Development of a Design Formula for Estimating the Residual Strength of Corroded Stiffened Cylindrical Structures
Abstract
1. Introduction
2. Ultimate Strength Design Formula for Intact Stiffened Cylinders
2.1. Overview of the Base Design Formula
2.2. Constituent Buckling and Yield Pressures
2.2.1. Local Buckling Pressure
2.2.2. Overall Buckling Pressure
2.2.3. Stiffener Tripping Pressure
2.2.4. Yield Pressure
2.3. Knockdown Factors for Intact Structures
2.4. Development and Verification of the Intact Strength Formula
3. Experimental and Numerical Investigation of Corroded Stiffened Cylinders
3.1. Experimental Program on Corroded Models
3.2. Numerical Analysis and Validation
4. Parametric Study on Corrosion Damage Characteristics
4.1. Design of the Parametric Study
4.2. Results of Parametric Study: Strength Reduction Analysis
5. Development of the Residual Strength Design Formula
5.1. Methodology for Deriving the Strength Reduction Factor
5.2. Proposed Strength Reduction Factor
6. Verification of the Proposed Residual Strength Design Formula
6.1. Verification with Experimental and Numerical Data
6.2. Discussion on Accuracy and Reliability
6.3. Limitations and Future Work
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- von Mises, R. The Critical External Pressure of Cylindrical Tubes Under Uniform Radial and Axial Load; U.S. Experimental Model Basin, Navy Yard: Washington, DC, USA, 1933. [Google Scholar]
- Windenburg, D.F.; Trilling, C. Collapse by Instability of Thin Cylindrical Shells Under External Pressure. J. Fluids Eng. 1934, 56, 819–825. [Google Scholar] [CrossRef]
- Southwell, R. On the collapse of tubes by external pressure I. Philos. Mag. 1913, 25, 687–697. [Google Scholar] [CrossRef]
- Slankard, R.C.; Nash, W.A. Tests of the Elastic Stability of a Ring-Stiffened Cylindrical Shell, Model BR-5 (l¼ 1.705), Subjected to Hydrostatic Pressure; DTMB Report No. 822; David Taylor Model Basin: Washington, DC, USA, 1953. [Google Scholar]
- Kirstein, A.F.; Slankard, R.C. An Experimental Investigation of the Shellinstability Strength of a Machined, Ring-stiffened Cylindrical Shell Under Hydrostatic Pressure (Model BR-4A); DTMB Report No. 997; David Taylor Model Basin: Washington, DC, USA, 1956. [Google Scholar]
- Reynolds, T.E. Inelastic Lobar Buckling of Cylindrical Shells Under External Hydrostatic Pressure; DTMB Report 1392; David Taylor Model Basin: Washington, DC, USA, 1960. [Google Scholar]
- Kendrick, S.B. Analysis of Results of Static Pressure Tests of Chatham Submarine Models; Report No. R.218; Naval Construction Research Establishment (NCRE): Rosyth, UK, 1955. [Google Scholar]
- Kendrick, S.B. Structural Design of Submarine Pressure Vessels; Report No. R.483; Naval Construction Research Establishment (NCRE): Rosyth, UK, 1964. [Google Scholar]
- Kendrick, S. Externally Pressurized Vessels. In the Stress Analysis of Pressure Vessels and Pressure Vessel Components; Elsevier: Amsterdam, The Netherlands, 1970; pp. 405–511. [Google Scholar]
- Kendrick, S.B. Shape imperfection in cylinders and spheres: Their importance in design and methods of measurement. J. Strain Anal. 1977, 12, 117–122. [Google Scholar] [CrossRef]
- Lunchick, M.E. Yield Failure of Stiffened Cylinders Under Hydrostatic Pressure; DTMB Report 1291; David Taylor Model Basin: Washington, DC, USA, 1959. [Google Scholar]
- Miller, C.D.; Kinra, R.K. External Pressure Tests of Ring-Stiffened Fabricated Steel Cylinders. J. Pet. Technol. 1981, 33, 2528–2538. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Homma, Y.; Oshima, K.; Mishiro, Y.; Terada, H.; Yoshikawa, T.; Morihana, H.; Yamauchi, Y.; Takenaka, M. General Instability of Ring-Stiffened Cylindrical Shells Under External Pressure. Mar. Struct. 1989, 2, 133–149. [Google Scholar] [CrossRef]
- Frieze, P.A. The Experimental Response of Flat-Bar Stiffeners in Cylinders Under External Pressure. Mar. Struct. 1994, 7, 213–230. [Google Scholar] [CrossRef]
- Cho, S.R.; Muttaqie, T.; Do, Q.T.; So, H.Y.; Sohn, J.M. Ultimate Strength Formulation Considering Failure Mode Interactions of Ring-Stiffened Cylinders Subjected to Hydrostatic Pressure. Ocean. Eng. 2018, 161, 242–256. [Google Scholar] [CrossRef]
- Cho, S.R.; Muttaqie, T.; Do, Q.T.; Kim, S.; Kim, S.M.; Han, D.H. Experimental Investigations on the Failure Modes of Ring-Stiffened Cylinders Under External Hydrostatic Pressure. Int. J. Nav. Archit. Ocean. Eng. 2018, 10, 711–729. [Google Scholar] [CrossRef]
- Cho, S.R.; Muttaqie, T.; Do, Q.T.; Park, S.H.; Kim, S.M.; So, H.Y.; Sohn, J.M. Experimental Study on Ultimate Strength of Steel-Welded Ring-Stiffened Conical Shell Under External Hydrostatic Pressure. Mar. Struct. 2019, 67, 102634. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, Y.; Zhang, J.; Zhang, A.; Wan, Z. Experimental and Numerical Studies on the Collapse of Titanium Alloy Ring-Stiffened Cylinder. Eng. Fail. Anal. 2025, 167, 108928. [Google Scholar] [CrossRef]
- MacKay, J.R.; Van Keulen, F.; Smith, M.J. Quantifying the Accuracy of Numerical Collapse Predictions for the Design of Submarine Pressure Hulls. Thin-Walled Struct. 2011, 49, 145–156. [Google Scholar] [CrossRef]
- MacKay, J.R.; van Keulen, F. The Sensitivity of Overall Collapse of Damaged Submarine Pressure Hulls to Material Strength. J. Offshore Mech. Arct. Eng. 2013, 135, 011501. [Google Scholar] [CrossRef]
- Krenzke, M.A. Effect of Initial Deflections and Residual Welding Stresses on Elastic Behavior and Collapse Pressure of Stiffened Cylinders; Report 1327; David Taylor Model Basin: Washington, DC, USA, 1960. [Google Scholar]
- Bushnell, D. Effect of cold bending and welding on buckling of ring-stiffened cylinders. Comput. Struct. 1980, 12, 291–307. [Google Scholar] [CrossRef]
- Faulkner, D. Effects of residual stresses on the ductile strength of plane welded grillages and of ring stiffened cylinders. J. Strain Anal. 1977, 12, 130–139. [Google Scholar] [CrossRef]
- Smith, C.S.; Kirkwood, W. Influence of initial deformations and residual stresses on inelastic flexural buckling of stiffened plates and shells. In Proceedings of the International Conference on Steel Plated Structures, London, UK, 6–9 July 1976; Dowling, P.J., Ed.; Imperial College: London, UK, 1976; pp. 838–864. [Google Scholar]
