Evaluating Various Energy Balance Aggregation Schemes in Cotton Using Unoccupied Aerial Systems (UASs)-Based Latent Heat Flux Estimates
Highlights
- Spatially aggregating the output fluxes was more accurate than spatially aggregating inputs when estimating latent energy using a Two-Source Energy Balance Priestley–Taylor model.
- Spatially aggregating data from unmanned aerial systems to estimate latent energy using the two-source energy model was closer to eddy flux tower measurements than applying manned aircraft and satellite imagery.
- Latent energy estimates from data collected by unmanned aerial systems can be a reliable source of spatial latent energy in a field with variable soil properties.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Management
2.2. Image Acquisition
2.2.1. UAS Sensors
2.2.2. OAS Sensors
2.2.3. SAT Sensors
2.3. Image Post-Processing
2.3.1. OAS
2.3.2. SAT
2.4. Model Formulation
2.5. Model Inputs and Processing
2.5.1. Image Inputs
2.5.2. Non-Image Inputs
2.6. General Design of the Experiments
3. Results
3.1. Comparing UAS Aggregation Approaches
3.2. Aggregation Properties of the UAS In-SA, In-BC
3.3. UAS Aggregation as Compared with OAS and SAT Imagery
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
EEO
Abbreviations
| Abbreviation | Definition | 
| DN | Digital Number | 
| ET | Evapotranspiration | 
| In-BC | Input Flux Aggregation with Box–Cox Averaging | 
| In-SA | Input Flux Aggregation with Simple Averaging | 
| IOP | Intense Observation Period | 
| LAI | Leaf Area Index | 
| MAPE | Mean Absolute Percentage Error | 
| OAS | Occupied Aerial System | 
| OLI | Operational Land Imager | 
| Out-BC | Output Flux Aggregation with Box–Cox Averaging | 
| Out-SA | Output Flux Aggregation with Simple Averaging | 
| SAT | Satellite | 
| SEBS | Surface Energy Balance System | 
| TIRS | Thermal Infrared Sensor | 
| TSEB | Two-Source Energy Balance | 
| TSEB-PT | Two-Source Energy Balance Priestley–Taylor | 
| UAS | Unoccupied Aerial System | 
Appendix A. Description of UAS Geometric/Radiometric Corrections
Appendix B. Estimation of Landsat Tr
Appendix C. Box–Cox Averaging
Appendix D. Eddy Covariance Towers
Appendix D.1. Tower Locations, Processing, and Results
| Observed Variable | Height/Depth of Measurand | Logging Interval | Instrument | 
|---|---|---|---|
| Height (m) | |||
| Wind speed and direction | High ECa: 2.84 (before 6/30); 2.77 (after 7/1) Low ECa 2.77 | 20 Hz | CSAT-3; Campbell Scientific, Logan, UT, USA | 
| Water vapor concentration | LI-7500; LI-COR, Lincoln, NE, USA | ||
| Net radiation | High ECa: 2.52 (before 6/30); 2.37 (after 7/1) Low ECa: 2.35 | 15 min | NR01, Hukseflux, The Netherlands | 
| Air temperature and relative humidity | 2.26 | HC2S3, Campbell Scientific | |
| Depth (cm) | |||
| Soil temperature | 2, 6 | 105E; Campbell Scientific | |
| Soil heat flux | 8 | HFT3-L; Campbell Scientific | |
| Soil moisture | 4, 5 | GS1, METER Group Inc., Pullman, WA, USA | 
| Date | Time | Associated Platform | Closure Ratio—Unclosed | Closure Ratio—Closed with 1.1 | ||
|---|---|---|---|---|---|---|
| High ECa | Low ECa | High ECa | Low ECa | |||
| 16 June 2017 | 11:57 | SAT | 0.91 | 1.00 | 1.00 | 1.10 | 
| 16 June 2017 | 13:00–13:15 | UAS | 0.86 | 0.85 | 0.94 | 0.93 | 
| 16 June 2017 | 13:21–13:47 | OAS | 0.89 | 0.93 | 0.98 | 1.02 | 
| 16 June 2017 | 13:58–14:10 | OAS | 0.91 | 0.86 | 1.00 | 0.95 | 
| 28 July 2017 | 14:46–15:00 | UAS | 0.95 | 1.02 | 1.05 | 1.12 | 
| 28 July 2017 | 14:45–15:09 | OAS | 0.90 | 0.96 | 0.98 | 1.06 | 
| 28 July 2017 | 15:17–15:31 | OAS | 0.93 | 1.15 | 1.02 | 1.26 | 
Appendix D.2. Footprints

References
- Courault, D.; Seguin, B.; Olioso, A. Review on Estimation of Evapotranspiration from Remote Sensing Data: From Empirical to Numerical Modeling Approaches. Irrig. Drain. Syst. 2005, 19, 223–249. [Google Scholar] [CrossRef]
- Hunt, E.R.; Daughtry, C.S.T. What Good Are Unmanned Aircraft Systems for Agricultural Remote Sensing and Precision Agriculture? Int. J. Remote Sens. 2018, 39, 5345–5376. [Google Scholar] [CrossRef]
- Anderson, M.C.; Yang, Y.; Xue, J.; Knipper, K.R.; Yang, Y.; Gao, F.; Hain, C.R.; Kustas, W.P.; Cawse-Nicholson, K.; Hulley, G.; et al. Interoperability of ECOSTRESS and Landsat for Mapping Evapotranspiration Time Series at Sub-Field Scales. Remote Sens. Environ. 2021, 252, 112189. [Google Scholar] [CrossRef]
- Matese, A.; Toscano, P.; Di Gennaro, S.; Genesio, L.; Vaccari, F.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B. Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture. Remote Sens. 2015, 7, 2971–2990. [Google Scholar] [CrossRef]
- Hoffmann, H.; Nieto, H.; Jensen, R.; Guzinski, R.; Zarco-Tejada, P.; Friborg, T. Estimating Evaporation with Thermal UAV Data and Two-Source Energy Balance Models. Hydrol. Earth Syst. Sci. 2016, 20, 697–713. [Google Scholar] [CrossRef]
- Brenner, C.; Zeeman, M.; Bernhardt, M.; Schulz, K. Estimation of Evapotranspiration of Temperate Grassland Based on High-Resolution Thermal and Visible Range Imagery from Unmanned Aerial Systems. Int. J. Remote Sens. 2018, 39, 5141–5174. [Google Scholar] [CrossRef]
- Jones, H.; Sirault, X. Scaling of Thermal Images at Different Spatial Resolution: The Mixed Pixel Problem. Agronomy 2014, 4, 380–396. [Google Scholar] [CrossRef]
- Smith, R.J.; Raine, S.R.; McCarthy, A.C.; Hancock, N.H. Managing Spatial and Temporal Variability in Irrigated Agriculture Through Adaptive Control. Aust. J. Multi-Discip. Eng. 2009, 7, 79–90. [Google Scholar] [CrossRef]
- Raupach, M.R.; Finnigan, J.J. Scale Issues in Boundary-layer Meteorology: Surface Energy Balances in Heterogeneous Terrain. Hydrol. Process. 1995, 9, 589–612. [Google Scholar] [CrossRef]
- Kustas, W.P.; Norman, J.M.; Anderson, M.C.; French, A.N. Estimating Subpixel Surface Temperatures and Energy Fluxes from the Vegetation Index–Radiometric Temperature Relationship. Remote Sens. Environ. 2003, 85, 429–440. [Google Scholar] [CrossRef]
- Kustas, W. Effects of Remote Sensing Pixel Resolution on Modeled Energy Flux Variability of Croplands in Iowa. Remote Sens. Environ. 2004, 92, 535–547. [Google Scholar] [CrossRef]
- Li, F.; Kustas, W.P.; Prueger, J.H.; Neale, C.M.U.; Jackson, T.J. Utility of Remote Sensing–Based Two-Source Energy Balance Model Under Low- and High-Vegetation Cover Conditions. J. Hydrometeorol. 2005, 6, 878–891. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Strahler, A.H. The Factor of Scale in Remote Sensing. Remote Sens. Environ. 1987, 21, 311–332. [Google Scholar] [CrossRef]
- Hassan-Esfahani, L.; Ebtehaj, A.; Torres-Rua, A.; McKee, M. Spatial Scale Gap Filling Using an Unmanned Aerial System: A Statistical Downscaling Method for Applications in Precision Agriculture. Sensors 2017, 17, 2106. [Google Scholar] [CrossRef]
- Su, Z.; Pelgrum, H.; Menenti, M. Aggregation Effects of Surface Heterogeneity in Land Surface Processes. Hydrol. Earth Syst. Sci. 1999, 3, 549–563. [Google Scholar] [CrossRef]
- McCabe, M.F.; Wood, E.F. Scale Influences on the Remote Estimation of Evapotranspiration Using Multiple Satellite Sensors. Remote Sens. Environ. 2006, 105, 271–285. [Google Scholar] [CrossRef]
- Sharma, V.; Kilic, A.; Irmak, S. Impact of Scale/Resolution on Evapotranspiration from Landsat and MODIS Images. Water Resour. Res. 2016, 52, 1800–1819. [Google Scholar] [CrossRef]
- Hong, S.; Hendrickx, J.M.H.; Borchers, B. Up-Scaling of SEBAL Derived Evapotranspiration Maps from Landsat (30 m) to MODIS (250 m) Scale. J. Hydrol. 2009, 370, 122–138. [Google Scholar] [CrossRef]
- Bahir, M.; Boulet, G.; Olioso, A.; Rivalland, V.; Gallego-Elvira, B.; Mira, M.; Rodriguez, J.-C.; Jarlan, L.; Merlin, O. Evaluation and Aggregation Properties of Thermal Infra-Red-Based Evapotranspiration Algorithms from 100 m to the Km Scale over a Semi-Arid Irrigated Agricultural Area. Remote Sens. 2017, 9, 1178. [Google Scholar] [CrossRef]
- Liou, Y.-A.; Kar, S. Evapotranspiration Estimation with Remote Sensing and Various Surface Energy Balance Algorithms—A Review. Energies 2014, 7, 2821–2849. [Google Scholar] [CrossRef]
- Nieto, H.; Kustas, W.P.; Torres-Rúa, A.; Alfieri, J.G.; Gao, F.; Anderson, M.C.; White, W.A.; Song, L.; Alsina, M.D.M.; Prueger, J.H.; et al. Evaluation of TSEB Turbulent Fluxes Using Different Methods for the Retrieval of Soil and Canopy Component Temperatures from UAV Thermal and Multispectral Imagery. Irrig. Sci. 2019, 37, 389–406. [Google Scholar] [CrossRef]
- Manfreda, S.; McCabe, M.F.; Miller, P.E.; Lucas, R.; Pajuelo Madrigal, V.; Mallinis, G.; Ben Dor, E.; Helman, D.; Estes, L.; Ciraolo, G.; et al. On the Use of Unmanned Aerial Systems for Environmental Monitoring. Remote Sens. 2018, 10, 641. [Google Scholar] [CrossRef]
- Stanislav, S.M. A Field-Scale Assessment of Soil-Specific Seeding Rates to Optimize Yield Factors and Water Use in Cotton. Master’s Thesis, Texas A&M University, College Station, TX, USA, 2011. [Google Scholar]
- Jurena, M.R. Soil Survey of Burleson County, Texas. Available online: https://texashistory.unt.edu/ark:/67531/metapth278889/ (accessed on 28 July 2025).
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and Product Vision for Terrestrial Global Change Research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Duan, T.; Chapman, S.C.; Guo, Y.; Zheng, B. Dynamic Monitoring of NDVI in Wheat Agronomy and Breeding Trials Using an Unmanned Aerial Vehicle. Field Crops Res. 2017, 210, 71–80. [Google Scholar] [CrossRef]
- Sagan, V.; Maimaitijiang, M.; Sidike, P.; Eblimit, K.; Peterson, K.; Hartling, S.; Esposito, F.; Khanal, K.; Newcomb, M.; Pauli, D.; et al. UAV-Based High Resolution Thermal Imaging for Vegetation Monitoring, and Plant Phenotyping Using ICI 8640 P, FLIR Vue Pro R 640, and thermoMap Cameras. Remote Sens. 2019, 11, 330. [Google Scholar] [CrossRef]
- García-Tejero, I.; Ortega-Arévalo, C.; Iglesias-Contreras, M.; Moreno, J.; Souza, L.; Tavira, S.; Durán-Zuazo, V. Assessing the Crop-Water Status in Almond (Prunus dulcis Mill.) Trees via Thermal Imaging Camera Connected to Smartphone. Sensors 2018, 18, 1050. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Yang, C.; Song, X.; Hoffmann, W.C.; Huang, W.; Niu, Z.; Wang, C.; Li, W.; Yu, B. Monitoring Cotton Root Rot by Synthetic Sentinel-2 NDVI Time Series Using Improved Spatial and Temporal Data Fusion. Sci. Rep. 2018, 8, 2016. [Google Scholar] [CrossRef]
- Knight, E.; Kvaran, G. Landsat-8 Operational Land Imager Design, Characterization and Performance. Remote Sens. 2014, 6, 10286–10305. [Google Scholar] [CrossRef]
- Wang, Y.; Ientilucci, E. A Practical Approach to Landsat 8 TIRS Stray Light Correction Using Multi-Sensor Measurements. Remote Sens. 2018, 10, 589. [Google Scholar] [CrossRef]
- Smith, G.M.; Milton, E.J. The Use of the Empirical Line Method to Calibrate Remotely Sensed Data to Reflectance. Int. J. Remote Sens. 1999, 20, 2653–2662. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, C.; Zhao, B.; Song, H.; Clint Hoffmann, W.; Shi, Y.; Zhang, D.; Zhang, G. Crop Classification and LAI Estimation Using Original and Resolution-Reduced Images from Two Consumer-Grade Cameras. Remote Sens. 2017, 9, 1054. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A.; Gillespie, A.; Sabol, D.; Gustafson, W.T. Improved Land Surface Emissivities over Agricultural Areas Using ASTER NDVI. Remote Sens. Environ. 2006, 103, 474–487. [Google Scholar] [CrossRef]
- Maes, W.H.; Steppe, K. Estimating Evapotranspiration and Drought Stress with Ground-Based Thermal Remote Sensing in Agriculture: A Review. J. Exp. Bot. 2012, 63, 4671–4712. [Google Scholar] [CrossRef]
- Norman, J.M.; Kustas, W.P.; Humes, K.S. Source Approach for Estimating Soil and Vegetation Energy Fluxes in Observations of Directional Radiometric Surface Temperature. Agric. For. Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- Ramírez-Cuesta, J.M.; Allen, R.G.; Zarco-Tejada, P.J.; Kilic, A.; Santos, C.; Lorite, I.J. Impact of the Spatial Resolution on the Energy Balance Components on an Open-Canopy Olive Orchard. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 88–102. [Google Scholar] [CrossRef]
- Kustas, W.; Norman, J.M. Evaluating the Effects of Subpixel Heterogeneity on Pixel Average Fluxes. Remote Sens. Environ. 2000, 74, 327–342. [Google Scholar] [CrossRef]
- Priestley, C.H.B.; Taylor, R.J. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Mon. Wea. Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Campbell, G.S.; Norman, J.M. An Introduction to Environmental Biophysics; Springer: New York, NY, USA, 1998; ISBN 978-0-387-94937-6. [Google Scholar]
- Kustas, W.P.; Norman, J.M. Evaluation of Soil and Vegetation Heat Flux Predictions Using a Simple Two-Source Model with Radiometric Temperatures for Partial Canopy Cover. Agric. For. Meteorol. 1999, 94, 13–29. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the Relation Between NDVI, Fractional Vegetation Cover, and Leaf Area Index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Wang, W.-M.; Li, Z.-L.; Su, H.-B. Comparison of Leaf Angle Distribution Functions: Effects on Extinction Coefficient and Fraction of Sunlit Foliage. Agric. For. Meteorol. 2007, 143, 106–122. [Google Scholar] [CrossRef]
- Kustas, W.P.; Daughtry, C.S.T. Estimation of the Soil Heat Flux/Net Radiation Ratio from Spectral Data. Agric. For. Meteorol. 1990, 49, 205–223. [Google Scholar] [CrossRef]
- Cho, K.; Kim, Y.; Kim, Y. Disaggregation of Landsat-8 Thermal Data Using Guided SWIR Imagery on the Scene of a Wildfire. Remote Sens. 2018, 10, 105. [Google Scholar] [CrossRef]
- Kalma, J.D.; McVicar, T.R.; McCabe, M.F. Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data. Surv. Geophys. 2008, 29, 421–469. [Google Scholar] [CrossRef]
- Susan Moran, M.; Humes, K.S.; Pinter, P.J. The Scaling Characteristics of Remotely-Sensed Variables for Sparsely-Vegetated Heterogeneous Landscapes. J. Hydrol. 1997, 190, 337–362. [Google Scholar] [CrossRef]
- Brenner, C.; Thiem, C.E.; Wizemann, H.-D.; Bernhardt, M.; Schulz, K. Estimating Spatially Distributed Turbulent Heat Fluxes from High-Resolution Thermal Imagery Acquired with a UAV System. Int. J. Remote Sens. 2017, 38, 3003–3026. [Google Scholar] [CrossRef]
- Xia, T.; Kustas, W.P.; Anderson, M.C.; Alfieri, J.G.; Gao, F.; McKee, L.; Prueger, J.H.; Geli, H.M.E.; Neale, C.M.U.; Sanchez, L.; et al. Mapping Evapotranspiration with High-Resolution Aircraft Imagery over Vineyards Using One- and Two-Source Modeling Schemes. Hydrol. Earth Syst. Sci. 2016, 20, 1523–1545. [Google Scholar] [CrossRef]
- Nassar, A.; Torres-Rua, A.; Kustas, W.; Nieto, H.; McKee, M.; Hipps, L.; Stevens, D.; Alfieri, J.; Prueger, J.; Alsina, M.M.; et al. Influence of Model Grid Size on the Estimation of Surface Fluxes Using the Two Source Energy Balance Model and sUAS Imagery in Vineyards. Remote Sens. 2020, 12, 342. [Google Scholar] [CrossRef] [PubMed]
- Zhan, X.; Kustas, W.P.; Humes, K.S. An Intercomparison Study on Models of Sensible Heat Flux over Partial Canopy Surfaces with Remotely Sensed Surface Temperature. Remote Sens. Environ. 1996, 58, 242–256. [Google Scholar] [CrossRef]
- Timmermans, W.J.; Kustas, W.P.; Anderson, M.C.; French, A.N. An Intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) Modeling Schemes. Remote Sens. Environ. 2007, 108, 369–384. [Google Scholar] [CrossRef]
- Cammalleri, C.; Anderson, M.C.; Ciraolo, G.; D’Urso, G.; Kustas, W.P.; La Loggia, G.; Minacapilli, M. The Impact of In-Canopy Wind Profile Formulations on Heat Flux Estimation in an Open Orchard Using the Remote Sensing-Based Two-Source Model. Hydrol. Earth Syst. Sci. 2010, 14, 2643–2659. [Google Scholar] [CrossRef]
- Li, Y.; Kustas, W.P.; Huang, C.; Kool, D.; Haghighi, E. Evaluation of Soil Resistance Formulations for Estimates of Sensible Heat Flux in a Desert Vineyard. Agric. For. Meteorol. 2018, 260–261, 255–261. [Google Scholar] [CrossRef]
- Brunsell, N.A.; Anderson, M.C. Characterizing the Multi–Scale Spatial Structure of Remotely Sensed Evapotranspiration with Information Theory. Biogeosciences 2011, 8, 2269–2280. [Google Scholar] [CrossRef]
- Bresnahan, P.A.; Miller, D.R. Choice of Data Scale: Predicting Resolution Error in a Regional Evapotranspiration Model. Agric. For. Meteorol. 1997, 84, 97–113. [Google Scholar] [CrossRef]
- Norman, J.M.; Anderson, M.C.; Kustas, W.P.; French, A.N.; Mecikalski, J.; Torn, R.; Diak, G.R.; Schmugge, T.J.; Tanner, B.C.W. Remote Sensing of Surface Energy Fluxes at 101 -m Pixel Resolutions. Water Resour. Res. 2003, 39, 2002WR001775. [Google Scholar] [CrossRef]
- Aboutalebi, M.; Torres-Rua, A.F.; Kustas, W.P.; Nieto, H.; Coopmans, C.; McKee, M. Assessment of Different Methods for Shadow Detection in High-Resolution Optical Imagery and Evaluation of Shadow Impact on Calculation of NDVI, and Evapotranspiration. Irrig. Sci. 2019, 37, 407–429. [Google Scholar] [CrossRef]
- Maes, W.; Huete, A.; Steppe, K. Optimizing the Processing of UAV-Based Thermal Imagery. Remote Sens. 2017, 9, 476. [Google Scholar] [CrossRef]
- Torres-Rua, A. Vicarious Calibration of sUAS Microbolometer Temperature Imagery for Estimation of Radiometric Land Surface Temperature. Sensors 2017, 17, 1499. [Google Scholar] [CrossRef]
- Ershadi, A.; McCabe, M.F.; Evans, J.P.; Walker, J.P. Effects of Spatial Aggregation on the Multi-Scale Estimation of Evapotranspiration. Remote Sens. Environ. 2013, 131, 51–62. [Google Scholar] [CrossRef]
- Ribeiro-Gomes, K.; Hernández-López, D.; Ortega, J.; Ballesteros, R.; Poblete, T.; Moreno, M. Uncooled Thermal Camera Calibration and Optimization of the Photogrammetry Process for UAV Applications in Agriculture. Sensors 2017, 17, 2173. [Google Scholar] [CrossRef] [PubMed]
- Guzinski, R.; Nieto, H. Evaluating the Feasibility of Using Sentinel-2 and Sentinel-3 Satellites for High-Resolution Evapotranspiration Estimations. Remote Sens. Environ. 2019, 221, 157–172. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ Photogrammetry: A Low-Cost, Effective Tool for Geoscience Applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef]
- Iqbal, F.; Lucieer, A.; Barry, K. Simplified Radiometric Calibration for UAS-Mounted Multispectral Sensor. Eur. J. Remote Sens. 2018, 51, 301–313. [Google Scholar] [CrossRef]
- Pritsolas, J.; Pearson, R.; Connor, J.; Kyveryga, P. Challenges and Successes When Generating In-Season Multi-Temporal Calibrated Aerial Imagery. In Proceedings of the 13th International Conference on Precision Agriculture, St. Louis, MO, USA, 31 July–3 August 2016. [Google Scholar]
- Berni, J.; Zarco-Tejada, P.J.; Suarez, L.; Fereres, E. Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring from an Unmanned Aerial Vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.C.; Sobrino, J.A.; Skokovic, D.; Mattar, C.; Cristobal, J. Land Surface Temperature Retrieval Methods from Landsat-8 Thermal Infrared Sensor Data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1840–1843. [Google Scholar] [CrossRef]
- Yu, X.; Guo, X.; Wu, Z. Land Surface Temperature Retrieval from Landsat 8 TIRS—Comparison Between Radiative Transfer Equation-Based Method, Split Window Algorithm and Single Channel Method. Remote Sens. 2014, 6, 9829–9852. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS; NASA: Washington, DC, USA, 1974.
- Wang, F.; Qin, Z.; Song, C.; Tu, L.; Karnieli, A.; Zhao, S. An Improved Mono-Window Algorithm for Land Surface Temperature Retrieval from Landsat 8 Thermal Infrared Sensor Data. Remote Sens. 2015, 7, 4268–4289. [Google Scholar] [CrossRef]
- Hijmans, R. Raster: Geographic Data Analysis and Modeling. 2025. Available online: https://cran.r-project.org/web/packages/raster/raster.pdf (accessed on 28 October 2025).
- Box, G.E.P.; Cox, D.R. An Analysis of Transformations. J. R. Stat. Soc. Ser. B Stat. Methodol. 1964, 26, 211–243. [Google Scholar] [CrossRef]
- Hyde, S. Likelihood Based Inference on the Box-Cox Family of Transformations: SAS and Matlab Programs; Montana State University: Bozeman, MT, USA, 1999. [Google Scholar]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression; Sage Publications: Los Angeles, CA, USA, 2018. [Google Scholar]
- Rouze, G.; Neely, H.; Morgan, C.; Kustas, W.; Wiethorn, M. Evaluating Unoccupied Aerial Systems (UAS) Imagery as an Alternative Tool Towards Cotton-Based Management Zones. Precis. Agric. 2021, 22, 1861–1889. [Google Scholar] [CrossRef]
- Evett, S.R.; Schwartz, R.C.; Casanova, J.J.; Heng, L.K. Soil Water Sensing for Water Balance, ET and WUE. Agric. Water Manag. 2012, 104, 1–9. [Google Scholar] [CrossRef]
- Frank, J.M.; Massman, W.J.; Ewers, B.E. Underestimates of Sensible Heat Flux Due to Vertical Velocity Measurement Errors in Non-Orthogonal Sonic Anemometers. Agric. For. Meteorol. 2013, 171–172, 72–81. [Google Scholar] [CrossRef]
- Kochendorfer, J.; Meyers, T.P.; Frank, J.; Massman, W.J.; Heuer, M.W. How Well Can We Measure the Vertical Wind Speed? Implications for Fluxes of Energy and Mass. Bound.-Layer Meteorol. 2012, 145, 383–398. [Google Scholar] [CrossRef]
- Chávez, J.; Neale, C.M.U.; Hipps, L.E.; Prueger, J.H.; Kustas, W.P. Comparing Aircraft-Based Remotely Sensed Energy Balance Fluxes with Eddy Covariance Tower Data Using Heat Flux Source Area Functions. J. Hydrometeorol. 2005, 6, 923–940. [Google Scholar] [CrossRef]
- Burba, G.G.; Anderson, D. A Brief Practical Guide to Eddy Covariance Flux Measurements: Principles and Workflow Examples for Scientific and Industrial Applications; LI-COR Biosciences: Lincoln, NE, USA, 2010. [Google Scholar]
- Detto, M.; Montaldo, N.; Albertson, J.D.; Mancini, M.; Katul, G. Soil Moisture and Vegetation Controls on Evapotranspiration in a Heterogeneous Mediterranean Ecosystem on Sardinia, Italy. Water Resour. Res. 2006, 42, 2005WR004693. [Google Scholar] [CrossRef]
- Hsieh, C.-I.; Katul, G.; Chi, T. An Approximate Analytical Model for Footprint Estimation of Scalar Fluxes in Thermally Stratified Atmospheric Flows. Adv. Water Resour. 2000, 23, 765–772. [Google Scholar] [CrossRef]
- Li, F.; Kustas, W.P.; Anderson, M.C.; Prueger, J.H.; Scott, R.L. Effect of Remote Sensing Spatial Resolution on Interpreting Tower-Based Flux Observations. Remote Sens. Environ. 2008, 112, 337–349. [Google Scholar] [CrossRef]













| Growing Stage | Platform | Altitude (km) | Flight Time—Multispectral | Flight Time—Thermal | Native Pixel Resolution (m) | |
|---|---|---|---|---|---|---|
| MS | Thermal | |||||
| 16 June 2017 | ||||||
| Flowering | UAS | 0.12 | 13:48–14:10 | 13:00–13:15 | 0.07 | 0.15 | 
| OAS | 1.37 | 13:58–14:10 | 0.48 | 1.32 | ||
| SAT | 705 | 11:57 | 30 | 100 | ||
| Boll filling | 26 July 2017 | |||||
| UAS | 0.12 | 11:27–11:48 | N/A | 0.08 | N/A | |
| 28 July 2017 | ||||||
| UAS | 0.12 | No flight | 14:46–15:00 | N/A | 0.15 | |
| OAS | 1.37 | 15:17–15:31 | 0.48 | 1.31 | ||
| Characteristic | Multispectral Sensors | Thermal Sensors | ||||
|---|---|---|---|---|---|---|
| UAS | OAS | SAT | UAS | OAS | SAT | |
| Platform | Tuffwing UAS Mapper | Cessna 206 | Landsat 8 | Tuffwing UAS Mapper | Cessna 206 | Landsat 8 | 
| Sensor | Micasense Rededge | Nikon D810 | Operational Land Imager (OLI) | ICI 8640-P | FLIR SC660 | Thermal Infrared Sensor | 
| Number of channels | 5 (RGB + NIR + Red Edge) | 4 (RGB + NIR) | 9 (RGB, NIR, SWIR) | 1 | 1 | 2 | 
| Notable spectral wavebands (μm) | 0.46–0.50 (Blue) | 0.40–0.50 (Blue) | 0.45–0.51 (Blue) | 7.0–14.0 | 7.50–13.00 | 10.6–11.19 | 
| 0.54–0.58 (Green) | 0.51–0.59 (Green) | 0.53–0.59 (Green) | ||||
| 0.66–0.68 (Red) | 0.60–0.70 (Red) | 0.64–0.67 (Red) | ||||
| 0.80–0.88 (NIR) | 0.83–1.00 (NIR) | 0.85–0.88 (NIR) | ||||
| Resolution (px) | 1280 × 960 | 7360 × 4912 | 7541 × 7691 | 640 × 512 | 640 × 480 | 7541 × 7691 | 
| Focal length (mm) | 5.5 | 20 | 886 | 12.5 | 37.6 | 178 | 
| FOV (°) | 47.9 | 83.9 | 15 | 78 | 24 | 15 | 
| Output data | 16-bit | 16-bit | 12-bit | 14-bit | 16-bit | 12-bit | 
| Ground image dimension (m) | 106 × 79 | 1204 × 805 | 185,000 × 180,000 | 84 × 104 | 285 × 213 | 185,000 × 180,000 | 
| 2462 × 1646 | 584 × 437 | |||||
| Date | Time | Platform | LAI | hc | wc | Ta | u | Wind Direction | Sdn | VPD | 
|---|---|---|---|---|---|---|---|---|---|---|
| m2 m−2 | m | m | K | m s−1 | ° | W m−2 | kPa | |||
| 16 June 2017 | 11:57 | SAT | 1.03 | 0.44 | 0.14 | 304.3 | 3.78 | 213 | 878 | 1.79 | 
| 13:00–13:15 | UAS | 306.1 | 3.88 | 205 | 1014 | 2.40 | ||||
| 13:58–14:10 | OAS | 306.7 | 3.11 | 191 | 998 | 2.58 | ||||
| 28 July 2017 | 14:46–15:00 | UAS | 2.37 | 0.8 | 0.92 | 309.6 | 1.84 | 166 | 945 | 3.55 | 
| 15:17–15:31 | OAS | 310.1 | 1.77 | 189 | 898 | 3.73 | 
| Resolution | 16 June 2017 | 28 July 2017 | ||||||
|---|---|---|---|---|---|---|---|---|
| In-SA | In-BC | Out-SA | Out-BC | In-SA | In-BC | Out-SA | Out-BC | |
| 5 | 0.10 | 0.20 | 0.10 | 0.19 | 0.13 | 0.15 | 0.12 | 0.14 | 
| 10 | 0.11 | 0.22 | 0.11 | 0.20 | 0.14 | 0.16 | 0.14 | 0.16 | 
| 30 | 0.13 | 0.24 | 0.13 | 0.23 | 0.16 | 0.19 | 0.16 | 0.19 | 
| 90 | 0.21 | 0.30 | 0.17 | 0.25 | 0.24 | 0.27 | 0.21 | 0.24 | 
| Average | 0.14 | 0.24 | 0.13 | 0.22 | 0.17 | 0.19 | 0.16 | 0.18 | 
| Resolution (m) | In-SA | In-BC | Out-SA | Out-BC | 
|---|---|---|---|---|
| 5 | 7.2 | 8.0 | 6.0 | 7.9 | 
| 10 | 7.8 | 8.1 | 6.2 | 8.6 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neely, H.L.; Morgan, C.L.S.; Mohanty, B.P.; Yang, C. Evaluating Various Energy Balance Aggregation Schemes in Cotton Using Unoccupied Aerial Systems (UASs)-Based Latent Heat Flux Estimates. Remote Sens. 2025, 17, 3579. https://doi.org/10.3390/rs17213579
Neely HL, Morgan CLS, Mohanty BP, Yang C. Evaluating Various Energy Balance Aggregation Schemes in Cotton Using Unoccupied Aerial Systems (UASs)-Based Latent Heat Flux Estimates. Remote Sensing. 2025; 17(21):3579. https://doi.org/10.3390/rs17213579
Chicago/Turabian StyleNeely, Haly L., Cristine L.S. Morgan, Binayak P. Mohanty, and Chenghai Yang. 2025. "Evaluating Various Energy Balance Aggregation Schemes in Cotton Using Unoccupied Aerial Systems (UASs)-Based Latent Heat Flux Estimates" Remote Sensing 17, no. 21: 3579. https://doi.org/10.3390/rs17213579
APA StyleNeely, H. L., Morgan, C. L. S., Mohanty, B. P., & Yang, C. (2025). Evaluating Various Energy Balance Aggregation Schemes in Cotton Using Unoccupied Aerial Systems (UASs)-Based Latent Heat Flux Estimates. Remote Sensing, 17(21), 3579. https://doi.org/10.3390/rs17213579
 
         
                                                

 
       