Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (213)

Search Parameters:
Keywords = two-source energy balance model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1420 KB  
Article
Distributed Photovoltaic–Storage Hierarchical Aggregation Method Based on Multi-Source Multi-Scale Data Fusion
by Shaobo Yang, Xuekai Hu, Lei Wang, Guanghui Sun, Min Shi, Zhengji Meng, Zifan Li, Zengze Tu and Jiapeng Li
Electronics 2026, 15(2), 464; https://doi.org/10.3390/electronics15020464 - 21 Jan 2026
Viewed by 45
Abstract
Accurate model aggregation is pivotal for the efficient dispatch and control of massive distributed photovoltaic (PV) and energy storage (ES) resources. However, the lack of unified standards across equipment manufacturers results in inconsistent data formats and resolutions. Furthermore, external disturbances like noise and [...] Read more.
Accurate model aggregation is pivotal for the efficient dispatch and control of massive distributed photovoltaic (PV) and energy storage (ES) resources. However, the lack of unified standards across equipment manufacturers results in inconsistent data formats and resolutions. Furthermore, external disturbances like noise and packet loss exacerbate the problem. The resulting data are massive, multi-source, and heterogeneous, which poses severe challenges to building effective aggregation models. To address these issues, this paper proposes a hierarchical aggregation method based on multi-source multi-scale data fusion. First, a Multi-source Multi-scale Decision Table (Ms-MsDT) model is constructed to establish a unified framework for the flexible storage and representation of heterogeneous PV-ES data. Subsequently, a two-stage fusion framework is developed, combining Information Gain (IG) for global coarse screening and Scale-based Trees (SbT) for local fine-grained selection. This approach achieves adaptive scale optimization, effectively balancing data volume reduction with high-fidelity feature preservation. Finally, a hierarchical aggregation mechanism is introduced, employing the Analytic Hierarchy Process (AHP) and a weight-guided improved K-Means algorithm to perform targeted clustering tailored to the specific control requirements of different voltage levels. Validation on an IEEE-33 node system demonstrates that the proposed method significantly improves data approximation precision and clustering compactness compared to conventional approaches. Full article
(This article belongs to the Section Industrial Electronics)
Show Figures

Figure 1

23 pages, 4976 KB  
Article
Exploring How Soil Moisture Varies with Soil Depth in the Root Zone and Its Rainfall Lag Effect in the Ecotone from the Qinghai–Tibetan Plateau to the Loess Plateau
by Yuanjing Qi, Siyu Wang, Jun Ma, Kexin Lv, Syed Moazzam Nizami, Chunhong Zhao, Qun’ou Jiang and Jiankun Huang
Remote Sens. 2026, 18(1), 120; https://doi.org/10.3390/rs18010120 - 29 Dec 2025
Viewed by 337
Abstract
Focusing on the ecotone from the Qinghai–Tibetan Plateau to the Loess Plateau (QPtoLP), this study firstly constructs a retrieval model of soil moisture in various depth layers based on multi-source remote sensing data by using the two-source energy balance (TSEB) model and soil–vegetation–atmosphere [...] Read more.
Focusing on the ecotone from the Qinghai–Tibetan Plateau to the Loess Plateau (QPtoLP), this study firstly constructs a retrieval model of soil moisture in various depth layers based on multi-source remote sensing data by using the two-source energy balance (TSEB) model and soil–vegetation–atmosphere transfer (SVAT) model. And then, it uncovers how the soil moisture changes across various depths in the root zone and discusses the lagging effect of rainfall. This research indicated that the correlation between the retrieved soil moisture and field-monitored values in various depth layers ranged from 0.720 to 0.8414, demonstrating that it is suitable for the retrieval of soil moisture at various depths in the study area. During the growing season, soil moisture experienced a slight decrease from mid-May to mid-June, followed by a partial recovery in mid-June. After a dry spell in July, the soil moisture reached its lowest point, but surface and deep soil moisture levels rebounded to above 0.2 and 0.1 cm3/cm3, respectively, by mid-August. Spatially, the soil moisture was higher in the southern region, characterized by dense human activities, and lower in the northern region, which is dominated by alpine grasslands. Comparing different depths, the soil moisture at a 0–5 cm depth was generally the highest most of the time, except in July, when the 35–50 cm depth had the highest value. Additionally, the surface soil moisture at a 0–5 cm depth indicated frequent fluctuations at elevations above 4000 m. As the soil depth increases, the rainfall lag effect becomes more pronounced, and the lag effect in the 35–50 cm soil layer is three days. Full article
(This article belongs to the Special Issue Multi-Sensor Remote Sensing for Soil Moisture Monitoring)
Show Figures

