Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,022)

Search Parameters:
Keywords = ultimate strength analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 16276 KiB  
Article
Localized Compression Behavior of GFRP Grid Web–Concrete Composite Beams: Experimental, Numerical, and Analytical Studies
by Yunde Li, Hai Cao, Yang Zhou, Weibo Kong, Kun Yu, Haoting Jiang and Zhongya Zhang
Buildings 2025, 15(15), 2693; https://doi.org/10.3390/buildings15152693 - 30 Jul 2025
Abstract
Glass fiber-reinforced polymer (GFRP) composites exhibit significant advantages over conventional structural webbing materials, including lightweight and corrosion resistance. This study investigates the localized compression performance of the proposed GFRP grid web–concrete composite beam through experimental and numerical analyses. Three specimen groups with variable [...] Read more.
Glass fiber-reinforced polymer (GFRP) composites exhibit significant advantages over conventional structural webbing materials, including lightweight and corrosion resistance. This study investigates the localized compression performance of the proposed GFRP grid web–concrete composite beam through experimental and numerical analyses. Three specimen groups with variable shear-span ratios (λ = 1.43, 1.77) and local stiffener specimens were designed to assess their localized compressive behavior. Experimental results reveal that a 19.2% reduction in shear-span ratio enhances ultimate load capacity by 22.93% and improves stiffness by 66.85%, with additional performance gains of 77.53% in strength and 94.29% in stiffness achieved through local stiffener implementation. In addition, finite element (FE) analysis demonstrated a strong correlation with experimental results, showing less than 5% deviation in ultimate load predictions while accurately predicting stress distributions and failure modes. FE parametric analysis showed that increasing the grid thickness and decreasing the grid spacing within a reasonable range can considerably enhance the localized compression performance. The proposed analytical model, based on Winkler elastic foundation theory, predicts ultimate compression capacities within 10% of both the experimental and numerical results. However, the GFRP grid strength adjustment factor βg should be further refined through additional experiments and numerical analyses to improve reliability. Full article
Show Figures

Figure 1

21 pages, 763 KiB  
Review
Pathway Analysis Interpretation in the Multi-Omic Era
by William G. Ryan V., Smita Sahay, John Vergis, Corey Weistuch, Jarek Meller and Robert E. McCullumsmith
BioTech 2025, 14(3), 58; https://doi.org/10.3390/biotech14030058 - 29 Jul 2025
Viewed by 114
Abstract
In bioinformatics, pathway analyses are used to interpret biological data by mapping measured molecules with known pathways to discover their functional processes and relationships. Pathway analysis has become an essential tool for interpreting large-scale omics data, translating complex gene sets into actionable experimental [...] Read more.
In bioinformatics, pathway analyses are used to interpret biological data by mapping measured molecules with known pathways to discover their functional processes and relationships. Pathway analysis has become an essential tool for interpreting large-scale omics data, translating complex gene sets into actionable experimental insights. However, issues inherent to pathway databases and misinterpretations of pathway relevance often result in “pathway fails,” where findings, though statistically significant, lack biological applicability. For example, the Tumor Necrosis Factor (TNF) pathway was originally annotated based on its association with observed tumor necrosis, while it is multifunctional across diverse physiological processes in the body. This review broadly evaluates pathway analysis interpretation, including embedding-based, semantic similarity-based, and network-based approaches to clarify their ideal use-case scenarios. Each method for interpretation is assessed for its strengths, such as high-quality visualizations and ease of use, as well as its limitations, including data redundancy and database compatibility challenges. Despite advancements in the field, the principle of “garbage in, garbage out” (GIGO) shows that input quality and method choice are critical for reliable and biologically meaningful results. Methodological standardization, scalability improvements, and integration with diverse data sources remain areas for further development. By providing critical guidance with contextual examples such as TNF, we aim to help researchers align their objectives with the appropriate method. Advancing pathway analysis interpretation will further enhance the utility of pathway analysis, ultimately propelling progress in systems biology and personalized medicine. Full article
(This article belongs to the Topic Computational Intelligence and Bioinformatics (CIB))
Show Figures

