ELF/VLF Wave Radiation Experiment by Modulated Ionospheric Heating Based on Multi-Source Observations at EISCAT
Abstract
:1. Introduction
2. Description of the Experiment
2.1. Experimental Setup
2.2. Ionospheric Background
3. Results
3.1. Verification of Modulation ELF/VLF Frequency
3.2. ELF/VLF Signals Recorded by the Ground-Based Receiver
3.3. Electron-Temperature Enhancement
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Streltsov, A.V.; Berthelier, J.J.; Chernyshov, A.A.; Frolov, V.L.; Honary, F.; Kosch, M.J.; McCoy, R.P.; Mishin, E.V.; Rietveld, M.T. Past, present and future of active radio frequency experiments in space. Space Sci. Rev. 2018, 214, 118. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.Y.; Jiang, M.L.; Wang, K.N.; Wu, J.; Li, Q.L.; Rietveld, M.T.; Varberg, E.; Häggström, I.; Jin, Y.Q. Electron Temperature Inversion by Stimulated Brillouin Scattering During Electron Gyroharmonic Heating at EISCAT. Geophys. Res. Lett. 2020, 47, e2020GL089747. [Google Scholar] [CrossRef]
- Bakhmetieva, N.V.; Kulikov, Y.Y.; Zhemyakov, I.N. Mesosphere Ozone and the Lower Ionosphere under Plasma Disturbance by Powerful High-Frequency Radio Emission. Atmosphere 2020, 11, 1154. [Google Scholar] [CrossRef]
- Leyser, T.B. Stimulated electromagnetic emissions by high-frequency electromagnetic pumping of the ionospheric plasma. Space Sci. Rev. 2001, 98, 223–328. [Google Scholar] [CrossRef]
- Kosch, M.J.; Pedersen, T.; Rietveld, M.T.; Gustavsson, B.; Grach, S.M.; Hagfors, T. Artificial optical emissions in the high-latitude thermosphere induced by powerful radio waves: An observational review. Adv. Space Res. 2007, 40, 365–376. [Google Scholar] [CrossRef]
- Moore, R.C.; Inan, U.S.; Bell, T.F.; Kennedy, E.J. ELF waves generated by modulated HF heating of the auroral electrojet and observed at a ground distance of ∼ 4400 km. J. Geophys. Res. Space Phys. 2007, 112, A05309. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Yang, J.T.; Li, Q.L.; Hao, S.J.; Guo, F.; Wu, J.; Chen, J.; Ma, G.L.; Xu, T. ELF/VLF Communication Experiment by Modulated Heating of Ionospheric Auroral Electrojet at EISCAT. IEEE Trans. Antennas Propag. 2020, 69, 2267–2273. [Google Scholar] [CrossRef]
- Barr, R.; Stubbe, P. ELF and VLF wave generation by HF heating: A comparison of AM and CW techniques. J. Atmos. Sol.-Terr. Phys. 1997, 59, 2265–2279. [Google Scholar] [CrossRef]
- Papadopoulos, K.; Wallace, T.; McCarrick, M.; Milikh, G.M.; Yang, X. On the efficiency of ELF / VLF generation using HF heating of the auroral electrojet. Plasma Phys. Rep. 2003, 29, 561–565. [Google Scholar] [CrossRef]
- Kuo, S.P.; Lee, S.H.; Bivolaru, D.; Kossey, P.; Lee, M.C.; Riddolls, R.J.; Jastrzebski, P.; Sentman, D. Experimental and numerical studies on ELF / VLF wave generation by amplitude-modulated HF heating waves. Phys. Scr. 2003, 67, 448. [Google Scholar] [CrossRef]
- Tereshchenko, E.D.; Shumilov, O.I.; Kasatkina, E.A.; Gomonov, A.D. Features of amplitude and Doppler frequency variation of ELF/VLF waves generated by “beat-wave” HF heating at high latitudes. Geophys. Res. Lett. 2014, 41, 4442–4448. [Google Scholar] [CrossRef]
- Ma, G.L.; Guo, L.X.; Yang, J.T.; Lv, L.L.; Chen, J.; Xu, T.; Hao, S.J.; Wu, J. Effects of variations of geomagnetic field on VLF waves induced by beating of two HF waves. Adv. Space Res. 2019, 63, 2126–2131. [Google Scholar] [CrossRef]
- Kuo, S.; Snyder, A.; Kossey, P.; Chang, C.L.; Labenski, J. VLF wave generation by beating of two HF waves in the ionosphere. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Kuo, S.; Snyder, A.; Kossey, P.; Chang, C.L.; Labenski, J. Beating HF waves to generate VLF waves in the ionosphere. J. Geophys. Res. Space Phys. 2012, 117, L10608. [Google Scholar] [CrossRef]
- Kuo, S.P.; Lee, M.C. On the VLF wave generation by beating of two HF heaters. Phys. Plasmas 2017, 24, 022902. [Google Scholar] [CrossRef]
- Cohen, M.B.; Moore, R.C.; Golkowski, M.; Lehtinen, N.G. ELF/VLF wave generation from the beating of two HF ionospheric heating sources. J. Geophys. Res. Space Phys. 2012, 117, A12310. [Google Scholar] [CrossRef]
- Moore, R.C.; Fujimaru, S.; Cohen, M.; Gołkowski, M.; McCarrick, M.J. On the altitude of the ELF / VLF source region generated during “beat-wave” HF heating experiments. Geophys. Res. Lett. 2012, 39, L18101. [Google Scholar] [CrossRef]
- Guo, Z.; Fang, H.; Honary, F. The Generation of ULF/ELF/VLF Waves in the Ionosphere by Modulated Heating. Universe 2021, 7, 29. [Google Scholar] [CrossRef]
- Yang, J.T.; Li, Q.L.; Wang, J.G.; Hao, S.J.; Ma, G.L. The polarization characteristics of ELF / VLF waves generated via HF heating experiments of the ionosphere by EISCAT. Phys. Plasmas 2018, 25, 092902. [Google Scholar] [CrossRef]
- Yang, J.T.; Wang, J.G.; Li, Q.L.; Wu, J.; Che, H.Q.; Ma, G.L.; Hao, S.J. Experimental comparisons between AM and BW modulation heating excitation of ELF / VLF waves at EISCAT. Phys. Plasmas 2019, 26, 082901. [Google Scholar] [CrossRef]
- Rietveld, M.T.; Kohl, H.; Kopka, H.; Stubbe, P. Introduction to ionospheric heating at Tromsø—I. Experimental overview. J. Atmos. Terr. Phys. 1993, 55, 577–599. [Google Scholar] [CrossRef]
- Akbari, H.; Bhatt, A.; La Hoz, C.; Semeter, J.L. Incoherent scatter plasma lines: Observations and applications. Space Sci. Rev. 2017, 212, 249–294. [Google Scholar] [CrossRef]
- Yang, J.T.; Li, Q.L.; Lu, H.; Che, H.Q.; Hao, S.J.; Guo, F.; Wu, J.; Lyu, L.B.; Chen, J.; Ma, G.L.; et al. CSES observations of ELF wave radiation excited by the EISCAT heater. Phys. Plasmas 2020, 27, 122903. [Google Scholar] [CrossRef]
- Ginzburg, V.L. The Propagation of Electromagnetic Waves in Plasmas; Pergamon Press: Oxford, UK, 1970. [Google Scholar]
- Wang, X.; Zhou, C. Aspect dependence of Langmuir parametric instability excitation observed by EISCAT. Geophys. Res. Lett. 2017, 44, 9124–9133. [Google Scholar] [CrossRef]
- Villaseñor, J.; Wong, A.Y.; Song, B.; Pau, J.; McCarrick, M.; Sentman, D. Comparison of ELF/VLF generation modes in the ionosphere by the HIPAS heater array. Radio Sci. 1996, 31, 211–226. [Google Scholar] [CrossRef]
- Stubbe, P.; Kopka, H.; Rietveld, M.T.; Dowden, R.L. ELF and VLF wave generation by modulated HF heating of the current carrying lower ionosphere. J. Atmos. Terr. Phys. 1982, 44, 1123–1135. [Google Scholar] [CrossRef]
