applsci-logo

Journal Browser

Journal Browser

Novel Approaches for High Speed Optical Communication

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Optics and Lasers".

Deadline for manuscript submissions: 20 June 2025 | Viewed by 1994

Special Issue Editors


E-Mail Website
Guest Editor
Department of Electrical Engineering, City College of CUNY, New York, NY 10031, USA
Interests: optical fiber communications; free-space optical; artificial intelligence
Department of Electrical and Computer Engineering, California State University, Bakersfield, CA, USA
Interests: sensors; big data; smart materials; advanced monitoring technologies
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In today’s data-driven world, the demand for faster, more efficient, and higher-capacity communication systems continues to grow exponentially. High-speed optical communications, both in fiber-based systems and free-space optical (FSO) technologies, play a pivotal role in meeting these needs. Fiber communication has become the backbone of modern communication infrastructure, offering unparalleled bandwidth, low latency, and long-distance transmission capabilities. On the other hand, free-space optical communication has gained attention as a versatile and cost-effective alternative for high-data-rate transmissions in various environments, especially in locations where laying physical fiber is impractical.

Call for submissions: We are pleased to invite you to submit your work to this Special Issue on “Novel Approaches for High-Speed Optical Communications”. This Special Issue aims to gather cutting-edge research and reviews that address the latest advancements, challenges, and applications in both fiber optical communication and FSO systems. Contributions that explore how AI can enhance optical communication systems are especially welcome.

Suggested themes and article types for submissions: In this Special Issue, original research articles and review papers are welcome. Potential research areas include, but are not limited to, the following:

  • High-speed optical fiber communication systems.
  • Free-space optical (FSO) communication techniques.
  • Artificial intelligence (AI) and machine learning applications in optical communications.
  • Advanced modulation and coding techniques for optical networks.
  • Optical wireless communication and hybrid systems.
  • Signal processing innovations for high-speed data transmission.
  • Security and privacy concerns in optical communication systems.
  • Optical network optimization and resource management.
  • Energy-efficient and sustainable optical communication solutions.

We look forward to your contributions that will shape the future of optical communications and provide novel solutions for the next generation of high-speed networks.

Prof. Dr. Roger Dorsinville
Dr. Amin Malek
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • optical fiber communications
  • free-space optical
  • artificial intelligence
  • optical wireless communication and energy-efficient

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 2912 KiB  
Article
A Method for Rapid Deployment of Ground-Based Ultra-Long-Range Terrestrial Optical Communication Links
by Xuan Wang, Junfeng Han, Chen Wang and Xiangsheng Meng
Appl. Sci. 2025, 15(8), 4489; https://doi.org/10.3390/app15084489 - 18 Apr 2025
Viewed by 544
Abstract
With the growing demand for high-efficiency and secure information transmission, ultra-long-range optical communication has demonstrated significant potential. This paper proposes a method for establishing ground-based fixed-point ultra-long-range atmospheric optical communication links, aiming to overcome challenges such as atmospheric turbulence, transmission loss, and environmental [...] Read more.
With the growing demand for high-efficiency and secure information transmission, ultra-long-range optical communication has demonstrated significant potential. This paper proposes a method for establishing ground-based fixed-point ultra-long-range atmospheric optical communication links, aiming to overcome challenges such as atmospheric turbulence, transmission loss, and environmental interference. Through theoretical analysis and experimental validation, we developed a high-precision optical communication terminal installation model, determined the terminal’s optical axis direction via stellar calibration, and established a coordinate transformation model from geodetic coordinates to initial pointing angles. By analyzing initial pointing errors, we designed a laser link scanning strategy to compensate for uncertainties in the initial pointing region. The feasibility of this approach was verified through near-field validation and a long-distance link acquisition experiment exceeding 100 km. Experimental results demonstrated successful 100 km/100 Gbps ultra-high-speed optical communication. This breakthrough study is expected to play a critical role in future space-localized optical communication networks. Full article
(This article belongs to the Special Issue Novel Approaches for High Speed Optical Communication)
Show Figures

Figure 1

18 pages, 4345 KiB  
Article
Performance Optimization of 120 Gbps–120 GHz Hybrid MDM-FSO Utilizing Non-Coherent Modified Duobinary Modulations for Optical Wireless Distributed Networks
by Rabiu I. Sabitu and Amin Malek
Appl. Sci. 2025, 15(7), 3659; https://doi.org/10.3390/app15073659 - 26 Mar 2025
Viewed by 731
Abstract
This study proposes optimizing the performance of free space optic signal transmission using spatial division multiplexing. The research uses different modified duobinary modulation schemes to model and optimize three hybrid mode division multiplexing-free-space optical (MDM-FSO) channels, each operating at 40 Gb/s–40 GHz. The [...] Read more.
This study proposes optimizing the performance of free space optic signal transmission using spatial division multiplexing. The research uses different modified duobinary modulation schemes to model and optimize three hybrid mode division multiplexing-free-space optical (MDM-FSO) channels, each operating at 40 Gb/s–40 GHz. The study also includes the parametric optimization of various components to enhance system performance. The findings are significant for achieving high data rate links for backhaul solutions and improving bandwidth for future MDM-based wireless distributed networks. The research shows that employing three linearly polarized modes as data transmission channels with direct detection can be effective. Additionally, it is discovered that adjusting the bias voltages of the two LiNbO3 modulators can improve power sharing between the modes, thereby mitigating the power penalty. Full article
(This article belongs to the Special Issue Novel Approaches for High Speed Optical Communication)
Show Figures

Figure 1

13 pages, 3116 KiB  
Article
Research on Key Technologies of Quantum-Safe Metro-Optimized Optical Transport Networks
by Wei Zhou, Bingli Guo, Boying Cao and Xiaohui Cheng
Appl. Sci. 2025, 15(5), 2809; https://doi.org/10.3390/app15052809 - 5 Mar 2025
Viewed by 497
Abstract
This research introduces a novel physical-layer encryption technique for metropolitan-optimized optical transport networks (M-OTNs) that integrates real-time optical signal time-domain scrambling/descrambling with decoy-state quantum key distribution (DS-QKD). The method processes real-time optical data from the optical service unit (OSU) using a series of [...] Read more.
This research introduces a novel physical-layer encryption technique for metropolitan-optimized optical transport networks (M-OTNs) that integrates real-time optical signal time-domain scrambling/descrambling with decoy-state quantum key distribution (DS-QKD). The method processes real-time optical data from the optical service unit (OSU) using a series of tunable Fabry–Perot cavities (FPCs), synchronized and updated with a running key. Experimental validation demonstrates secure communication within the optical network’s physical layer during standard OTU2 data transmission (10.709 Gbps), achieving an online transmission distance exceeding 100 km over typical single-mode fiber with a power loss of approximately 1.77 dB. The results indicate that this integrated approach significantly enhances the security of the optical physical layer in M-OTNs. Full article
(This article belongs to the Special Issue Novel Approaches for High Speed Optical Communication)
Show Figures

Figure 1

Back to TopTop