Graphical abstract

13 pages, 1606 KiB  
Article
The Correlation of Microscopic Particle Components and Prediction of the Compressive Strength of Fly-Ash-Based Bubble Lightweight Soil
by Yaqiang Shi, Hao Li, Hongzhao Li, Zhiming Yuan, Wenjun Zhang, Like Niu and Xu Zhang
Buildings 2025, 15(15), 2674; https://doi.org/10.3390/buildings15152674 - 29 Jul 2025
Viewed by 140
Abstract
Fly-ash-based bubble lightweight soil is widely used due to its environmental friendliness, load reduction, ease of construction, and low costs. In this study, 41 sets of 28 d compressive strength data on lightweight soils with different water–cement ratios, blowing agent dosages, and fly [...] Read more.
Fly-ash-based bubble lightweight soil is widely used due to its environmental friendliness, load reduction, ease of construction, and low costs. In this study, 41 sets of 28 d compressive strength data on lightweight soils with different water–cement ratios, blowing agent dosages, and fly ash dosages were collected through a literature search and indoor tests. Using the compressive strength index and SEM tests, the correlation between the mix ratio design and the microscopic particle components was investigated. The findings were as follows: carbonation reactions occurred in lightweight soil during the maintenance process, and the particles were spherical; increasing the dosage of blowing agent increased the soil’s porosity and pore diameter, leading to the formation of through-holes and reducing the compressive strength and mobility; increasing the fly ash dosage and water–cement ratio increased the soil’s mobility but reduced its compressive strength; and the strength decreased significantly when the fly ash dosage was more than 16% (e.g., the strength at a 20% dosage was 17.8% lower than that at a 15% dosage). Feature importance analysis showed that the water–cement ratio (57.7%), fly ash dosage (30.9%), and blowing agent dosage (11.1%) had a significant effect on strength. ExtraTrees, LightGBM, and Bayesian-optimized Random Forest models were used for 28d strength prediction with coefficients of determination (R2) of 0.695, 0.731, and 0.794, respectively. The Bayesian-optimized Random Forest model performed optimally in terms of the mean square error (MSE), root mean square error (RMSE), and mean absolute error (MAE), and the prediction performance was best. The accuracy of the model is expected to be further improved with expansions in the database. A 28 d compressive strength prediction platform for fly-ash-based bubble lightweight soil was ultimately developed, providing a convenient tool for researchers and engineers to predict material properties and mix ratios. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 5165 KiB  
Article
Microstructure and Mechanical Properties of Shoulder-Assisted Heating Friction Plug Welding 6082-T6 Aluminum Alloy Using a Concave Backing Hole
by Defu Li and Xijing Wang
Metals 2025, 15(8), 838; https://doi.org/10.3390/met15080838 - 27 Jul 2025
Viewed by 176
Abstract
Shoulder-assisted heating friction plug welding (SAH-FPW) experiments were conducted to repair keyhole-like volumetric defects in 6082-T6 aluminum alloy, employing a novel concave backing hole technique on a flat backing plate. This approach yielded well-formed plug welded joints without significant macroscopic defects. Notably, the [...] Read more.
Shoulder-assisted heating friction plug welding (SAH-FPW) experiments were conducted to repair keyhole-like volumetric defects in 6082-T6 aluminum alloy, employing a novel concave backing hole technique on a flat backing plate. This approach yielded well-formed plug welded joints without significant macroscopic defects. Notably, the joints exhibited no thinning on the top surface while forming a reinforcing boss structure within the concave backing hole on the backside, resulting in a slight increase in the overall load-bearing thickness. The introduction of the concave backing hole led to distinct microstructural zones compared to joints welded without it. The resulting joint microstructure comprised five regions: the nugget zone, a recrystallized zone, a shoulder-affected zone, the thermo-mechanically affected zone, and the heat-affected zone. Significantly, this process eliminated the poorly consolidated ‘filling zone’ often associated with conventional plug repairs. The microhardness across the joints was generally slightly higher than that of the base metal (BM), with the concave backing hole technique having minimal influence on overall hardness values or their distribution. However, under identical welding parameters, joints produced using the concave backing hole consistently demonstrated higher tensile strength than those without. The joints displayed pronounced ductile fracture characteristics. A maximum ultimate tensile strength of 278.10 MPa, equivalent to 89.71% of the BM strength, was achieved with an elongation at fracture of 9.02%. Analysis of the grain structure revealed that adjacent grain misorientation angle distributions deviated from a random distribution, indicating dynamic recrystallization. The nugget zone (NZ) possessed a higher fraction of high-angle grain boundaries (HAGBs) compared to the RZ and TMAZ. These findings indicate that during the SAH-FPW process, the use of a concave backing hole ultimately enhances structural integrity and mechanical performance. Full article
(This article belongs to the Special Issue Advances in Welding and Joining of Alloys and Steel)
Show Figures

Figure 1

29 pages, 9152 KiB  
Article
Effect of Cracks on the Compressive Ultimate Strength of Plate and Stiffened Panel Under Biaxial Loads: A Finite Element Analysis
by Sang Jin Kim, Jung Min Sohn and Do Kyun Kim
Appl. Sci. 2025, 15(15), 8287; https://doi.org/10.3390/app15158287 - 25 Jul 2025
Viewed by 117
Abstract
Crack damage can significantly reduce the ultimate strength of marine structures, potentially leading to progressive collapse. This study employs finite element analysis to investigate how cracks affect the strength of plates and stiffened panels under uniaxial and biaxial compression, providing insights essential for [...] Read more.
Crack damage can significantly reduce the ultimate strength of marine structures, potentially leading to progressive collapse. This study employs finite element analysis to investigate how cracks affect the strength of plates and stiffened panels under uniaxial and biaxial compression, providing insights essential for robust structural design. The effects of crack size and orientation are explored through a systematic evaluation of longitudinal, transverse, and bidirectional cracks—sized at 10%, 25%, and 50% of structural dimensions (plate length and plate breadth/web height)—in both plates and unstiffened panels. The analysis identifies key parameters governing strength degradation and reveals that stiffened panels are more resistant to cracking, whereas plates are more sensitive to crack orientation and loading direction. These findings underscore the role of crack characteristics and structural reinforcement in maintaining residual strength and provide guidance for improving the accuracy and reliability of ultimate strength predictions. Full article
Show Figures

Figure 1

24 pages, 331 KiB  
Perspective
Strategy for the Development of Cartography in Bulgaria with a 10-Year Planning Horizon (2025–2035) in the Context of Industry 4.0 and 5.0
by Temenoujka Bandrova, Davis Dinkov and Stanislav Vasilev
ISPRS Int. J. Geo-Inf. 2025, 14(8), 289; https://doi.org/10.3390/ijgi14080289 - 25 Jul 2025
Viewed by 600
Abstract
This strategic document outlines Bulgaria’s roadmap for modernizing its cartographic sector from 2025 to 2035, addressing the outdated geospatial infrastructure, lack of standardized digital practices, lack of coordinated digital infrastructure, outdated standards, and fragmented data management systems. The strategy was developed in accordance [...] Read more.
This strategic document outlines Bulgaria’s roadmap for modernizing its cartographic sector from 2025 to 2035, addressing the outdated geospatial infrastructure, lack of standardized digital practices, lack of coordinated digital infrastructure, outdated standards, and fragmented data management systems. The strategy was developed in accordance with the national methodology for strategic planning and through preliminary consultations with key stakeholders, including research institutions, business organizations, and public institutions. It aims to build a human-centered, data-driven geospatial framework aligned with global standards such as ISO 19100 and the EU INSPIRE Directive. Core components include: (1) modernization of the national geodetic system, (2) adoption of remote sensing and AI technologies, (3) development of interactive, web-based geospatial platforms, and (4) implementation of quality assurance and certification standards. A SWOT analysis highlights key strengths—such as existing institutional expertise—and critical challenges, including outdated legislation and insufficient coordination. The strategy emphasizes the need for innovation, regulatory reform, inter-institutional collaboration, and sustained investment. It ultimately positions Bulgarian cartography as a strategic contributor to national sustainable development and digital transformation. Full article
17 pages, 8715 KiB  
Article
Experimental Investigation of Failure Behaviors of CFRP–Al Lap Joints with Various Configurations Under High- and Low-Temperature Conditions
by Mingzhen Wang, Qiaosheng Huang, Qingfeng Duan, Wentao Yang, Yue Cui and Hongqiang Lyu
Materials 2025, 18(15), 3467; https://doi.org/10.3390/ma18153467 - 24 Jul 2025
Viewed by 286
Abstract
The failure behaviors of CFR–aluminum lap joints with diverse configurations through quasi-static tensile tests were conducted at −40 °C, 25 °C, and 80 °C. Four specimen types were examined: CFRP–aluminum alloy two-bolt single-lap joints (TBSL), two-bolt double-lap joints (TBDL), two-bolt bonded–bolted hybrid single-lap [...] Read more.
The failure behaviors of CFR–aluminum lap joints with diverse configurations through quasi-static tensile tests were conducted at −40 °C, 25 °C, and 80 °C. Four specimen types were examined: CFRP–aluminum alloy two-bolt single-lap joints (TBSL), two-bolt double-lap joints (TBDL), two-bolt bonded–bolted hybrid single-lap joints (BBSL), and two-bolt bonded–bolted hybrid double-lap joints (BBDL). The analysis reveals that double-lap joints possess a markedly higher strength than single-lap joints. The ultimate loads of the TBSL (single-lap joints) at temperatures of −40 °C and 25 °C are 29.5% and 26.20% lower, respectively, than those of the TBDL (double-lap joints). Similarly, the ultimate loads of the BBSL (hybrid single-lap joints) at −40 °C, 25 °C, and 80 °C are 19.8%, 31.66%, and 40.05% lower, respectively, compared to the corresponding data of the TBDL. In bolted–bonded hybrid connections, the adhesive layer enhances the joint’s overall stiffness but exhibits significant temperature dependence. At room and low temperatures, the ultimate loads of the BBDL are 46.97 kN at −40 °C and 50.30 kN at 25 °C, which are significantly higher than those of the TBDL (42.24 kN and 44.63 kN, respectively). However, at high temperatures, the load–displacement curves of the BBDL and TBDL are nearly identical. This suggests that the adhesive layers are unable to provide a sufficient shear-bearing capacity due to their low modulus at elevated temperatures. This research provides valuable insights for designing composite–metal connections in aircraft structures, highlighting the impacts of different joint configurations and temperature conditions on failure modes and load-bearing capacities. Full article
Show Figures

