi.org/10.3390/biom12070964 - 10 Jul 2022
Cited by 3 | Viewed by 2617
Abstract
In this study, we combined all-atom MD simulations, the ensemble-based mutational scanning of protein stability and binding, and perturbation-based network profiling of allosteric interactions in the SARS-CoV-2 spike complexes with a panel of cross-reactive and ultra-potent single antibodies (B1-182.1 and A23-58.1) as well [...] Read more.
In this study, we combined all-atom MD simulations, the ensemble-based mutational scanning of protein stability and binding, and perturbation-based network profiling of allosteric interactions in the SARS-CoV-2 spike complexes with a panel of cross-reactive and ultra-potent single antibodies (B1-182.1 and A23-58.1) as well as antibody combinations (A19-61.1/B1-182.1 and A19-46.1/B1-182.1). Using this approach, we quantify the local and global effects of mutations in the complexes, identify protein stability centers, characterize binding energy hotspots, and predict the allosteric control points of long-range interactions and communications. Conformational dynamics and distance fluctuation analysis revealed the antibody-specific signatures of protein stability and flexibility of the spike complexes that can affect the pattern of mutational escape. A network-based perturbation approach for mutational profiling of allosteric residue potentials revealed how antibody binding can modulate allosteric interactions and identified allosteric control points that can form vulnerable sites for mutational escape. The results show that the protein stability and binding energetics of the SARS-CoV-2 spike complexes with the panel of ultrapotent antibodies are tolerant to the effect of Omicron mutations, which may be related to their neutralization efficiency. By employing an integrated analysis of conformational dynamics, binding energetics, and allosteric interactions, we found that the antibodies that neutralize the Omicron spike variant mediate the dominant binding energy hotpots in the conserved stability centers and allosteric control points in which mutations may be restricted by the requirements of the protein folding stability and binding to the host receptor. This study suggested a mechanism in which the patterns of escape mutants for the ultrapotent antibodies may not be solely determined by the binding interaction changes but are associated with the balance and tradeoffs of multiple local and global factors, including protein stability, binding affinity, and long-range interactions. Full article
Show Figures

Figure 1

12 pages, 5608 KiB  
Article
ELF/VLF Wave Radiation Experiment by Modulated Ionospheric Heating Based on Multi-Source Observations at EISCAT
by Jing Chen, Jutao Yang, Qingliang Li, Yubo Yan, Shuji Hao, Cheng Wang, Jian Wu, Bin Xu, Tong Xu, Haiqin Che and Linglei He
Atmosphere 2022, 13(2), 228; https://doi.org/10.3390/atmos13020228 - 29 Jan 2022
Cited by 1 | Viewed by 4249
Abstract
Ground-based high-frequency modulated waves can periodically heat the ionosphere and create “virtual antennas”, which can radiate extremely low frequency (ELF, 0.3–3 kHz) or very low frequency (VLF, 3–30 kHz) waves for long-distance communication. Ionospheric X-mode and O-mode heating experiments using amplitude and beat-wave [...] Read more.
Ground-based high-frequency modulated waves can periodically heat the ionosphere and create “virtual antennas”, which can radiate extremely low frequency (ELF, 0.3–3 kHz) or very low frequency (VLF, 3–30 kHz) waves for long-distance communication. Ionospheric X-mode and O-mode heating experiments using amplitude and beat-wave (BW) modulations were conducted on 21 November 2019. Experimental results were analyzed from multiple perspectives based on data from Dynasonde, a magnetometer, stimulated electromagnetic emissions, an ELF/VLF signal receiver, and ultra-high-frequency radar. The strongest excited ELF/VLF signals in previous BW modulation heating experiments were around 8–12 kHz; however, in this experiment, no signal excited in this frequency range was observed, and the signal with the highest signal/noise ratio was at the frequency of 3517 Hz, which will aid in understanding the best communication frequency under different ionospheric backgrounds. It is well-accepted that the electron temperature changes periodically with the modulation frequency. However, we noted that the electron temperature had insufficient cooling during the O-mode modulated heating process and then increased again, resulting in a continuous electron temperature increase. We found that this was related to the change in ion composition after analyzing ion-line spectra, which will be helpful in studying the effect of modulation heating on the ionosphere background. Full article
(This article belongs to the Special Issue Radar Sensing Atmosphere: Modelling, Imaging and Prediction)
Show Figures