Figure 1

29 pages, 3408 KB  
Article
Research on a Low-Carbon Economic Dispatch Model and Control Strategy for Multi-Zone Hydrogen Hybrid Integrated Energy Systems
by Jie Li, Zhenbo Wei, Tianlei Zang, Chao Yang, Wenhui Niu and Danyu Wang
Energies 2026, 19(1), 140; https://doi.org/10.3390/en19010140 - 26 Dec 2025
Viewed by 211
Abstract
The electricity–hydrogen–electricity conversion chain offers an effective solution for integrating clean energy into the grid while addressing multiple grid control requirements. Moreover, multiregional, interconnected, and integrated energy systems (IESs) can significantly increase overall energy utilization efficiency and operational flexibility through spatiotemporal coordination among [...] Read more.
The electricity–hydrogen–electricity conversion chain offers an effective solution for integrating clean energy into the grid while addressing multiple grid control requirements. Moreover, multiregional, interconnected, and integrated energy systems (IESs) can significantly increase overall energy utilization efficiency and operational flexibility through spatiotemporal coordination among diverse energy sources. However, few researchers have considered these two aspects in a unified framework. To address this gap, a low-carbon economic dispatch model and control strategy for a multiregional hydrogen-blended IES are proposed in this work. The model is constructed based on a system architecture that incorporates electricity–hydrogen–electricity conversion links while accounting for source–load uncertainties and peak shaving requirements. We solve the resulting distributed nonconvex nonlinear optimization problem using the alternating direction method of multipliers (ADMM). Furthermore, we analyze how uncertainty factors and peak shaving needs affect the maximum allowable hydrogen blending ratio in the gas grid, as well as the corresponding dynamic blending strategy. Our findings demonstrate that the proposed multiregional hydrogen-blended integrated energy system, with dynamic hydrogen blending control, significantly enhances the capacity for clean energy integration and reduces carbon emissions by approximately 12.3%. The peak-shaving demand is addressed through a coordinated mechanism involving electrolyzers (ELs), gas turbines (GTs), and hydrogen fuel cells (HFCs). This coordinated mechanism enables hydrogen fuel cells to double their output during peak hours, while electrolyzers increase their power consumption by approximately 730 MW during off-peak hours. The proposed dispatch model employs conditional risk measures to quantify the impacts of uncertainty and uses economic coefficients to balance various cost components. This approach enables effective coordination among economic objectives, risk management, and system performance (including peak shaving capability), thereby improving the practical applicability of the model. Full article
Show Figures

Figure 1

15 pages, 931 KB  
Article
Extended Methodology for Calculating the LENI Coefficient with a Reactive Power Component (LENIQ) in the Analysis of Energy Efficiency of Building Lighting
by Honorata Sierocka, Maciej Zajkowski and Marcin Andrzej Sulkowski
Energies 2026, 19(1), 130; https://doi.org/10.3390/en19010130 - 26 Dec 2025
Viewed by 212
Abstract
The article presents an extended methodology for calculating the LENI energy efficiency index for building lighting, taking into account an additional reactive power component—LENIQ. The proposed methodology takes into account the influence of the power factor (cos φ), the nature of [...] Read more.
The article presents an extended methodology for calculating the LENI energy efficiency index for building lighting, taking into account an additional reactive power component—LENIQ. The proposed methodology takes into account the influence of the power factor (cos φ), the nature of the receivers, and the presence of constant lighting intensity (CTE) systems. Based on the analysis of two public buildings (schools)—one without a photovoltaic installation and the other equipped with a PV system—it was shown that reactive power can be a significant component of the energy balance. For the facility without PV, a value of LENIQ = 58.4 kvarh/m2·year was obtained, while for the facility with PV—4.75 kvarh/m2·year, which indicates a more than tenfold reduction in reactive energy thanks to the use of automation and renewable energy sources. A comparison with model values for different cos φ enabled an additional assessment of the efficiency of lighting installations. The aim of this study is to develop an extended methodology of the LENI indicator by introducing a reactive power component LENIQ, enabling a comprehensive assessment of lighting energy efficiency. Full article
(This article belongs to the Special Issue New Technologies and Materials in the Energy Transformation)
Show Figures

Figure 1

23 pages, 3569 KB  
Article
Performance Assessment and Heat Loss Analysis of Anaerobic Digesters in Wastewater Treatment Plants—Case Study
by Ewelina Stefanowicz, Agnieszka Chmielewska and Małgorzata Szulgowska-Zgrzywa
Energies 2026, 19(1), 106; https://doi.org/10.3390/en19010106 - 24 Dec 2025
Viewed by 342
Abstract
This study investigates the energy performance of anaerobic digesters in a municipal wastewater treatment plant by integrating empirical data from two tanks located at different distances from the heat source with simulation results. The analysis of measurements enabled the determination of heat transferred [...] Read more.
This study investigates the energy performance of anaerobic digesters in a municipal wastewater treatment plant by integrating empirical data from two tanks located at different distances from the heat source with simulation results. The analysis of measurements enabled the determination of heat transferred to the raw sludge, total heat losses of both systems, and provided input data for an hourly simulation of the thermal balance of the digester envelope. An analytical model was developed, including separate equations for the sludge and biogas phases, considering heat losses caused by mass transfer, conduction, convection, and radiation, as well as solar heat gains. The results show that the temperature difference between sludge and biogas exhibits seasonal variation, with a maximum value of 10.5 K, while the desired operational temperature of sludge fermentation is maintained at 38 °C. The total annual heat balance of the anaerobic digester in 2024 was estimated at 202.8 MWh, with the following structure: aboveground walls 46%, ground-contact partitions 30%, and dome 24%. Model validation using data from one of the digesters indicated a total system energy demand of 1812.0 MWh, distributed as follows: heat transferred to raw sludge 88.6%, heat transfer losses 0.2%, and digester envelope balance 11.2%. Replacing the thermal insulation of the aboveground section could reduce heat losses by 70.7 MWh, decreasing the total energy demand of the system by 3.9%. Comparison with the second digester revealed an energy gap of 166.3 MWh, which may be attributed to higher transmission losses or degradation of the insulation layer. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

23 pages, 655 KB  
Article
Unlocking Demand-Side Flexibility in Cement Manufacturing: Optimized Production Scheduling for Participation in Electricity Balancing Markets
by Sebastián Rojas-Innocenti, Enrique Baeyens, Alejandro Martín-Crespo, Sergio Saludes-Rodil and Fernando A. Frechoso-Escudero
Energies 2025, 18(24), 6585; https://doi.org/10.3390/en18246585 - 17 Dec 2025
Viewed by 271
Abstract
The growing share of variable renewable energy sources in power systems is increasing the need for short-term operational flexibility—particularly from large industrial electricity consumers. This study proposes a practical, two-stage optimization framework to unlock this flexibility in cement manufacturing and support participation in [...] Read more.
The growing share of variable renewable energy sources in power systems is increasing the need for short-term operational flexibility—particularly from large industrial electricity consumers. This study proposes a practical, two-stage optimization framework to unlock this flexibility in cement manufacturing and support participation in electricity balancing markets. In Stage 1, a mixed-integer linear programming model minimizes electricity procurement costs by optimally scheduling the raw milling subsystem, subject to technical and operational constraints. In Stage 2, a flexibility assessment model identifies and evaluates profitable deviations from this baseline, targeting participation in Spain’s manual Frequency Restoration Reserve market. The methodology is validated through a real-world case study at a Spanish cement plant, incorporating photovoltaic (PV) generation and battery energy storage systems (BESS). The results show that flexibility services can yield monthly revenues of up to €800, with limited disruption to production processes. Additionally, combined PV + BESS configurations achieve electricity cost reductions and investment paybacks as short as six years. The proposed framework offers a replicable pathway for integrating demand-side flexibility into energy-intensive industries—enhancing grid resilience, economic performance, and decarbonization efforts. Full article
Show Figures

