Carbon Nanosphere-Based TiO2 Double Inverse Opals
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Carbon Nanospheres
4.2. Preparation of Opal Crystals
4.3. Atomic Layer Deposition (ALD)
4.4. Carbon Nanosphere Removal
4.5. Single and Double IO Preparation
4.6. Characterization
4.7. Photocatalysis Experiments
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yablonovitch, E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett. 1987, 58, 2059–2062. [Google Scholar] [CrossRef]
- John, S. Strong Localization of Photons in Certain Disordered Dielectric Superlattices. Phys. Rev. Lett. 1987, 58, 2486–2489. [Google Scholar] [CrossRef] [PubMed]
- Yablonovitch, E.; Gmitter, T.J.; Leung, K.M. Photonic Band Structure: The Face-Centered-Cubic Case Employing Nonspherical Atoms. Phys. Rev. Lett. 1991, 67, 2295–2298. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Suzuki, K.; Okano, M.; Imada, M.; Nakamori, T.; Ota, Y.; Ishizaki, K.; Noda, S. Direct Creation of Three-Dimensional Photonic Crystals by a Top-down Approach. Nat. Mater. 2009, 8, 721–725. [Google Scholar] [CrossRef]
- Jiang, P.; Hwang, K.S.; Mittleman, D.M.; Bertone, J.F.; Colvin, V.L. Template-Directed Preparation of Macroporous Polymers with Oriented and Crystalline Arrays of Voids. J. Am. Chem. Soc. 1999, 121, 11630–11637. [Google Scholar] [CrossRef]
- Zhou, Q.; Dong, P.; Yi, G.Y.; Liu, L.X.; Cheng, B.Y. Preparation of TiO2 Inverse Opal via a Modified Filling Process. Chin. Phys. Lett. 2005, 22, 1155–1158. [Google Scholar] [CrossRef]
- Daem, N.; Mayer, A.; Spronck, G.; Colson, P.; Loicq, J.; Henrist, C.; Cloots, R.; Maho, A.; Lobet, M.; Dewalque, J. Inverse Opal Photonic Nanostructures for Enhanced Light Harvesting in CH3NH3PbI3 Perovskite Solar Cells. ACS Appl. Nano Mater. 2022, 5, 13583–13593. [Google Scholar] [CrossRef]
- Waterhouse, G.I.N.; Waterland, M.R. Opal and Inverse Opal Photonic Crystals: Fabrication and Characterization. Polyhedron 2007, 26, 356–368. [Google Scholar] [CrossRef]
- Kim, S.M.; Armutlulu, A.; Kierzkowska, A.M.; Müller, C.R. Inverse Opal-Like, Ca3Al2O6-Stabilized, CaO-Based CO2 Sorbent: Stabilization of a Highly Porous Structure to Improve Its Cyclic CO2 Uptake. ACS Appl. Energy Mater. 2019, 2, 6461–6471. [Google Scholar] [CrossRef]
- Bakos, L.P.; Karajz, D.; Katona, A.; Hernadi, K.; Parditka, B.; Erdélyi, Z.; Lukács, I.; Hórvölgyi, Z.; Szitási, G.; Szilágyi, I.M. Carbon Nanosphere Templates for the Preparation of Inverse Opal Titania Photonic Crystals by Atomic Layer Deposition. Appl. Surf. Sci. 2020, 504, 144443. [Google Scholar] [CrossRef]
- Zhou, Q.; Dong, P.; Liu, L.; Cheng, B. Study on the Sedimentation Self-Assembly of Colloidal SiO2 Particles under Gravitational Field. Colloids Surf. A Physicochem. Eng. Asp. 2005, 253, 169–174. [Google Scholar] [CrossRef]
- Rustembekkyzy, K.; Molkenova, A.; Kaikanov, M.; Atabaev, T.S. Deposition of Inverse Opal-like TiO2 Thin Film with Enhanced Photoelectrochemical Activity by a Spin-Coating Combined with a Dip-Coating Method. Nano Express 2023, 4, 026001. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhao, X.S. Opal and Inverse Opal Fabricated with a Flow-Controlled Vertical Deposition Method. Langmuir 2005, 21, 4717–4723. [Google Scholar] [CrossRef]
- Askar, K.; Leo, S.Y.; Xu, C.; Liu, D.; Jiang, P. Rapid Electrostatics-Assisted Layer-by-Layer Assembly of near-Infrared-Active Colloidal Photonic Crystals. J. Colloid. Interface Sci. 2016, 482, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.L.; Noel, G.H.; Warren, J.M.; Tran, N.L.L.; Mallouk, T.E. Binary Colloidal Crystal Films Grown by Vertical Evaporation of Silica Nanoparticle Suspensions. Langmuir 2017, 33, 10366–10373. [Google Scholar] [CrossRef]
- Phillips, K.R.; Shirman, T.; Shirman, E.; Shneidman, A.V.; Kay, T.M.; Aizenberg, J. Nanocrystalline Precursors for the Co-Assembly of Crack-Free Metal Oxide Inverse Opals. Adv. Mater. 2018, 30, e1706329. [Google Scholar] [CrossRef]
- Xia, T.; Luo, W.; Hu, F.; Qiu, W.; Zhang, Z.; Lin, Y.; Liu, X.Y. Fabrication of Crack-Free Photonic Crystal Films on Superhydrophobic Nanopin Surface. ACS Appl. Mater. Interfaces 2017, 9, 22037–22041. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Ravikrishna, R.; Valsaraj, K.T. Photocatalytic Degradation of Gaseous Organic Species on Photonic Band-Gap Titania. Environ. Sci. Technol. 2006, 40, 7029–7033. [Google Scholar] [CrossRef] [PubMed]
- Esmanski, A.; Ozin, G.A. Silicon Inverse-Opal-Based Macroporous Materials as Negative Electrodes for Lithium Ion Batteries. Adv. Funct. Mater. 2009, 19, 1999–2010. [Google Scholar] [CrossRef]
- Rugge, A.; Becker, J.S.; Gordon, R.G.; Tolbert, S.H. Tungsten Nitride Inverse Opals by Atomic Layer Deposition. Nano Lett. 2003, 3, 1293–1297. [Google Scholar] [CrossRef]
- Gu, Z.Z.; Kubo, S.; Qian, W.; Einaga, Y.; Tryk, D.A.; Fujishima, A.; Sato, O. Varying the Optical Stop Band of a Three-Dimensional Photonic Crystal by Refractive Index Control. Langmuir 2001, 17, 6751–6753. [Google Scholar] [CrossRef]
- Meseguer, F.; Blanco, A.; Míguez, H.; García-Santamaría, F.; Ibisate, M.; Ló Pez, C. Synthesis of Inverse Opals. Colloids Surf. A Physicochem. Eng. Asp. 2002, 202, 281–290. [Google Scholar] [CrossRef]
- Likodimos, V. Photonic Crystal-Assisted Visible Light Activated TiO2 Photocatalysis. Appl. Catal. B 2018, 230, 269–303. [Google Scholar] [CrossRef]
- Liu, J.; Jin, J.; Li, Y.; Huang, H.W.; Wang, C.; Wu, M.; Chen, L.H.; Su, B.L. Tracing the Slow Photon Effect in a ZnO Inverse Opal Film for Photocatalytic Activity Enhancement. J. Mater. Chem. A Mater. 2014, 2, 5051–5059. [Google Scholar] [CrossRef]
- Armstrong, E.; O’Dwyer, C. Artificial Opal Photonic Crystals and Inverse Opal Structures—Fundamentals and Applications from Optics to Energy Storage. J. Mater. Chem. C 2015, 3, 6109–6143. [Google Scholar] [CrossRef]
- Chen, J.I.L.; Von Freymann, G.; Choi, S.Y.; Kitaev, V.; Ozin, G.A. Amplified Photochemistry with Slow Photons. Adv. Mater. 2006, 18, 1915–1919. [Google Scholar] [CrossRef]
- Pham, K.; Temerov, F.; Saarinen, J.J. Multicompound Inverse Opal Structures with Gold Nanoparticles for Visible Light Photocatalytic Activity. Mater. Des. 2020, 194, 108886. [Google Scholar] [CrossRef]
- Kweon, H.; Lim, K.H.; Kim, H. Self-Standing N-Doped Inverse Opal Carbon via Ultrafast Polymerization of Polydopamine and Its High Energy Storage Capability in Li-O2 Batteries. ACS Appl. Energy Mater. 2019, 2, 7791–7798. [Google Scholar] [CrossRef]
- Tang, Z.; Li, H.; Liu, Y.; Liang, J.; Liu, J.; Tang, H.; Wu, Q.; Jiang, F.; Jiang, W. Advanced Electrochromic Properties of Nb-Doped WO3 Inverse Opal Films in NIR Region by Slow Photon Effect-Assisted Enhancement of Localized Surface Plasmon Resonance. Appl. Surf. Sci. 2023, 622, 156802. [Google Scholar] [CrossRef]
- Xie, Y.; Xing, R.; Li, Q.; Xu, L.; Song, H. Three-Dimensional Ordered ZnO-CuO Inverse Opals toward Low Concentration Acetone Detection for Exhaled Breath Sensing. Sens. Actuators B Chem. 2015, 211, 255–262. [Google Scholar] [CrossRef]
- Loukopoulos, S.; Toumazatou, A.; Sakellis, E.; Xenogiannopoulou, E.; Boukos, N.; Dimoulas, A.; Likodimos, V. Heterostructured Coox–TiO2 Mesoporous/Photonic Crystal Bilayer Films for Enhanced Visible-Light Harvesting and Photocatalysis. Materials 2020, 13, 4305. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Jin, Q.; Mao, D.; Qi, J.; Wei, Y.; Yu, R.; Li, A.; Li, S.; Zhao, H.; Ma, Y.; et al. Dually Ordered Porous TiO2-RGO Composites with Controllable Light Absorption Properties for Efficient Solar Energy Conversion. Adv. Mater. 2017, 29, 1604795. [Google Scholar] [CrossRef] [PubMed]
- Mihi, A.; Calvo, M.E.; Anta, J.A.; Míguez, H. Spectral Response of Opal-Based Dye-Sensitized Solar Cells. J. Phys. Chem. C 2008, 112, 13–17. [Google Scholar] [CrossRef]
- Lee, J.W.; Moon, J.H. Monolithic Multiscale Bilayer Inverse Opal Electrodes for Dye-Sensitized Solar Cell Applications. Nanoscale 2015, 7, 5164–5168. [Google Scholar] [CrossRef]
- Zulfiqar, A.; Temerov, F.; Saarinen, J.J. Multilayer TiO2 Inverse Opal with Gold Nanoparticles for Enhanced Photocatalytic Activity. ACS Omega 2020, 5, 11595–11604. [Google Scholar] [CrossRef] [PubMed]
- Kubrin, R.; Pasquarelli, R.M.; Waleczek, M.; Lee, H.S.; Zierold, R.; Do Rosário, J.J.; Dyachenko, P.N.; Montero Moreno, J.M.; Petrov, A.Y.; Janssen, R.; et al. Bottom-up Fabrication of Multilayer Stacks of 3D Photonic Crystals from Titanium Dioxide. ACS Appl. Mater. Interfaces 2016, 8, 10466–10476. [Google Scholar] [CrossRef]
- Hung, P.S.; Liao, C.H.; Huang, B.H.; Chung, W.A.; Chang, S.Y.; Wu, P.W. Formation of Free-Standing Inverse Opals with Gradient Pores. Nanomaterials 2020, 10, 1923. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, M.; Byrappa, K. Hydrothermal Processing of Materials: Past, Present and Future. J. Mater. Sci. 2008, 43, 2085–2103. [Google Scholar] [CrossRef]
- Napolskii, K.S.; Sapoletova, N.A.; Gorozhankin, D.F.; Eliseev, A.A.; Chernyshov, D.Y.; Byelov, D.V.; Grigoryeva, N.A.; Mistonov, A.A.; Bouwman, W.G.; Kvashnina, K.O.; et al. Fabrication of Artificial Opals by Electric-Field-Assisted Vertical Deposition. Langmuir 2010, 26, 2346–2351. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; He, L.; Yin, Y. Magnetic Field Guided Colloidal Assembly. Mater. Today 2013, 16, 110–116. [Google Scholar] [CrossRef]
- Hossain, M.A.; Khoo, K.T.; Cui, X.; Poduval, G.K.; Zhang, T.; Li, X.; Li, W.M.; Hoex, B. Atomic Layer Deposition Enabling Higher Efficiency Solar Cells: A Review. Nano Mater. Sci. 2020, 2, 204–226. [Google Scholar] [CrossRef]
- George, S.; Fitzpatrick, P.; Gibbs, Z. Atomic Layer Deposition for Continuous Roll-to-Roll Processing. In Proceedings of the 54th Annual Technical Conference Proceedings, Chicago, IL, USA, 16–21 April 2011. [Google Scholar]
- Warren, Z.; Wenk, J.; Mattia, D. Correction: Increased Photocorrosion Resistance of ZnO Foams via Transition Metal Doping. RSC Adv. 2023, 13, 4781. [Google Scholar] [CrossRef] [PubMed]
- Ning, X.; Lu, G. Photocorrosion Inhibition of CdS-Based Catalysts for Photocatalytic Overall Water Splitting. Nanoscale 2020, 12, 1213–1223. [Google Scholar] [CrossRef] [PubMed]
- Imrich, T.; Krýsová, H.; Neumann-Spallart, M.; Krýsa, J. Fe2O3 Photoanodes: Photocorrosion Protection by Thin SnO2 and TiO2 Films. J. Electroanal. Chem. 2021, 892, 115282. [Google Scholar] [CrossRef]
- Seger, B.; Pedersen, T.; Laursen, A.B.; Vesborg, P.C.K.; Hansen, O.; Chorkendorff, I. Using TiO2 as a Conductive Protective Layer for Photocathodic H2 Evolution. J. Am. Chem. Soc. 2013, 135, 1057–1064. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Fu, M.; Li, C.; Sun, C.; He, D.; Wang, Y. High-Quality ZnO Inverse Opals and Related Heterostructures as Photocatalysts Produced by Atomic Layer Deposition. Appl. Surf. Sci. 2018, 454, 112–120. [Google Scholar] [CrossRef]
Elements | 326 IO | 458 IO | 326/458 IO | 458/326 IO |
---|---|---|---|---|
C | 6.0 | 6.6 | 5.3 | 2.8 |
O | 65.8 | 61.2 | 64.1 | 66.2 |
Na | 1.0 | 1.7 | 1.2 | 0.7 |
Mg | - | 0.3 | - | - |
Al | 0.1 | 0.2 | - | 0.1 |
Si | 2.5 | 8.4 | 5.1 | 1.8 |
K | - | 0.1 | - | - |
Ca | 0.3 | 0.8 | 0.6 | 0.3 |
Ti | 24.2 | 20.6 | 23.6 | 29.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karajz, D.A.; Rottenbacher, K.V.; Hernádi, K.; Szilágyi, I.M. Carbon Nanosphere-Based TiO2 Double Inverse Opals. Molecules 2025, 30, 205. https://doi.org/10.3390/molecules30020205
Karajz DA, Rottenbacher KV, Hernádi K, Szilágyi IM. Carbon Nanosphere-Based TiO2 Double Inverse Opals. Molecules. 2025; 30(2):205. https://doi.org/10.3390/molecules30020205
Chicago/Turabian StyleKarajz, Dániel Attila, Kincső Virág Rottenbacher, Klára Hernádi, and Imre Miklós Szilágyi. 2025. "Carbon Nanosphere-Based TiO2 Double Inverse Opals" Molecules 30, no. 2: 205. https://doi.org/10.3390/molecules30020205
APA StyleKarajz, D. A., Rottenbacher, K. V., Hernádi, K., & Szilágyi, I. M. (2025). Carbon Nanosphere-Based TiO2 Double Inverse Opals. Molecules, 30(2), 205. https://doi.org/10.3390/molecules30020205