Figure 1

16 pages, 2782 KiB  
Article
Wi-PoS: A Low-Cost, Open Source Ultra-Wideband (UWB) Hardware Platform with Long Range Sub-GHz Backbone
by Ben Van Herbruggen, Bart Jooris, Jen Rossey, Matteo Ridolfi, Nicola Macoir, Quinten Van den Brande, Sam Lemey and Eli De Poorter
Sensors 2019, 19(7), 1548; https://doi.org/10.3390/s19071548 - 30 Mar 2019
Cited by 56 | Viewed by 8378
Abstract
Ultra-wideband (UWB) localization is one of the most promising approaches for indoor localization due to its accurate positioning capabilities, immunity against multipath fading, and excellent resilience against narrowband interference. However, UWB researchers are currently limited by the small amount of feasible open source [...] Read more.
Ultra-wideband (UWB) localization is one of the most promising approaches for indoor localization due to its accurate positioning capabilities, immunity against multipath fading, and excellent resilience against narrowband interference. However, UWB researchers are currently limited by the small amount of feasible open source hardware that is publicly available. We developed a new open source hardware platform, Wi-PoS, for precise UWB localization based on Decawave’s DW1000 UWB transceiver with several unique features: support of both long-range sub-GHz and 2.4 GHz back-end communication between nodes, flexible interfacing with external UWB antennas, and an easy implementation of the MAC layer with the Time-Annotated Instruction Set Computer (TAISC) framework. Both hardware and software are open source and all parameters of the UWB ranging can be adjusted, calibrated, and analyzed. This paper explains the main specifications of the hardware platform, illustrates design decisions, and evaluates the performance of the board in terms of range, accuracy, and energy consumption. The accuracy of the ranging system was below 10 cm in an indoor lab environment at distances up to 5 m, and accuracy smaller than 5 cm was obtained at 50 and 75 m in an outdoor environment. A theoretical model was derived for predicting the path loss and the influence of the most important ground reflection. At the same time, the average energy consumption of the hardware was very low with only 81 mA for a tag node and 63 mA for the active anchor nodes, permitting the system to run for several days on a mobile battery pack and allowing easy and fast deployment on sites without an accessible power supply or backbone network. The UWB hardware platform demonstrated flexibility, easy installation, and low power consumption. Full article
(This article belongs to the Collection Positioning and Navigation)
Show Figures

Figure 1

22 pages, 746 KiB  
Article
On-Demand LoRa: Asynchronous TDMA for Energy Efficient and Low Latency Communication in IoT
by Rajeev Piyare, Amy L. Murphy, Michele Magno and Luca Benini
Sensors 2018, 18(11), 3718; https://doi.org/10.3390/s18113718 - 1 Nov 2018
Cited by 94 | Viewed by 11113
Abstract
Energy efficiency is crucial in the design of battery-powered end devices, such as smart sensors for the Internet of Things applications. Wireless communication between these distributed smart devices consumes significant energy, and even more when data need to reach several kilometers in distance. [...] Read more.
Energy efficiency is crucial in the design of battery-powered end devices, such as smart sensors for the Internet of Things applications. Wireless communication between these distributed smart devices consumes significant energy, and even more when data need to reach several kilometers in distance. Low-power and long-range communication technologies such as LoRaWAN are becoming popular in IoT applications. However, LoRaWAN has drawbacks in terms of (i) data latency; (ii) limited control over the end devices by the gateway; and (iii) high rate of packet collisions in a dense network. To overcome these drawbacks, we present an energy-efficient network architecture and a high-efficiency on-demand time-division multiple access (TDMA) communication protocol for IoT improving both the energy efficiency and the latency of standard LoRa networks. We combine the capabilities of short-range wake-up radios to achieve ultra-low power states and asynchronous communication together with the long-range connectivity of LoRa. The proposed approach still works with the standard LoRa protocol, but improves performance with an on-demand TDMA. Thanks to the proposed network and protocol, we achieve a packet delivery ratio of 100% by eliminating the possibility of packet collisions. The network also achieves a round-trip latency on the order of milliseconds with sensing devices dissipating less than 46 mJ when active and 1.83 μ W during periods of inactivity and can last up to three years on a 1200-mAh lithium polymer battery. Full article
Show Figures

Figure 1

14 pages, 3653 KiB  
Article
Low Power Near Field Communication Methods for RFID Applications of SIM Cards
by Yicheng Chen, Zhaoxia Zheng, Mingyang Gong and Fengqi Yu
Sensors 2017, 17(4), 867; https://doi.org/10.3390/s17040867 - 14 Apr 2017
Cited by 3 | Viewed by 6647
Abstract
Power consumption and communication distance have become crucial challenges for SIM card RFID (radio frequency identification) applications. The combination of long distance 2.45 GHz radio frequency (RF) technology and low power 2 kHz near distance communication is a workable scheme. In this paper, [...] Read more.
Power consumption and communication distance have become crucial challenges for SIM card RFID (radio frequency identification) applications. The combination of long distance 2.45 GHz radio frequency (RF) technology and low power 2 kHz near distance communication is a workable scheme. In this paper, an ultra-low frequency 2 kHz near field communication (NFC) method suitable for SIM cards is proposed and verified in silicon. The low frequency transmission model based on electromagnetic induction is discussed. Different transmission modes are introduced and compared, which show that the baseband transmit mode has a better performance. The low-pass filter circuit and programmable gain amplifiers are applied for noise reduction and signal amplitude amplification. Digital-to-analog converters and comparators are used to judge the card approach and departure. A novel differential Manchester decoder is proposed to deal with the internal clock drift in range-controlled communication applications. The chip has been fully implemented in 0.18 µm complementary metal-oxide-semiconductor (CMOS) technology, with a 330 µA work current and a 45 µA idle current. The low frequency chip can be integrated into a radio frequency SIM card for near field RFID applications. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop