Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (176)

Search Parameters:
Keywords = two-photon spectroscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2045 KiB  
Article
Enhanced Nonlinear Optical Absorption in Fused-Ring Aromatic Donor–Acceptor–Donor Core Units of Y6 Derivatives
by Xingyuan Wen, Tianyang Dong, Xingzhi Wu, Jiabei Xu, Xiaofeng Shi, Yinglin Song, Chunru Wang and Li Jiang
Molecules 2025, 30(13), 2748; https://doi.org/10.3390/molecules30132748 - 26 Jun 2025
Viewed by 323
Abstract
This fundamental understanding of molecular structure–NLO property relationships provides critical design principles for next-generation optical limiting materials, quantum photonic devices, and ultrafast nonlinear optical switches, addressing the growing demand for high-performance organic optoelectronic materials in laser protection and photonic computing applications. In this [...] Read more.
This fundamental understanding of molecular structure–NLO property relationships provides critical design principles for next-generation optical limiting materials, quantum photonic devices, and ultrafast nonlinear optical switches, addressing the growing demand for high-performance organic optoelectronic materials in laser protection and photonic computing applications. In this study, it was observed that selenophene-incorporated fused D-A-D architectures exhibit a remarkable enhancement in two-photon absorption characteristics. By strategically modifying the heteroatomic composition of the Y6-derived fused-ring core, replacing thiophene (BDS) with selenophene (BDSe), the optimized system achieves unprecedented NLO performance. BDSe displays a nonlinear absorption coefficient (β) of 3.32 × 10−10 m/W and an effective two-photon absorption cross-section (σTPA) of 2428.2 GM under 532 nm with ns pulse excitation. Comprehensive characterization combining Z-scan measurements, transient absorption spectroscopy, and DFT calculations reveals that the heavy atom effect of selenium induces enhanced spin–orbit coupling, optimized intramolecular charge transfer dynamics and stabilized excited states, collectively contributing to the superior reverse saturable absorption behavior. It is believed that this molecular engineering strategy establishes critical structure–property relationships for the rational design of organic NLO materials. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

12 pages, 4292 KiB  
Article
Machine Learning-Based Identification of Plastic Types Using Handheld Spectrometers
by Hedde van Hoorn, Fahimeh Pourmohammadi, Arie-Willem de Leeuw, Amey Vasulkar, Jerry de Vos and Steven van den Berg
Sensors 2025, 25(12), 3777; https://doi.org/10.3390/s25123777 - 17 Jun 2025
Viewed by 437
Abstract
Plastic waste and pollution is growing rapidly worldwide and most plastics end up in landfill or are incinerated because high-quality recycling is not possible. Plastic-type identification with a low-cost, handheld spectral approach could help in parts of the world where high-end spectral imaging [...] Read more.
Plastic waste and pollution is growing rapidly worldwide and most plastics end up in landfill or are incinerated because high-quality recycling is not possible. Plastic-type identification with a low-cost, handheld spectral approach could help in parts of the world where high-end spectral imaging systems on conveyor belts cannot be implemented. Here, we investigate how two fundamentally different handheld infrared spectral devices can identify plastic types by benchmarking the same analysis against a high-resolution bench-top spectral approach. We used the handheld Plastic Scanner, which measures a discrete infrared spectrum using LED illumination at different wavelengths, and the SpectraPod, which has an integrated photonics chip which has varying responsivity in different channels in the near-infrared. We employ machine learning using SVM, XGBoost, Random Forest and Gaussian Naïve Bayes models on a full dataset of plastic samples of PET, HDPE, PVC, LDPE, PP and PS, with samples of varying shape, color and opacity, as measured with three different experimental approaches. The high-resolution spectral approach can obtain an accuracy (mean ± standard deviation) of (0.97 ± 0.01), whereas we obtain (0.93 ± 0.01) for the SpectraPod and (0.70 ± 0.03) for the Plastic Scanner. Differences of reflectance at subsequent wavelengths prove to be the most important features in the plastic-type classification model when using high-resolution spectroscopy, which is not possible with the other two devices. Lower accuracy for the handheld devices is caused by their limitations, as the spectral range of both devices is limited—up to 1600 nm for the SpectraPod, while the Plastic Scanner has limited sensitivity to reflectance at wavelengths of 1100 and 1350 nm, where certain plastic types show characteristic absorbance bands. We suggest that combining selective sensitivity channels (as in the SpectraPod) and illuminating the sample with varying LEDs (as with the Plastic Scanner) could increase the accuracy in plastic-type identification with a handheld device. Full article
(This article belongs to the Special Issue Advanced Optical Sensors Based on Machine Learning: 2nd Edition)
Show Figures