Figure 1

22 pages, 7569 KiB  
Article
Ancient Ship Structures: Ultimate Strength Analysis of Wooden Joints
by Albert Zamarin, Smiljko Rudan, Davor Bolf, Alice Lucchini and Irena Radić Rossi
J. Mar. Sci. Eng. 2025, 13(8), 1392; https://doi.org/10.3390/jmse13081392 - 22 Jul 2025
Viewed by 145
Abstract
This paper presents an analysis of the ultimate strength of wooden joints of the structures of ancient wooden ships. The aim is to contribute to the discussion about how joining technology and types of joints contributed to the transition from ‘shell-first’ to ‘frame-first’ [...] Read more.
This paper presents an analysis of the ultimate strength of wooden joints of the structures of ancient wooden ships. The aim is to contribute to the discussion about how joining technology and types of joints contributed to the transition from ‘shell-first’ to ‘frame-first’ construction, of which the latter is still traditional Mediterranean wooden shipbuilding technology. Historically, ship construction has consisted of two main structural types of elements: planking and stiffening. Therefore, two characteristic carvel planking joints and two longitudinal keel joints were selected for analysis. For planking, the joint details of the ship Uluburun (14th c. BC) and the ship Kyrenia (4th c. BC) were chosen, while two different types of scarf joints belonging to the ship Jules-Verne 9 (6th c. BC) and the ship Toulon 2 (1st c. AD) were selected. The capacity, i.e., the ultimate strength of the joint, is compared to the strength of the structure as if there was no joint. The analysis simulates the independent joint loading of each of the six numerical models in bending, tension, and compression until collapse. The results are presented as load-end-shortening curves, and the calculation was performed as a nonlinear FE analysis on solid elements using the LSDYNA explicit solver. Since wood is an anisotropic material, a large number of parameters are needed to describe the wood’s behaviour as realistically as possible. To determine all the necessary mechanical properties of two types of wood structural material, pine and oak, a physical experiment was used where results were compared with numerical calculations. This way, the material models were calibrated and used on the presented joints’ ultimate strength analysis. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 2698 KiB  
Article
Behavior of Demountable and Replaceable Fabricated RC Beam with Bolted Connection Under Mid-Span Compression
by Dongping Wu, Yan Liang, Huachen Liu and Sheng Peng
Buildings 2025, 15(15), 2589; https://doi.org/10.3390/buildings15152589 - 22 Jul 2025
Viewed by 192
Abstract
In order to verify the rationality and feasibility of a demountable and replaceable fabricated RC beam with bolted connection under mid-span compression, one cast-in-place RC beam and four fabricated RC beams were designed and fabricated. Through the mid-span static loading test and analysis [...] Read more.
In order to verify the rationality and feasibility of a demountable and replaceable fabricated RC beam with bolted connection under mid-span compression, one cast-in-place RC beam and four fabricated RC beams were designed and fabricated. Through the mid-span static loading test and analysis of five full-scale RC beams, the effects of high-strength bolt specifications and stiffeners were compared, and the behavior of the fabricated RC beams with bolted connections was analyzed. The test process was observed and the test results were analyzed. The failure mode, cracking load, yield load, ultimate load, stiffness change, deflection measured value, ductility, and other indicators of the specimens were compared and analyzed. It was shown that the failure mode of the fabricated RC beam was reinforcement failure, which met the three stress stages of the normal section bending of the reinforcement beam. The failure position occurred at 10~15 cm of the concrete outside the bolt connection, and the beam support and the core area of the bolt connection were not damaged. The fabricated RC beam has good mechanical performance and high bearing capacity. In addition, comparing the test value with the simulation value, it is found that they are in good agreement, indicating that ABAQUS software of 2024 can be well used for the simulation analysis of the behavior of fabricated RC beam structure. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 6673 KiB  
Article
Tribological Properties of MoN/TiN Multilayer Coatings Prepared via High-Power Impulse Magnetron Sputtering
by Jiaming Xu, Ping Zhang, Jianjian Yu, Puyou Ying, Tao Yang, Jianbo Wu, Tianle Wang, Nikolai Myshkin and Vladimir Levchenko
Lubricants 2025, 13(8), 319; https://doi.org/10.3390/lubricants13080319 - 22 Jul 2025
Viewed by 314
Abstract
To address the limitations of single-layer nitride coatings, such as poor load adaptability and low long-term durability, MoN/TiN multilayer coatings were prepared via high-power impulse magnetron sputtering (HiPIMS). HiPIMS produces highly ionized plasmas that enable intense ion bombardment, yielding nitride films with enhanced [...] Read more.
To address the limitations of single-layer nitride coatings, such as poor load adaptability and low long-term durability, MoN/TiN multilayer coatings were prepared via high-power impulse magnetron sputtering (HiPIMS). HiPIMS produces highly ionized plasmas that enable intense ion bombardment, yielding nitride films with enhanced mechanical strength, durability, and thermal stability versus conventional methods. The multilayer coating demonstrated a low coefficient of friction (COF, ~0.4) and wear rate (1.31 × 10−7 mm3/[N·m]). In contrast, both TiN and MoN coatings failed at 5 N and 10 N loads, respectively. Under increasing loads, the multilayer coating maintained stable wear rates (1.84–3.06 × 10−7 mm3/[N·m]) below 20 N, and ultimately failed at 25 N. Furthermore, the MoN layer contributes to COF reduction. Grazing-incidence X-ray diffraction analysis confirmed the enhanced crystallographic stability of the multilayer coating, thereby revealing a dominant (111) orientation. The multilayer architecture suppresses crack propagation while effectively balancing hardness and toughness, offering a promising design for extreme-load applications. Full article
Show Figures