Figure 1

22 pages, 1380 KB  
Article
Selection of Optimal Cluster Head Using MOPSO and Decision Tree for Cluster-Oriented Wireless Sensor Networks
by Rahul Mishra, Sudhanshu Kumar Jha, Shiv Prakash and Rajkumar Singh Rathore
Future Internet 2025, 17(12), 577; https://doi.org/10.3390/fi17120577 - 15 Dec 2025
Viewed by 338
Abstract
Wireless sensor networks (WSNs) consist of distributed nodes to monitor various physical and environmental parameters. The sensor nodes (SNs) are usually resource constrained such as power source, communication, and computation capacity. In WSN, energy consumption varies depending on the distance between sender and [...] Read more.
Wireless sensor networks (WSNs) consist of distributed nodes to monitor various physical and environmental parameters. The sensor nodes (SNs) are usually resource constrained such as power source, communication, and computation capacity. In WSN, energy consumption varies depending on the distance between sender and receiver SNs. Communication among SNs having long distance requires significantly additional energy that negatively affects network longevity. To address these issues, WSNs are deployed using multi-hop routing. Using multi-hop routing solves various problems like reduced communication and communication cost but finding an optimal cluster head (CH) and route remain an issue. An optimal CH reduces energy consumption and maintains reliable data transmission throughout the network. To improve the performance of multi-hop routing in WSN, we propose a model that combines Multi-Objective Particle Swarm Optimization (MOPSO) and a Decision Tree for dynamic CH selection. The proposed model consists of two phases, namely, the offline phase and the online phase. In the offline phase, various network scenarios with node densities, initial energy levels, and BS positions are simulated, required features are collected, and MOPSO is applied to the collected features to generate a Pareto front of optimal CH nodes to optimize energy efficiency, coverage, and load balancing. Each node is labeled as selected CH or not by the MOPSO, and the labelled dataset is then used to train a Decision Tree classifier, which generates a lightweight and interpretable model for CH prediction. In the online phase, the trained model is used in the deployed network to quickly and adaptively select CHs using features of each node and classifying them as a CH or non-CH. The predicted nodes broadcast the information and manage the intra-cluster communication, data aggregation, and routing to the base station. CH selection is re-initiated based on residual energy drop below a threshold, load saturation, and coverage degradation. The simulation results demonstrate that the proposed model outperforms protocols such as LEACH, HEED, and standard PSO regarding energy efficiency and network lifetime, making it highly suitable for applications in green computing, environmental monitoring, precision agriculture, healthcare, and industrial IoT. Full article
(This article belongs to the Special Issue Clustered Federated Learning for Networks)
Show Figures

Figure 1

67 pages, 14448 KB  
Article
Driving Sustainable Development from Fossil to Renewable: A Space–Time Analysis of Electricity Generation Across the EU-28
by Adriana Grigorescu, Cristina Lincaru and Camelia Speranta Pirciog
Sustainability 2025, 17(23), 10620; https://doi.org/10.3390/su172310620 - 26 Nov 2025
Cited by 1 | Viewed by 548
Abstract
The transition to renewable energy is crucial in order to attain sustainable development, lower greenhouse gas emissions, and secure long-term energy security. This study examines spatial–temporal trends in electricity generation (both renewable and non-renewable) across EU-28 countries using monthly Eurostat data (2008–2025) at [...] Read more.
The transition to renewable energy is crucial in order to attain sustainable development, lower greenhouse gas emissions, and secure long-term energy security. This study examines spatial–temporal trends in electricity generation (both renewable and non-renewable) across EU-28 countries using monthly Eurostat data (2008–2025) at the NUTS0 level. Two harmonized Space–Time Cubes (STCs) were constructed for renewable and non-renewable electricity covering the fully comparable 2017–2024 interval, while 2008–2016 data were used for descriptive validation, and 2025 data were used for one-step-ahead forecasting. In this paper, the authors present a novel multi-method approach to energy transition dynamics in Europe, integrating forecasting (ESF), hot-spot detection (EHSA), and clustering (TSC) with the help of a new spatial–temporal modeling framework. The methodology is a step forward in the development of methodological literature, since it regards predictive and exploratory GIS analytics as comparative energy transition evaluation. The paper uses Exponential Smoothing Forecast (ESF) and Emerging Hot Spot Analysis (EHSA) in a GIS-based analysis to uncover the dynamics in the region and the possible production pattern. The ESF also reported strong predictive performance in the form of the mean Root Mean Square Errors (RMSE) of renewable and non-renewable electricity generation of 422.5 GWh and 438.8 GWh, respectively. Of the EU-28 countries, seasonality was statistically significant in 78.6 per cent of locations that relied on hydropower, and 35.7 per cent of locations exhibited structural outliers associated with energy-transition asymmetries. EHSA identified short-lived localized spikes in renewable electricity production in a few Western and Northern European countries: Portugal, Spain, France, Denmark, and Sweden, termed as sporadic renewable hot spots. There were no cases of persistent or increase-based hot spots in any country; therefore, renewable growth is temporally and spatially inhomogeneous in the EU-28. In the case of non-renewable sources, a hot spot was evident in France, with an intermittent hot spot in Spain and sporadic increases over time, but otherwise, there was no statistically significant activity of hot or cold spots in the rest of Europe, indicating structural stagnation in the generation of fossil-based electricity. Time Series Clustering (TSC) determined 10 temporal clusters in the generation of renewable and non-renewable electricity. All renewable clusters were statistically significantly increasing (p < 0.001), with the most substantial increase in Cluster 4 (statistic = 9.95), observed in Poland, Finland, Portugal, and the Netherlands, indicating a transregional phase acceleration of renewable electricity production in northern, western, and eastern Europe. Conversely, all non-renewable clusters showed declining trends (p < 0.001), with Cluster 5 (statistic = −8.58) showing a concerted reduction in the use of fossil-based electricity, in line with EU decarbonization policies. The results contribute to an improved understanding of the spatial dynamics of the European energy transition and its potential to support energy security, reduce fossil fuel dependency, and foster balanced regional development. These insights are crucial to harmonize policy measures with the objectives of the European Green Deal and the United Nations Sustainable Development Goals (especially Goals 7, 11, and 13). Full article
Show Figures

Figure 1

24 pages, 5599 KB  
Article
Reverse Power Flow Protection in Microgrids Using Time-Series Neural Network Models
by Chan-Ho Bae, Yeoung-Seok Song, Chul-Young Park, Seok-Hoon Hong, So-Haeng Lee and Byung-Lok Cho
Energies 2025, 18(22), 5901; https://doi.org/10.3390/en18225901 - 10 Nov 2025
Viewed by 566
Abstract
Renewable energy sources provide environmental and economic benefits by replacing conventional energy sources. In Korea, photovoltaic (PV) systems are increasingly deployed in apartment complexes and residential buildings. In self-consumption PV systems, surplus generation exceeding local demand often leads to a reverse power flow. [...] Read more.
Renewable energy sources provide environmental and economic benefits by replacing conventional energy sources. In Korea, photovoltaic (PV) systems are increasingly deployed in apartment complexes and residential buildings. In self-consumption PV systems, surplus generation exceeding local demand often leads to a reverse power flow. This phenomenon becomes more frequent in microgrid environments where multiple distributed energy resources are interconnected. Accordingly, inverter control strategies based on generation forecasting have emerged as critical challenges. In this paper, we propose an on-device artificial intelligence model for inverter control that integrates net power forecasting with time-series neural networks. Two novel forecasting methods were proposed and introduced: Prediction-to-Prediction (P–P) and Net-Power Prediction (N–P). Various neural network models were trained and evaluated using multiple performance metrics. A novel threshold adjustment mechanism based on the mean absolute error was designed for inverter control. The control scenarios were analyzed by comparing the actual power losses with the forecast-based power losses, and the energy savings were quantified by adjusting the correction factor. The proposed forecasting methods achieved a reduction of approximately 40–70% in energy losses compared with the actual loss levels. The threshold adjustment strategy enhances flexibility in balancing the number of on/off switching events and the power loss, contributing to improved energy efficiency and system stability. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

33 pages, 3814 KB  
Article
Evaluating Various Energy Balance Aggregation Schemes in Cotton Using Unoccupied Aerial Systems (UASs)-Based Latent Heat Flux Estimates
by Haly L. Neely, Cristine L.S. Morgan, Binayak P. Mohanty and Chenghai Yang
Remote Sens. 2025, 17(21), 3579; https://doi.org/10.3390/rs17213579 - 29 Oct 2025
Viewed by 496
Abstract
Daily evapotranspiration (ET) estimated from an unoccupied aerial system (UAS) could help improve irrigation practices, but its spatial resolution needs to be upscaled to coarser pixel resolutions before applying surface energy balance models. The purpose of this study was to evaluate the impact [...] Read more.
Daily evapotranspiration (ET) estimated from an unoccupied aerial system (UAS) could help improve irrigation practices, but its spatial resolution needs to be upscaled to coarser pixel resolutions before applying surface energy balance models. The purpose of this study was to evaluate the impact of various energy balance-based aggregation schemes on generating spatially distributed latent heat flux (LE), and, in comparison, to existing occupied aircraft and satellite remote sensing platforms. In 2017, UAS multispectral and thermal imagery, along with ground truth data, were collected at various cotton growth stages. These data sources were combined to model LE using a Two-Source Energy Balance Priestley–Taylor (TSEB-PT) model. Several UAS aggregation schemes were tested, including the mode of aggregation (i.e., input image and output flux) as well as the averaging scheme (i.e., simple aggregation vs. Box–Cox). Results indicate that output flux aggregation with Box–Cox averaging produced the lowest relative upscaling pixel-scale variability in LE and the lowest absolute prediction errors (relative to eddy covariance flux tower measurements). Output flux aggregation with simple averaging was also more accurate in reproducing LE from occupied aircraft and satellite imagery. Although results are limited to a single site, UAS LE estimates were reliably aggregated to coarser pixel resolutions, which made for faster image processing for operational applications. Full article
(This article belongs to the Special Issue Remote Sensing Data Fusion and Applications (2nd Edition))
Show Figures

Figure 1

15 pages, 2438 KB  
Article
A Three-Terminal Modular-Multilevel-Converter-Based Power Electronic Transformer with Reduced Voltage Stress for Meshed DC Systems
by Haiqing Cai, Jiajie Zang, Haohan Gu, Guohui Zeng, Wencong Wu, Wei Chen and Chunyang Zhai
Electronics 2025, 14(21), 4192; https://doi.org/10.3390/electronics14214192 - 27 Oct 2025
Viewed by 581
Abstract
The traditional DC distribution grid is evolving into a meshed structure to create additional energy exchange paths and integrate the rapidly growing renewable energy sources. However, existing converter stations lack sufficient power flow controllability, necessitating the development of multiport power electronic transformers to [...] Read more.
The traditional DC distribution grid is evolving into a meshed structure to create additional energy exchange paths and integrate the rapidly growing renewable energy sources. However, existing converter stations lack sufficient power flow controllability, necessitating the development of multiport power electronic transformers to address potential power flow congestion and high loss issues. This paper proposes a compact multi-terminal modular-multilevel-converter-based power electronic transformer (M3C-PET). This device enables flexible power flow regulation of the connected feeders through adopting two small-capacity power flow control modules (PFCMs). The simple structure and reduced switching count make the proposed PET more competitive and prominent and more cost-effective. Furthermore, this paper elaborates on the operational principle of the proposed device and presents a multilayer power balancing control strategy along with a power flow control scheme. These control strategies are designed based on the internal and external energy distribution mechanism of the proposed PET. The feasibility and effectiveness of the proposed topology and control schemes are rigorously validated through both a MATLAB/Simulink simulation model and a scaled-down experimental prototype. Full article
Show Figures

Figure 1

22 pages, 4923 KB  
Article
Hydrodynamics of Toroidal Vortices in Torque-Flow Pumps
by Ivan Pavlenko, Vladyslav Kondus and Roman Puzik
Appl. Sci. 2025, 15(20), 11299; https://doi.org/10.3390/app152011299 - 21 Oct 2025
Viewed by 781
Abstract
This study investigates the role of toroidal vortex formation in torque-flow pumps and its influence on pump performance. A mathematical model of viscous fluid motion in toroidal coordinates was developed to describe the two-stage energy transfer mechanism, in which the impeller drives the [...] Read more.
This study investigates the role of toroidal vortex formation in torque-flow pumps and its influence on pump performance. A mathematical model of viscous fluid motion in toroidal coordinates was developed to describe the two-stage energy transfer mechanism, in which the impeller drives the toroidal vortex and the vortex subsequently imparts momentum to the main throughflow. The model identifies vortex deformation as a primary source of hydraulic losses. The theoretical framework was validated by computational fluid dynamics (CFD) simulations of a torque-flow pump. Analysis of the axial, circumferential, and vertical velocity components revealed a closed three-dimensional toroidal circulation loop within the free chamber, confirming the predictions of the mathematical model. A parametric study was conducted to assess the influence of impeller extension into the free chamber (Δb2) on pump performance. Three characteristic regimes were identified. At Δb2 ≈ 6 mm, the shaft power decreased to 120.3 kW (an 8.1% decrease compared to the baseline), with efficiency improving to 39.2%. At Δb2 ≈ 10 mm, the pump achieved its best balance of parameters: efficiency increased from 34.0% to 42.8% (+8.7 percentage points), while head rose from 32.8 m to 38.5 m (+17.4%), with moderate power demand (122.3 kW). At Δb2 ≈ 70 mm, the head reached 45.6 m (+39%), but power consumption rose to 146.9 kW (+12%), and the design shifted toward centrifugal-type operation, reducing reliability for abrasive fluids. Overall, the results provide both a validated mathematical description of toroidal vortex dynamics and practical guidelines for optimizing torque-flow pump design, with Δb2 ≈ 10 mm identified as the most rational configuration. Full article
Show Figures

Figure 1

14 pages, 1977 KB  
Article
Assessing Riparian Evapotranspiration Dynamics in a Water Conflict Region in Nebraska, USA
by Ivo Z. Gonçalves, Burdette Barker, Christopher M. U. Neale, Derrel L. Martin and Sammy Z. Akasheh
Water 2025, 17(20), 2949; https://doi.org/10.3390/w17202949 - 13 Oct 2025
Viewed by 444
Abstract
The escalating pressure on water resources in agricultural regions has become a catalyst for water conflicts. The adoption of innovative approaches to estimate actual evapotranspiration (ETa) offers potential solutions to mitigate conflicts related to water usage. This research presents the application of a [...] Read more.
The escalating pressure on water resources in agricultural regions has become a catalyst for water conflicts. The adoption of innovative approaches to estimate actual evapotranspiration (ETa) offers potential solutions to mitigate conflicts related to water usage. This research presents the application of a remote sensing-based methodology for estimating actual evapotranspiration (ETa) based on a two-source energy balance model (TSEB) for riparian vegetation in Nebraska, US using the Spatial EvapoTranspiration Modeling Interface (SETMI). Estimated results through SETMI and field data using the eddy covariance system (EC) considering the period 2008–2013 were used to validate the energy balance components and ETa. Modeled energy balance components showed a strong correlation to the ground data from EC, with ET presenting R2 equal to 0.96 and RMSE of 0.73 mm.d−1. In 2012, the lowest adjusted crop coefficient (Kcadj) values were observed across all land covers, with a mean value of 0.49. The years 2013 and 2012, due to the dry conditions, recorded the highest accumulated ETa values (706 mm and 664 mm, respectively). Soybeans and corn exhibited the highest ETa values, recording 699 mm and 773 mm, respectively. Corn and soybeans, together accounting for a substantial portion of the land cover at 15% and 3%, respectively, play a significant role. Given that most fields cultivating these crops are irrigated, both pumped groundwater and surface water directly impact the water source of the Republican River. The SETMI model has generated appropriate estimated daily ETa values, thereby affirming the model’s utility as a tool for assisting water management and decision-makers in riparian zones. Full article
(This article belongs to the Special Issue Applied Remote Sensing in Irrigated Agriculture)
Show Figures

Figure 1

26 pages, 3383 KB  
Article
Biomass Gasification for Waste-to-Energy Conversion: Artificial Intelligence for Generalizable Modeling and Multi-Objective Optimization of Syngas Production
by Gema Báez-Barrón, Francisco Javier Lopéz-Flores, Eusiel Rubio-Castro and José María Ponce-Ortega
Resources 2025, 14(10), 157; https://doi.org/10.3390/resources14100157 - 8 Oct 2025
Viewed by 2544
Abstract
Biomass gasification, a key waste-to-energy technology, is a complex thermochemical process with many input variables influencing the yield and quality of syngas. In this study, data-driven machine learning models are developed to capture the nonlinear relationships between feedstock properties, operating conditions, and syngas [...] Read more.
Biomass gasification, a key waste-to-energy technology, is a complex thermochemical process with many input variables influencing the yield and quality of syngas. In this study, data-driven machine learning models are developed to capture the nonlinear relationships between feedstock properties, operating conditions, and syngas composition, in order to optimize process performance. Random Forest (RF), CatBoost (Categorical Boosting), and an Artificial Neural Network (ANN) were trained to predict key syngas outputs (syngas composition and syngas yield) from process inputs. The best-performing model (ANN) was then integrated into a multi-objective optimization framework using the open-source Optimization & Machine Learning Toolkit (OMLT) in Pyomo. An optimization problem was formulated with two objectives—maximizing the hydrogen-to-carbon monoxide (H2/CO) ratio and maximizing the syngas yield simultaneously, subject to operational constraints. The trade-off between these competing objectives was resolved by generating a Pareto frontier, which identifies optimal operating points for different priority weightings of syngas quality vs. quantity. To interpret the ML models and validate domain knowledge, SHapley Additive exPlanations (SHAP) were applied, revealing that parameters such as equivalence ratio, steam-to-biomass ratio, feedstock lower heating value, and fixed carbon content significantly influence syngas outputs. Our results highlight a clear trade-off between maximizing hydrogen content and total gas yield and pinpoint optimal conditions for balancing this trade-off. This integrated approach, combining advanced ML predictions, explainability, and rigorous multi-objective optimization, is novel for biomass gasification and provides actionable insights to improve syngas production efficiency, demonstrating the value of data-driven optimization in sustainable waste-to-energy conversion processes. Full article
Show Figures

Figure 1

15 pages, 2475 KB  
Article
Nationwide Decline of Wet Sulfur Deposition in China from 2013 to 2023
by Yue Xi, Qiufeng Wang, Jianxing Zhu, Tianxiang Hao, Qiongyu Zhang, Yanran Chen, Zihan Tai, Quanhong Lin and Hao Wang
Sustainability 2025, 17(19), 8815; https://doi.org/10.3390/su17198815 - 1 Oct 2025
Cited by 2 | Viewed by 932
Abstract
Atmospheric sulfur (S) deposition, a key component of acid deposition, poses risks to ecosystems, human health, and sustainable development. In China, decades of coal-dominated energy use caused severe S pollution, but recent emission-control policies and energy restructuring have sought to reverse this trend. [...] Read more.
Atmospheric sulfur (S) deposition, a key component of acid deposition, poses risks to ecosystems, human health, and sustainable development. In China, decades of coal-dominated energy use caused severe S pollution, but recent emission-control policies and energy restructuring have sought to reverse this trend. However, the effectiveness and regional differences in these measures remain insufficiently quantified. Here, we combined continuous observations from 43 monitoring sites (2013–2023), satellite-derived SO2 vertical column density, and multi-source environmental datasets to construct a high-resolution record of wet S deposition. A random forest model, validated with R2 = 0.52 and RMSE = 1.2 kg ha−1 yr−1, was used to estimate fluxes and spatial patterns, while ridge regression and SHAP analysis quantified the relative contributions of emissions, precipitation, and socioeconomic factors. This framework allows us to assess both the environmental and health-related sustainability implications of sulfur deposition. Results show a nationwide decline of more than 50% in wet S deposition during 2013–2023, with two-thirds of sites and 95% of grids showing significant decreases. Historical hotspots such as the North China Plain and Sichuan Basin improved markedly, while some southern provinces (e.g., Guizhou, Hunan, Jiangxi) still exhibited high deposition (>20 kg ha−1 yr−1). Over 90% of the reduction was attributable to emission declines, confirming the dominant effect of sustained policy-driven measures. This study extends sulfur deposition records to 2023, demonstrates the value of integrating ground monitoring with remote sensing and machine learning, and provides robust evidence that China’s emission reduction policies have delivered significant environmental and sustainability benefits. The findings offer insights for region-specific governance and for developing countries balancing economic growth with ecological protection. Full article
Show Figures

Figure 1

Back to TopTop