- Barr, R.; Stubbe, P.; Rietveld, M.T. ELF wave generation in the ionosphere using pulse modulated HF heating: Initial tests of a technique for increasing ELF wave generation efficiency. Ann. Geophys. 1999, 17, 759–769. [Google Scholar] [CrossRef]
- James, H.G.; Dowden, R.L.; Rietveld, M.T.; Stubbe, P.; Kopka, H. Simultaneous observations of ELF waves from an artificially modulated auroral electrojet in space and on the ground. J. Geophys. Res. Space Phys. 1984, 89, 1655–1666. [Google Scholar] [CrossRef]
- Kuo, S.P.; Snyder, A.; Chang, C.L. Electrojet-independent ionospheric extremely low frequency/very low frequency wave generation by powerful high frequency waves. Phys. Plasmas 2010, 17, 082904. [Google Scholar] [CrossRef]
- Evans, J.V. Theory and practice of ionosphere study by Thomson scatter radar. Proc. IEEE 1969, 57, 496–530. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.S.; Xu, B.; Wu, Z.S.; Li, H.Y.; Wang, Z.; Xu, Z.W.; Wu, J.; Wu, J. Observation of VHF incoherent scatter spectra disturbed by HF heating. J. Atmos. Sol. Terr. Phys. 2013, 105, 245–252. [Google Scholar] [CrossRef]
- Chen, F.F. Introduction to Plasma Physics and Controlled Fusion; Plenum Press: New York, NY, USA, 1984; pp. 82–94. [Google Scholar]
Modulation | Cycle 1 O-Mode | Cycle 2 X-Mode | Cycle 3 O-Mode | Cycle 4 X-Mode | |
---|---|---|---|---|---|
AM 1 | HF-on (5 min) | 10:28–10:33 | 11:00–11:05 | 11:30–11:35 | 12:00–12:05 |
HF-off (5 min) | 10:33–10:38 | 11:05–11:10 | 11:35–11:40 | 12:05–12:10 | |
BW 2 | HF-on (8 min) | 10:38–10:46 | 11:10–11:18 | 11:40–11:48 | 12:10–12:18 |
(f1 < f2) | HF-off (2 min) | 10:46–10:48 | 11:18–11:20 | 11:48–11:50 | 12:18–12:20 |
BW | HF-on (8 min) | 10:48–10:56 | 11:20–11:28 | 11:50–11:58 | 12:20–12:28 |
(f1 > f2) | HF-off (2 min) | 10:56–10:58 | 11:28–11:30 | 11:58–12:00 | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Yang, J.; Li, Q.; Yan, Y.; Hao, S.; Wang, C.; Wu, J.; Xu, B.; Xu, T.; Che, H.; et al. ELF/VLF Wave Radiation Experiment by Modulated Ionospheric Heating Based on Multi-Source Observations at EISCAT. Atmosphere 2022, 13, 228. https://doi.org/10.3390/atmos13020228
Chen J, Yang J, Li Q, Yan Y, Hao S, Wang C, Wu J, Xu B, Xu T, Che H, et al. ELF/VLF Wave Radiation Experiment by Modulated Ionospheric Heating Based on Multi-Source Observations at EISCAT. Atmosphere. 2022; 13(2):228. https://doi.org/10.3390/atmos13020228
Chicago/Turabian StyleChen, Jing, Jutao Yang, Qingliang Li, Yubo Yan, Shuji Hao, Cheng Wang, Jian Wu, Bin Xu, Tong Xu, Haiqin Che, and et al. 2022. "ELF/VLF Wave Radiation Experiment by Modulated Ionospheric Heating Based on Multi-Source Observations at EISCAT" Atmosphere 13, no. 2: 228. https://doi.org/10.3390/atmos13020228
APA StyleChen, J., Yang, J., Li, Q., Yan, Y., Hao, S., Wang, C., Wu, J., Xu, B., Xu, T., Che, H., & He, L. (2022). ELF/VLF Wave Radiation Experiment by Modulated Ionospheric Heating Based on Multi-Source Observations at EISCAT. Atmosphere, 13(2), 228. https://doi.org/10.3390/atmos13020228