Figure 1

15 pages, 1757 KiB  
Article
Development of a Design Formula for Estimating the Residual Strength of Corroded Stiffened Cylindrical Structures
by Sang-Hyun Park, Byoungjae Park, Sang-Rai Cho, Sung-Ju Park and Kookhyun Kim
J. Mar. Sci. Eng. 2025, 13(7), 1381; https://doi.org/10.3390/jmse13071381 - 21 Jul 2025
Viewed by 279
Abstract
This paper develops a novel design formula to estimate the residual strength of corroded stiffened cylindrical structures. It extends a previously established ultimate strength formulation for intact cylinders by introducing a corrosion-induced strength reduction factor. The foundational formula considers failure mode interactions like [...] Read more.
This paper develops a novel design formula to estimate the residual strength of corroded stiffened cylindrical structures. It extends a previously established ultimate strength formulation for intact cylinders by introducing a corrosion-induced strength reduction factor. The foundational formula considers failure mode interactions like yielding, local buckling, overall buckling, and stiffener tripping. This research utilizes recent experimental and numerical investigations on corroded ring-stiffened cylinder models. Experimental results validate the numerical analysis method, showing good agreement in collapse pressures (2–4% difference) and shapes. The validated numerical method is then subject to an extensive parametric study, systematically varying corrosion characteristics. Results indicate a clear relationship between corrosion volume and strength reduction, with overall buckling being more sensitive. Based on these comprehensive results, a new empirical strength reduction factor (ρc) is derived as a function of the corrosion volume ratio (Vnon). This factor is integrated into the existing ultimate strength formula, allowing direct residual strength estimation for corroded structures. The proposed formula is rigorously verified against experimental and numerical data, showing excellent agreement (mean 1.00, COV 5.86%). This research provides a practical, accurate design tool for assessing the integrity and service life of corroded stiffened cylindrical structures. Full article
Show Figures

Figure 1

19 pages, 2911 KiB  
Article
Investigation of Implantable Capsule Grouting Technology and Its Bearing Characteristics in Soft Soil Areas
by Xinran Li, Yuebao Deng, Wenxi Zheng and Rihong Zhang
J. Mar. Sci. Eng. 2025, 13(7), 1362; https://doi.org/10.3390/jmse13071362 - 17 Jul 2025
Viewed by 163
Abstract
The implantable capsule grouting pile is a novel pile foundation technology in which a capsule is affixed to the side of the implanted pile to facilitate grouting and achieve extrusion-based reinforcement. This technique is designed to improve the bearing capacity of implanted piles [...] Read more.
The implantable capsule grouting pile is a novel pile foundation technology in which a capsule is affixed to the side of the implanted pile to facilitate grouting and achieve extrusion-based reinforcement. This technique is designed to improve the bearing capacity of implanted piles in coastal areas with deep, soft soil. This study conducted model tests involving multiple grouting positions across different foundation types to refine the construction process and validate the enhancement of bearing capacity. Systematic measurements and quantitative analyses were performed to evaluate the earth pressure distribution around the pile, the resistance characteristics of the pile end, the evolution of side friction resistance, and the overall bearing performance. Special attention was given to variations in the lateral friction resistance adjustment coefficient under different working conditions. Furthermore, an actual case analysis was conducted based on typical soft soil geological conditions. The results indicated that the post-grouting process formed a dense soil ring through the expansion and extrusion of the capsule, resulting in increased soil strength around the pile due to increased lateral earth pressure. Compared to conventional piles, the grouted piles exhibited a synergistic improvement characterized by reduced pile end resistance, enhanced side friction resistance, and improved overall bearing capacity. The ultimate bearing capacity of model piles at different grouting depths across different foundation types increased by 6.8–22.3% compared with that of ordinary piles. In silty clay and clayey silt foundations, the adjustment coefficient ηs of lateral friction resistance of post-grouting piles ranged from 1.097 to 1.318 and increased with grouting depth. The findings contribute to the development of green pile foundation technology in coastal areas. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

23 pages, 23418 KiB  
Article
Effects of Aggregate-to-Binder Ratio on Mechanical Performance of Engineered Geopolymer Composites with Recycled Rubber Aggregates
by Yiwei Li, Shuzhuo Zhi, Ran Chai, Zhiying Zhou, Jiarui He, Zizhao Yao, Zhan Yang, Genquan Zhong and Yongchang Guo
Buildings 2025, 15(14), 2496; https://doi.org/10.3390/buildings15142496 - 16 Jul 2025
Viewed by 220
Abstract
This study investigates the development of a fully rubberized fine-aggregate engineered geopolymer composite (R-EGC) by replacing quartz sand with waste rubber particles (RPs). The influence of the rubber aggregate-to-binder mass ratio (A/B) on the performance of the R-EGC was systematically examined from both [...] Read more.
This study investigates the development of a fully rubberized fine-aggregate engineered geopolymer composite (R-EGC) by replacing quartz sand with waste rubber particles (RPs). The influence of the rubber aggregate-to-binder mass ratio (A/B) on the performance of the R-EGC was systematically examined from both macroscopic and microscopic perspectives. Quantitative analysis of crack width and number was conducted using binarized image-processing techniques to elucidate the crack propagation patterns. Moreover, scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) were employed to analyze the interfacial transition zone (ITZ) between the rubber aggregates and the geopolymer matrix under varying A/B ratios, aiming to explore the underlying failure mechanisms of the R-EGC. The research results indicated that the flowability of the R-EGC decreased gradually with increasing A/B ratio. The flowability of R-0.1 was 73.5%, outperforming R-0.2 and R-0.3 (66% and 65%, respectively). R-0.1 achieved the highest compressive strength of 35.3 MPa (compared to 31.2 MPa and 28.4 MPa for R-0.2 and R-0.3, respectively). R-0.3 demonstrated the most effective crack-control capability, with a tensile strength of 3.96 MPa (representing increases of 11.9% and 3.7% compared to R-0.1 and R-0.2, respectively) and the smallest crack width of 104 μm (indicating reductions of 20.6% and 43.5% compared to R-0.1 and R-0.2, respectively). R-0.2 exhibited the best ductility, with an ultimate tensile strain of 8.33%. Microstructural tests revealed that the interfacial transition zone (ITZ) widths for R-0.1, R-0.2, and R-0.3 were 2.47 μm, 4.53 μm, and 1.09 μm, respectively. An appropriate increase in the ITZ width was found to be beneficial for enhancing tensile ductility, but it compromised the crack-control ability of the R-EGC, thereby reducing its durability. Overall, this study clarifies the fundamental influence of the A/B ratio on the mechanical performance of the R-EGC. The findings provide valuable insights for future research in this field. Full article
(This article belongs to the Special Issue Next-Gen Cementitious Composites for Sustainable Construction)
Show Figures