Figure 1

15 pages, 5164 KiB  
Article
Preparation, Thermal, and Optical Properties of D-A-Type Molecules Based on 1,3,5-Triazine for Violet-Blue Fluorescent Materials
by Lu Wang, Enwang Du, Zhi Liu and Zhiqiang Liu
Materials 2025, 18(9), 2043; https://doi.org/10.3390/ma18092043 - 29 Apr 2025
Viewed by 430
Abstract
Organic violet-blue fluorescent materials have garnered significant interest for a broad spectrum of applications. A series of triazine-based molecules, that is, 2,4,6-tri(9H-carbazol-9-yl)-1,3,5-triazine (TCZT), 2,4,6-tri(1H-indol-1-yl)-1,3,5-triazine (TIDT), and 2,4,6-tris(3,6-di-tert-butyl-9H-carbazol-9-yl)-1,3,5-triazine (TDBCZT), exhibiting violet-blue emission were synthesized via a catalyst-free aromatic nucleophilic substitution reaction. These compounds possess [...] Read more.
Organic violet-blue fluorescent materials have garnered significant interest for a broad spectrum of applications. A series of triazine-based molecules, that is, 2,4,6-tri(9H-carbazol-9-yl)-1,3,5-triazine (TCZT), 2,4,6-tri(1H-indol-1-yl)-1,3,5-triazine (TIDT), and 2,4,6-tris(3,6-di-tert-butyl-9H-carbazol-9-yl)-1,3,5-triazine (TDBCZT), exhibiting violet-blue emission were synthesized via a catalyst-free aromatic nucleophilic substitution reaction. These compounds possess a non-planar and twisted structure with favorable charge-transfer characteristics, demonstrating excellent thermal stability (decomposition temperatures of 370 °C, 384 °C, and 230 °C, respectively). Cyclic voltammetry analysis, combined with time-dependent density functional theory (TD-DFT) calculations at the B3LYP/6-31G(d) level, offered detailed insights into their electronic structures and electrochemical properties. Optical properties were systematically characterized using Ultraviolet–visible (UV–Vis) absorption and photoluminescence (PL) spectroscopy. The compounds exhibited violet-blue luminescence with emission peaks located at 397 nm, 383 nm, and 402 nm in toluene, respectively. In their respective films, the compounds exhibited varying degrees of spectral shifts, with emission peaks at 408 nm, 381 nm, and 369 nm. Moreover, the CIE (Commission Internationale de l’Éclairage) coordinates of TIDT in toluene were (0.155, 0.067), indicative of excellent violet purity. These compounds demonstrated significant two-photon absorption (TPA) properties, with cross-sections of 4.6 GM, 15.3 GM, and 7.4 GM, respectively. Notably, they exhibited large molar absorptivities and substantial photoluminescence quantum yields (PLQYs), suggesting their potential for practical applications as violet-blue fluorescent materials. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

19 pages, 5369 KiB  
Article
Interactions of Terahertz Photons with Phonons of Two-Dimensional van der Waals MoS2/WSe2/MoS2 Heterostructures and Thermal Responses
by Jingwen Huang, Ningsheng Xu, Yumao Wu, Xue Ran, Yue Fang, Hongjia Zhu, Weiliang Wang, Huanjun Chen and Shaozhi Deng
Materials 2025, 18(7), 1665; https://doi.org/10.3390/ma18071665 - 4 Apr 2025
Viewed by 837
Abstract
The interaction between terahertz (THz) photons and phonons of materials is crucial for the development of THz photonics. In this work, typical two-dimensional (2D) van der Waals (vdW) transition metal chalcogenide (TMD) layers and heterostructures are used in THz time-domain spectroscopy (TDS) measurements, [...] Read more.
The interaction between terahertz (THz) photons and phonons of materials is crucial for the development of THz photonics. In this work, typical two-dimensional (2D) van der Waals (vdW) transition metal chalcogenide (TMD) layers and heterostructures are used in THz time-domain spectroscopy (TDS) measurements, low-wavenumber Raman spectroscopy measurements, calculation of 2D materials’ phonon spectra, and theoretical analysis of thermal responses. The TDS results reveal strong absorption of THz photons in the frequency range of 2.5–10 THz. The low-wavenumber Raman spectra show the phonon vibration characteristics and are used to establish phonon energy bands. We also set up a computational simulation model for thermal responses. The temperature increases and distributions in the individual layers and their heterostructures are calculated, showing that THz photon absorption results in significant increases in temperature and differences in the heterostructures. These give rise to interesting photothermal effects, including the Seebeck effect, resulting in voltages across the heterostructures. These findings provide valuable guidance for the potential optoelectronic application of the 2D vdW heterostructures. Full article
(This article belongs to the Special Issue Terahertz Vibrational Spectroscopy in Advanced Materials)
Show Figures

Figure 1

10 pages, 1251 KiB  
Communication
Engineering Terahertz Light–Matter Interaction with Quantum Electronic Metamaterials
by Igor I. Smolyaninov and Vera N. Smolyaninova
Electronics 2025, 14(4), 679; https://doi.org/10.3390/electronics14040679 - 10 Feb 2025
Viewed by 700
Abstract
While electromagnetic metamaterials completely revolutionized optics and radio frequency engineering, recent progress in the development of conceptually related electronic metamaterials was more slow. Similar to electromagnetic metamaterials, which engineer material response to the electromagnetic field of a photon, the purpose of electronic metamaterials [...] Read more.
While electromagnetic metamaterials completely revolutionized optics and radio frequency engineering, recent progress in the development of conceptually related electronic metamaterials was more slow. Similar to electromagnetic metamaterials, which engineer material response to the electromagnetic field of a photon, the purpose of electronic metamaterials is to affect electron propagation and its wave function by changing material response to its electric field. This makes electronic metamaterials an ideal tool for engineering light–matter interaction in semiconductors and superconductors. Here, we propose the use of Fermi’s quantum refraction, which was previously observed in the terahertz spectroscopy of Rydberg atoms and two-dimensional surface electronic states, as a novel tool in quantum electronic metamaterial design. In particular, we demonstrate several potential applications of this concept in two-dimensional metamaterial superconductors and “universal quantum dots” designed for operation in the terahertz frequency range. Full article
(This article belongs to the Special Issue Terahertz Optics and Spectroscopy)
Show Figures

Figure 1

21 pages, 5604 KiB  
Article
Gossypin-Loaded Ethosome Gel for Cutaneous Administration: A Preliminary Study on Melanoma Cells
by Agnese Bondi, Walter Pula, Mascia Benedusi, Giulia Trinchera, Anna Baldisserotto, Stefano Manfredini, Maria Grazia Ortore, Alessia Pepe, Paolo Mariani, Marc C. A. Stuart, Giuseppe Valacchi and Elisabetta Esposito
Antioxidants 2025, 14(2), 186; https://doi.org/10.3390/antiox14020186 - 5 Feb 2025
Cited by 2 | Viewed by 1562
Abstract
A preformulative study was conducted to produce and characterize ethosomes for the transdermal delivery of gossypin. This plant-derived compound possesses many pharmacological properties, including antitumoral potential. Ethosome dispersions were designed as transdermal delivery systems for gossypin, employing two different production procedures. The evaluation [...] Read more.
A preformulative study was conducted to produce and characterize ethosomes for the transdermal delivery of gossypin. This plant-derived compound possesses many pharmacological properties, including antitumoral potential. Ethosome dispersions were designed as transdermal delivery systems for gossypin, employing two different production procedures. The evaluation of vesicle size distribution by photon correlation spectroscopy, morphology by cryogenic transmission electron microscopy, and gossypin entrapment capacity, as well as in vitro release and permeation by vertical diffusion cells, enabled us to select a production strategy based on the injection of a phosphatidylcholine ethanolic solution in water. Indeed, vesicles prepared by this method were almost unilamellar and measured roughly 150 nm mean diameter while displaying an entrapment capacity higher than 94%. Moreover, vesicles prepared by the ethanol injection method enabled us to control gossypin release and to improve its permeation with respect to the solution of the drug. To obtain semi-solid forms suitable for cutaneous gossypin administration, ethosome dispersions were thickened with 0.5% w/w xanthan gum, selected by a spreadability test. These ethosome gels were then further characterized by small- and wide-angle X-ray scattering, while their antioxidant activity was demonstrated in vitro by a radical scavenging assay. Finally, in vitro biological studies were conducted on A375 melanoma cell lines. Namely, wound healing and cell migration assays confirmed the potential antitumoral effect of gossypin, especially when loaded in the selected ethosomal gel. The promising results suggest further investigation of the potential of gossypin-loaded ethosomal gel in the treatment of melanoma. Full article
Show Figures

Graphical abstract

10 pages, 2772 KiB  
Article
Carbon Nanosphere-Based TiO2 Double Inverse Opals
by Dániel Attila Karajz, Kincső Virág Rottenbacher, Klára Hernádi and Imre Miklós Szilágyi
Molecules 2025, 30(2), 205; https://doi.org/10.3390/molecules30020205 - 7 Jan 2025
Viewed by 1080
Abstract
Inverse opals (IOs) are intensively researched in the field of photocatalysis, since their optical properties can be fine-tuned by the initial nanosphere size and material. Another possible route for photonic crystal programming is to stack IOs with different pore sizes. Accordingly, single and [...] Read more.
Inverse opals (IOs) are intensively researched in the field of photocatalysis, since their optical properties can be fine-tuned by the initial nanosphere size and material. Another possible route for photonic crystal programming is to stack IOs with different pore sizes. Accordingly, single and double IOs were synthesized using vertical deposition and atomic layer deposition. In the case of the double IOs, the alternating use of the two preparation methods was successfully performed. Hydrothermally synthesized 326 and 458 nm carbon nanospheres were utilized to manufacture two different IOs; hence the name 326 nm and 458 nm IOs. Heat treatment removed the sacrificial template carbon nanospheres, and the as-deposited TiO2 crystallized upon annealing into nanocrystalline anatase form. Reflectance mode UV–visible spectroscopy showed that most IOs had photonic properties, i.e., a photonic band gap, and by the “slow” photon effect enhanced absorbance, except the 326 nm IO, even though it also had an increase in absorbance. The IOs were tested by photocatalytic degradation of Rhodamine 6-G under visible light. Photocatalytic experiments showed that the 458 nm IO was more active and the double IOs showed higher efficiency compared to monolayers, even if the less effective 326 nm IO was the top layer. Full article
Show Figures

Figure 1

11 pages, 3793 KiB  
Article
Additive Manufacturing of Binary and Ternary Oxide Systems Using Two-Photon Polymerization and Low-Temperature Sintering
by Halima El Aadad, Hicham El Hamzaoui, Yves Quiquempois and Marc Douay
Nanomaterials 2024, 14(23), 1977; https://doi.org/10.3390/nano14231977 - 9 Dec 2024
Viewed by 1170
Abstract
Multicomponent oxide systems have many applications in different fields such as optics and medicine. In this work, we developed new hybrid photoresists based on a combination of an organic acrylate resin and an inorganic sol, suitable for 3D printing via two-photon polymerization (2PP). [...] Read more.
Multicomponent oxide systems have many applications in different fields such as optics and medicine. In this work, we developed new hybrid photoresists based on a combination of an organic acrylate resin and an inorganic sol, suitable for 3D printing via two-photon polymerization (2PP). The inorganic sol contained precursors of a binary SiO2-CaO or a ternary SiO2-CaO-P2O5 system. Complex microstructures were 3D printed using these hybrid photoresists and 2PP. The obtained materials were characterized using thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) techniques. Our results revealed that the produced microstructures were able to endure sintering at 700 °C without collapsing, leading to scaffolds with 235 and 355 nm resolution and pore size, respectively. According to the TGA analysis, there was no significant mass loss beyond 600 °C. After sintering at 500 °C, the FTIR spectra showed the disappearance of the characteristic bands associated with the organic phase, and the presence of bands characteristic of the binary and ternary oxide systems and carbonate groups. The SEM images showed different morphologies of agglomerated nanoparticles with mean sizes of about 20 and 60 nm for ternary and binary systems, respectively. Our findings open the way towards precise control of bioglass scaffold fabrication with tremendous design flexibility. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

11 pages, 6735 KiB  
Article
Dual-Wavelength On-Chip Integrated Metalens for Epi-Fluorescence Single-Molecule Sensing
by Elena Barulina, Dang Du Nguyen, Fedor Shuklin, Mikhail Podobrii, Sergey Novikov, Alexander Chernov, Inki Kim and Aleksandr Barulin
Sensors 2024, 24(23), 7781; https://doi.org/10.3390/s24237781 - 5 Dec 2024
Cited by 1 | Viewed by 1555
Abstract
Single-molecule fluorescence spectroscopy offers unique capabilities for the low-concentration sensing and probing of molecular dynmics. However, employing such a methodology for versatile sensing and diagnostics under point-of-care demands device miniaturization to lab-on-a-chip size. In this study, we numerically design metalenses with high numerical [...] Read more.
Single-molecule fluorescence spectroscopy offers unique capabilities for the low-concentration sensing and probing of molecular dynmics. However, employing such a methodology for versatile sensing and diagnostics under point-of-care demands device miniaturization to lab-on-a-chip size. In this study, we numerically design metalenses with high numerical aperture (NA = 1.1), which are composed of silicon nitride nanostructures deposited on a waveguide and can selectively focus guided light into an aqueous solution at two wavelengths of interest in the spectral range of 500–780 nm. Despite the severe chromatic focal shift in the lateral directions owing to the wavelength-dependent propagation constant in a waveguide, segmented on-chip metalenses provide perfectly overlapping focal volumes that meet the requirements for epi-fluorescence light collection. We demonstrate that the molecule detection efficiencies of metalenses designed for the excitation and emission wavelengths of ATTO 490LS, Alexa 555, and APC-Cy7 tandem fluorophores are sufficient to collect several thousand photons per second per molecule at modest excitation rate constants. Such sensitivity provides reliable diffusion fluorescence correlation spectroscopy analysis of single molecules on a chip to extract their concentration and diffusion properties in the nanomolar range. Achromatic on-chip metalenses open new avenues for developing ultra-compact and sensitive devices for precision medicine and environmental monitoring. Full article
Show Figures

Figure 1

19 pages, 4465 KiB  
Article
Fast Multi-Distance Time-Domain NIRS and DCS System for Clinical Applications
by Marco Nabacino, Caterina Amendola, Davide Contini, Rebecca Re, Lorenzo Spinelli and Alessandro Torricelli
Sensors 2024, 24(22), 7375; https://doi.org/10.3390/s24227375 - 19 Nov 2024
Cited by 2 | Viewed by 1478
Abstract
We have designed and built an improved system for combined Time-Domain Near-Infrared Spectroscopy (TD NIRS) and Diffuse Correlation Spectroscopy (DCS) measurements. The system features two independent channels, enabling TD NIRS and DCS acquisition at short and long source-detector distances to enhance depth sensitivity [...] Read more.
We have designed and built an improved system for combined Time-Domain Near-Infrared Spectroscopy (TD NIRS) and Diffuse Correlation Spectroscopy (DCS) measurements. The system features two independent channels, enabling TD NIRS and DCS acquisition at short and long source-detector distances to enhance depth sensitivity in layered tissues. Moreover, the device can operate at fast acquisition rates (up to 50 Hz) to monitor hemodynamic oscillations in biological tissues. An OEM (Original Equipment Manufacturer) TD NIRS device enables stable and robust acquisition of photon distribution of time-of-flight. For the DCS signals, the use of a time tagger and a software correlator allows us flexibility in post-processing. A user-friendly GUI controls TD NIRS data acquisition and online data analysis. We present results for the system characterization on calibrated tissue phantoms according to standardized protocols for performance assessment of TD NIRS and DCS devices. In-vivo measurements during rest and during vascular occlusions are also reported to validate the system in real settings. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

11 pages, 3801 KiB  
Article
Tunable Color Emissions in a Single CdTe Nanowire Based on Complex Optical Transverse Nonlinear Effects
by Lijun Guo, Lihao Xu, Changjiang Fan, Yunfei Zhang, Hao Yang, Mengwei Li and Chenguang Xin
Photonics 2024, 11(11), 1068; https://doi.org/10.3390/photonics11111068 - 14 Nov 2024
Viewed by 909
Abstract
Tunable color emissions, emerging from a single CdTe nanowire, are demonstrated experimentally based on optical transverse nonlinear effects. The pumping light at different wavelengths (e.g., 1064 nm and 980 nm) is coupled to a nanowire at both ends via evanescent-field coupling. The light [...] Read more.
Tunable color emissions, emerging from a single CdTe nanowire, are demonstrated experimentally based on optical transverse nonlinear effects. The pumping light at different wavelengths (e.g., 1064 nm and 980 nm) is coupled to a nanowire at both ends via evanescent-field coupling. The light at different wavelengths (e.g., 510 nm, 532 nm, and 713 nm) can be simultaneously assessed using complex optical transverse nonlinear effects, including transverse sum-frequency generation (TSFG), transverse second-harmonic generation (TSHG), and two-photon absorption (TPA)-induced fluorescence. By changing the wavelength and the power of the pumping lights, the spectra of the transverse light emissions change as well, leading to tunable color emissions at the single-nanowire level with a Rec. 2020 coverage of ~21.6%. The results indicate the potential of transverse nonlinear effects in applications ranging from optical display and spectroscopy to communication. Full article
Show Figures

Figure 1

20 pages, 2710 KiB  
Article
Charge Diffusion and Repulsion in Semiconductor Detectors
by Manuel Ballester, Jaromir Kaspar, Francesc Massanés, Alexander Hans Vija and Aggelos K. Katsaggelos
Sensors 2024, 24(22), 7123; https://doi.org/10.3390/s24227123 - 6 Nov 2024
Viewed by 1345
Abstract
Semiconductor detectors for high-energy sensing (X/γ-rays) play a critical role in fields such as astronomy, particle physics, spectroscopy, medical imaging, and homeland security. The increasing need for precise detector characterization highlights the importance of developing advanced digital twins, which [...] Read more.
Semiconductor detectors for high-energy sensing (X/γ-rays) play a critical role in fields such as astronomy, particle physics, spectroscopy, medical imaging, and homeland security. The increasing need for precise detector characterization highlights the importance of developing advanced digital twins, which help optimize the design and performance of imaging systems. Current simulation frameworks primarily focus on modeling electron–hole pair dynamics within the semiconductor bulk after the photon absorption, leading to the current signals at the nearby electrodes. However, most simulations neglect charge diffusion and Coulomb repulsion, which spatially expand the charge cloud during propagation due to the high complexity they add to the physical models. Although these effects are relatively weak, their inclusion is essential for achieving a high-fidelity replication of real detector behavior. There are some existing methods that successfully incorporate these two phenomena with minimal computational cost, including those developed by Gatti in 1987 and by Benoit and Hamel in 2009. The present work evaluates these two approaches and proposes a novel Monte Carlo technique that offers higher accuracy in exchange for increased computational time. Our new method enables more realistic performance predictions while remaining within practical computational limits. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

11 pages, 2588 KiB  
Article
Plasmon Response in Individual Conical Silicon Nanowires with Different Lengths
by Rizwan Rafique, Antonino La Magna, Antonio Massimiliano Mio, Salvatore Patanè, Jost Adam and Rosaria Anna Puglisi
Photonics 2024, 11(11), 999; https://doi.org/10.3390/photonics11110999 - 23 Oct 2024
Viewed by 1289
Abstract
Silicon nanowires (SiNWs) are extensively studied in the scientific community due to their remarkable electrical and optical properties. In our previous studies, we have demonstrated that cylindrical−shaped SiNWs sustain longitudinal plasmon resonances (LPRs) and transverse plasmon resonances (TPRs). In this work, we will [...] Read more.
Silicon nanowires (SiNWs) are extensively studied in the scientific community due to their remarkable electrical and optical properties. In our previous studies, we have demonstrated that cylindrical−shaped SiNWs sustain longitudinal plasmon resonances (LPRs) and transverse plasmon resonances (TPRs). In this work, we will present the results of our investigation on conical SiNWs with different lengths and demonstrate that the NW size plays a role on the spectral response. We selected two groups of SiNWs with approximately 300 nm and 750 nm in length with different lengths and diameters. We investigated the optical properties of the SiNWs at a high energy and spatial resolution by using transmission electron microscopy and in situ electron energy loss spectroscopy. In the UV region of the spectrum investigated here, the experimental evidence suggests the presence of LPRs and a clear presence of TPRs. We found that, as the NW length increases, the LPR fundamental mode shifts towards higher energies, while the diameter seems to affect the TPR, shifting it to lower energy levels when the diameter increases. These SiNWs can play a role in the development of low−dimensional devices for applications in nano−electronics and nano−photonics. Full article
(This article belongs to the Special Issue New Insights in Low-Dimensional Optoelectronic Materials and Devices)
Show Figures

Figure 1

16 pages, 14127 KiB  
Article
2PP-Hydrogel Covered Electrodes to Compensate for Media Effects in the Determination of Biomass in a Capillary Wave Micro Bioreactor
by Sven Meinen, Steffen Brinkmann, Kevin Viebrock, Bassant Elbardisy, Henning Menzel, Rainer Krull and Andreas Dietzel
Biosensors 2024, 14(9), 438; https://doi.org/10.3390/bios14090438 - 9 Sep 2024
Viewed by 1509
Abstract
Microbioreactors increase information output in biopharmaceutical screening applications because they can be operated in parallel without consuming large quantities of the pharmaceutical formulations being tested. A capillary wave microbioreactor (cwMBR) has recently been reported, allowing cost-efficient parallelization in an array that can be [...] Read more.
Microbioreactors increase information output in biopharmaceutical screening applications because they can be operated in parallel without consuming large quantities of the pharmaceutical formulations being tested. A capillary wave microbioreactor (cwMBR) has recently been reported, allowing cost-efficient parallelization in an array that can be activated for mixing as a whole. Although impedance spectroscopy can directly distinguish between dead and viable cells, the monitoring of cells in suspension within bioreactors is challenging because the signal is influenced by the potentially varying properties of the culture medium. In order to address this challenge, an impedance sensor consisting of two sets of microelectrodes in a cwMBR is presented. Only one set of electrodes was covered by a two-photon cross-linked hydrogel to become insensitive to the influence of cells while remaining sensitive to the culture medium. With this impedance sensor, the biomass of Saccharomyces cerevisiae could be measured in a range from 1 to 20 g L−1. In addition, the sensor can compensate for a change in the conductivity of the suspension of 5 to 15 mS cm−1. Moreover, the two-photon cross-linking of hydroxyethyl starch methacrylate hydrogel, which has been studied in detail, recommends itself for even much broader sensing applications in miniaturized bioreactors and biosensors. Full article
(This article belongs to the Special Issue MEMS Based Biosensors and Its Applications)
Show Figures

Graphical abstract

35 pages, 20847 KiB  
Review
The ATTO 565 Dye and Its Applications in Microscopy
by Yuheng Wu and René M. Williams
Molecules 2024, 29(17), 4243; https://doi.org/10.3390/molecules29174243 - 6 Sep 2024
Viewed by 1773
Abstract
ATTO 565, a Rhodamine-type dye, has garnered significant attention due to its remarkable optical properties, such as a high fluorescence quantum yield, and the fact that it is a relatively stable structure and has low biotoxicity. ATTO 565 has found extensive applications in [...] Read more.
ATTO 565, a Rhodamine-type dye, has garnered significant attention due to its remarkable optical properties, such as a high fluorescence quantum yield, and the fact that it is a relatively stable structure and has low biotoxicity. ATTO 565 has found extensive applications in combination with microscopy technology. In this review, the chemical and optical properties of ATTO 565 are introduced, along with the principles behind them. The functionality of ATTO 565 in confocal microscopy, stimulated emission depletion (STED) microscopy, single-molecule tracking (SMT) techniques, two-photon excitation–stimulated emission depletion microscopy (TPE-STED) and fluorescence correlation spectroscopy (FCS) is discussed. These studies demonstrate that ATTO 565 plays a crucial role in areas such as biological imaging and single-molecule localization, thus warranting further in-depth investigations. Finally, we present some prospects and concepts for the future applications of ATTO 565 in the fields of biocompatibility and metal ion detection. This review does not include theoretical calculations for the ATTO 565 molecule. Full article
(This article belongs to the Special Issue Advances in Functional Organic Dye Chemistry)
Show Figures

Graphical abstract

Back to TopTop