- MacKay, J.R.; van Keulen, F. A Review of External Pressure Testing Techniques for Shells Including a Novel Volume-Control Method. Exp. Mech. 2010, 50, 753–772. [Google Scholar] [CrossRef]
- MacKay, J.R.; Jiang, L.; Glas, A.H. Accuracy of Nonlinear Finite Element Collapse Predictions for Submarine Pressure Hulls with and without Artificial Corrosion Damage. Mar. Struct. 2011, 24, 292–317. [Google Scholar] [CrossRef]
- Viljoen, H.C.; Mahomed, N.; Cupido, L.H.; Mitchell, G.P. Effect of Corrosion Thinning on Depth of Operation: Case Study of an HY-80 Steel Submarine Pressure Hull. Mar. Struct. 2022, 81, 103103. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, Z.; Wang, F.; Zhao, T.; Zhu, Y. Ultimate Strength of Externally Pressurised Steel Spheres Containing Through-Thickness Defects. Int. J. Press. Vessel. Pip. 2022, 199, 104750. [Google Scholar] [CrossRef]
- Mendoza, J.I.; Marín-López, J.R. Ultimate Local Strength of a Submarine Structure Considering the Influence of Localized Reduction of Thickness. Ocean. Eng. 2023, 271, 113778. [Google Scholar] [CrossRef]
- Yu, H.; Qiao, P. Buckling Analysis of Structures with Local Abnormality Using Non-Uniform Spline Finite Strip Method. Comput. Struct. 2025, 307, 107597. [Google Scholar] [CrossRef]
- Harding, J.E.; Onoufriou, A. Behaviour of Ring-Stiffened Cylindrical Members Damaged by Local Denting. J. Constr. Steel Res. 1995, 33, 237–257. [Google Scholar] [CrossRef]
- Cerik, B.C. Ultimate Strength of Locally Damaged Steel Stiffened Cylinders Under Axial Compression. Thin-Walled Struct. 2015, 95, 138–151. [Google Scholar] [CrossRef]
- Cho, S.R.; Do, Q.T.; Shin, H.K. Residual Strength of Damaged Ring-Stiffened Cylinders Subjected to External Hydrostatic Pressure. Mar. Struct. 2017, 56, 186–205. [Google Scholar] [CrossRef]
- Do, Q.T.; Muttaqie, T.; Park, S.H.; Shin, H.K.; Cho, S.R. Ultimate Strength of Intact and Dented Steel Stringer-Stiffened Cylinders Under Hydrostatic Pressure. Thin-Walled Struct. 2018, 132, 442–460. [Google Scholar] [CrossRef]
- DNV. Fatigue Design of Steel Offshore Structures; DNV-RP-C203; DNV: Oslo, Norway, 2019. [Google Scholar]
- ABS. Rules for Building and Classing Underwater Vehicles, Systems, and Hyperbaric Facilities; American Bureau of Shipping: Houston, TX, USA, 2021. [Google Scholar]
- BSI PD 5500:2009; Specification for Unfired Fusion Welded Pressure Vessels. British Standards Institution: London, UK, 2009.
- DNVGL. Rules for Classification Naval Vessels, Part 4 Sub-Surface Ships Chapter 1 Sub-Marines; DNV GL AS: Høvik, Norway, 2015. [Google Scholar]
- API. Bulletin 2U—Bulletin on Stability Design of Cylindrical Shells; American Petroleum Institute: Washington, DC, USA, 2000. [Google Scholar]
- MacKay, J.R.; Van Keulen, F. Partial Safety Factor Approach to the Design of Submarine Pressure Hulls Using Nonlinear Finite Element Analysis. Finite Elem. Anal. Des. 2013, 65, 1–16. [Google Scholar] [CrossRef]
- de Freitas, A.S.N.; Alvarez, A.A.; Ramos, R.; de Barros, E.A. Buckling Analysis of an AUV Pressure Vessel with Sliding Stiffeners. J. Mar. Sci. Eng. 2020, 8, 515. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, J.; Wu, R.; Peng, Y. Buckling Performance of Inner Corrugated Pressure Shells Under External Hydrostatic Pressure. Ocean. Eng. 2023, 288, 115963. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, S.M.; Yu, Y.; Cho, S.R. Residual strength of corroded ring-stiffened cylinder structures under external hydrostatic pressure. Int. J. Nav. Archit. Ocean. Eng. 2024, 16, 100590. [Google Scholar] [CrossRef]
- Bryant, A.R. Hydrostatic Pressure Buckling of a Ring-Stiffened Tube; Report No. 306; Naval Construction Research Establishment (NCRE): Rosyth, UK, 1954. [Google Scholar]
- Timoshenko, S.P.; Gere, J.M. Theory of Elastic Stability; McGraw-Hill: New York, NY, USA, 1961. [Google Scholar]
- Faulkner, D. Application of reliability theory in submarine design. Adv. Mar. Struct. 1991, 2, 566–585. [Google Scholar]
- de Souza, F.S.; Costa, T.G.; Feldhaus, M.J.; Szpoganicz, B.; Spinelli, A. Nonenzymatic Amperometric Sensors for Hydrogen Peroxide Based on Melanin-Capped Fe3+-, Cu2+-, or Ni2+- Modified Prussian Blue Nanoparticles. IEEE Sens. J. 2015, 15, 4749–4757. [Google Scholar] [CrossRef]
Model | (mm) | * (mm) | (mm) | * (mm) |
---|---|---|---|---|
RSC-CD-2 | 60 | 1.0 | 100 | 1.5 |
RSC-CD-2-60 series | 60 | 1.0~5.0 | 100 | 1.0~5.0 |
RSC-CD-2-80 series | 80 | 1.0~5.0 | 100 | 1.0~5.0 |
RSC-CD-2-100 series | 100 | 1.0~5.0 | 100 | 1.0~5.0 |
RSC-CD-4 | 60 | 1.0 | 100 | 1.5 |
RSC-CD-4-60 series | 60 | 1.0~5.0 | 100 | 1.0~5.0 |
RSC-CD-4-80 series | 80 | 1.0~5.0 | 100 | 1.0~5.0 |
RSC-CD-4-100 series | 100 | 1.0~5.0 | 100 | 1.0~5.0 |
Model | Collapse Pressure (MPa) | Xm (Exp./Num.) | Xm (Exp./Eq.) | ||
---|---|---|---|---|---|
Experiment | Numerical | Equation | |||
RSC-CD-1 | 3.04 | 2.99 | 3.11 | 1.02 | 0.98 |
RSC-CD-2 | 2.85 | 2.9 | 2.88 | 0.98 | 0.99 |
RSC-CD-3 | 2.6 | 2.62 | 2.53 | 0.99 | 1.03 |
RSC-CD-4 | 2.28 | 2.37 | 2.35 | 0.96 | 0.97 |
Mean | 0.99 | 0.99 | |||
COV | 2.30% | 2.58% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.-H.; Park, B.; Cho, S.-R.; Park, S.-J.; Kim, K. Development of a Design Formula for Estimating the Residual Strength of Corroded Stiffened Cylindrical Structures. J. Mar. Sci. Eng. 2025, 13, 1381. https://doi.org/10.3390/jmse13071381
Park S-H, Park B, Cho S-R, Park S-J, Kim K. Development of a Design Formula for Estimating the Residual Strength of Corroded Stiffened Cylindrical Structures. Journal of Marine Science and Engineering. 2025; 13(7):1381. https://doi.org/10.3390/jmse13071381
Chicago/Turabian StylePark, Sang-Hyun, Byoungjae Park, Sang-Rai Cho, Sung-Ju Park, and Kookhyun Kim. 2025. "Development of a Design Formula for Estimating the Residual Strength of Corroded Stiffened Cylindrical Structures" Journal of Marine Science and Engineering 13, no. 7: 1381. https://doi.org/10.3390/jmse13071381
APA StylePark, S.-H., Park, B., Cho, S.-R., Park, S.-J., & Kim, K. (2025). Development of a Design Formula for Estimating the Residual Strength of Corroded Stiffened Cylindrical Structures. Journal of Marine Science and Engineering, 13(7), 1381. https://doi.org/10.3390/jmse13071381