Figure 1

38 pages, 15401 KiB  
Article
Failure Behavior of Aluminum Solar Panel Mounting Structures Subjected to Uplift Pressure: Effects of Foundation Defects
by Sachi Furukawa, Hiroki Mikami, Takehiro Okuji and Koji Takamori
Solar 2025, 5(3), 33; https://doi.org/10.3390/solar5030033 - 15 Jul 2025
Viewed by 227
Abstract
This study investigates the failure behavior of aluminum solar panel mounting structures subjected to uplift pressure, with particular focus on conditions not typically considered in conventional design, specifically, foundation defects. To clarify critical failure modes and evaluate potential countermeasures, full-scale pressure loading tests [...] Read more.
This study investigates the failure behavior of aluminum solar panel mounting structures subjected to uplift pressure, with particular focus on conditions not typically considered in conventional design, specifically, foundation defects. To clarify critical failure modes and evaluate potential countermeasures, full-scale pressure loading tests were conducted. The results showed that when even a single column base was unanchored, structural failure occurred at approximately half the design wind pressure. Although reinforcement measures—such as the installation of uplift-resistant braces—increased the failure pressure to 1.5 times the design value, they also introduced the risk of undesirable failure modes, including panel detachment. Additionally, four-point bending tests of failed members and joints, combined with structural analysis of the frame, demonstrated that once the ultimate strength of each component is known, the likely failure location within the structure can be reasonably predicted. To prevent panel blow-off and progressive failure of column bases and piles, specific design considerations are proposed based on both experimental observations and numerical simulations. In particular, avoiding local buckling in members parallel to the short side of the panels is critical. Furthermore, a safety factor of approximately two should be applied to column bases and pile foundations to ensure structural integrity under unforeseen foundation conditions. Full article
Show Figures

Figure 1

22 pages, 2892 KiB  
Article
Investigation of Bolt Grade Influence on the Structural Integrity of L-Type Flange Joints Using Finite Element Analysis
by Muhammad Waleed and Daeyong Lee
J. Mar. Sci. Eng. 2025, 13(7), 1346; https://doi.org/10.3390/jmse13071346 - 15 Jul 2025
Viewed by 237
Abstract
Critical components in support structures for wind turbines, flange joints, are fundamental to ensure the structural integrity of mechanical assemblies under varying operational conditions. This paper investigates the structural performance of L-type flange joints, focusing on the influence of bolt grades and bolt [...] Read more.
Critical components in support structures for wind turbines, flange joints, are fundamental to ensure the structural integrity of mechanical assemblies under varying operational conditions. This paper investigates the structural performance of L-type flange joints, focusing on the influence of bolt grades and bolt pretension through a finite element analysis (FEA) study of its key performance indicators, including stress distribution, deformation, and force–displacement behaviors. This paper studies two high-strength bolt grades, Grade 10.9 and Grade 12.9, and two main steps—first, bolt pretension and, second, external loading (tower shell tensile load)—to investigate the influence on joint reliability and safety margins. The novelty of this study lies in its specific focus on static axial loading conditions, unlike the existing literature that emphasizes fatigue or dynamic loads. Results show that the specimen carrying a higher bolt grade (12.9) has 18% more ultimate load carrying capacity than the specimen with a lower bolt grade (10.9). Increased pretension increases the stability of the joint and reduces the micro-movements between A and B (on model specimen), but could result in material fatigue if over-pretensioned. Comparative analysis of the different bolt grades has provided practical guidance on material selection and bolt pretension in L-type flange joints for wind turbine support structures. The findings of this work offer insights into the proper design of robust flange connections for high-demand applications by highlighting a balance among material properties, bolt pretension, and operational conditions, while also proposing optimized pretension and material recommendations validated against classical analytical models. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop