2PP-Hydrogel Covered Electrodes to Compensate for Media Effects in the Determination of Biomass in a Capillary Wave Micro Bioreactor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of the cwMBR
2.2. Fabrication of the Impedance Sensor
2.3. Yeast Cultivation
2.4. Impedance Sensing
3. Results
3.1. cwMBR Fabrication
3.2. 2PP Hydrogel
3.3. Biomass Sensing
3.3.1. 4-Probe Measurement
3.3.2. Reference System
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Hydrogel Preperation and Testing
Appendix A.1. Methods
Appendix A.2. Results
References
- Amanullah, A.; Otero, J.M.; Mikola, M.; Hsu, A.; Zhang, J.; Aunins, J.; Schreyer, H.B.; Hope, J.A.; Russo, A.P. Novel micro-bioreactor high throughput technology for cell culture process development: Reproducibility and scalability assessment of fed-batch CHO cultures. Biotechnol. Bioeng. 2010, 106, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Hemmerich, J.; Noack, S.; Wiechert, W.; Oldiges, M. Microbioreactor systems for accelerated bioprocess development. Biotechnol. J. 2018, 13, e1700141. [Google Scholar] [CrossRef]
- Sani, M.H.; Baganz, F. Miniature Bioreactors for Rapid Bioprocess Development of Mammalian Cell Culture. J. Teknol. 2013, 59. [Google Scholar] [CrossRef]
- Wilming, A.; Bähr, C.; Kamerke, C.; Büchs, J. Fed-batch operation in special microtiter plates: A new method for screening under production conditions. J. Ind. Microbiol. Biotechnol. 2014, 41, 513–525. [Google Scholar] [CrossRef]
- Hansen, H.G.; Nilsson, C.N.; Lund, A.M.; Kol, S.; Grav, L.M.; Lundqvist, M.; Rockberg, J.; Lee, G.M.; Andersen, M.R.; Kildegaard, H.F. Versatile microscale screening platform for improving recombinant protein productivity in Chinese hamster ovary cells. Sci. Rep. 2015, 5, 18016. [Google Scholar] [CrossRef] [PubMed]
- Krull, R.; Lladó-Maldonado, S.; Lorenz, T.; Büttgenbach, S.; Demming, S. Microbioreactors. In Microsystems for Pharmatechnology; Dietzel, A., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 99–152. [Google Scholar]
- Meinen, S.; Frey, L.J.; Krull, R.; Dietzel, A. Resonant Mixing in Glass Bowl Microbioreactor Investigated by Microparticle Image Velocimetry. Micromachines 2019, 10, 284. [Google Scholar] [CrossRef]
- Frey, L.J.; Vorländer, D.; Rasch, D.; Meinen, S.; Müller, B.; Mayr, T.; Dietzel, A.; Grosch, J.H.; Krull, R. Defining mass transfer in a capillary wave micro-bioreactor for dose-response and other cell-based assays. Biochem. Eng. J. 2020, 161, 107667. [Google Scholar] [CrossRef]
- Harris, C.M.; Kell, D.B. The radio-frequency dielectric properties of yeast cells measured with a rapid, automated, frequency-domain dielectric spectrometer. J. Electroanal. Chem. Interfacial Electrochem. 1983, 156, 15–28. [Google Scholar] [CrossRef]
- Harris, C.M.; Todd, R.W.; Bungard, S.J.; Lovitt, R.W.; Morris, J.; Kell, D.B. Dielectric permittivity of microbial suspensions at radio frequencies: A novel method for the real-time estimation of microbial biomass. Enzym. Microb. Technol. 1987, 9, 181–186. [Google Scholar] [CrossRef]
- Asami, K.; Yonezawa, T. Dielectric analysis of yeast cell growth. Biochim. Et Biophys. Acta 1995, 1245, 99–105. [Google Scholar] [CrossRef]
- Asami, K.; Yonezawa, T.; Wakamatsu, H.; Koyanagi, N. Dielectric spectroscopy of biological cells. Bioelectrochem. Bioenerg. 1996, 40, 141–145. [Google Scholar] [CrossRef]
- Hofmann, M. Integrierte Impedanzspektroskopie aerober Zellkulturen in biotechnologischen Hochdurchsatzscreenings. Ph.D. Thesis, RWTH Aachen, Aachen, Germany, 2009. [Google Scholar]
- Asami, K. Characterization of biological cells by dielectric spectroscopy. J. Non-Cryst. Solids 2002, 305, 268–277. [Google Scholar] [CrossRef]
- Ebina, Y.; Ekida, M.; Hashimoto, H. Origin of changes in electrical impedance during the growth and fermentation process of yeast in batch culture. Biotechnol. Bioeng. 1989, 33, 1290–1295. [Google Scholar] [CrossRef] [PubMed]
- Cannizzaro, C.; Gügerli, R.; Marison, I.; von Stockar, U. On-line biomass monitoring of CHO perfusion culture with scanning dielectric spectroscopy. Biotechnol. Bioeng. 2003, 84, 597–610. [Google Scholar] [CrossRef] [PubMed]
- Siano, S.A. Biomass measurement by inductive permittivity. Biotechnol. Bioeng. 1997, 55, 289–304. [Google Scholar] [CrossRef]
- Davey, C.L.; Kell, D.B. The influence of electrode polarisation on dielectric spectra, with special reference to capacitive biomass measurements. Bioelectrochem. Bioenerg. 1998, 46, 91–103. [Google Scholar] [CrossRef]
- Krommenhoek, E.E.; Gardeniers, J.; Bomer, J.G.; van den Berg, A.; Li, X.; Ottens, M.; van der Wielen, L.; van Dedem, G.; van Leeuwen, M.; van Gulik, W.M.; et al. Monitoring of yeast cell concentration using a micromachined impedance sensor. Sens. Actuators B Chem. 2006, 115, 384–389. [Google Scholar] [CrossRef]
- Bahram, M.; Mohseni, N.; Moghtader, M. An Introduction to Hydrogels and Some Recent Applications. In Emerging Concepts in Analysis and Applications of Hydrogels; Biswas Majee, S., Ed.; InTech: Rijeka, Croatia, 2016; pp. 9–38. [Google Scholar] [CrossRef]
- Hoffman, A.S. Hydrogels for biomedical applications. Ann. N. Y. Acad. Sci. 2001, 944, 62–73. [Google Scholar] [CrossRef]
- Aswathy, S.H.; Narendrakumar, U.; Manjubala, I. Commercial hydrogels for biomedical applications. Heliyon 2020, 6, e03719. [Google Scholar] [CrossRef]
- Tenje, M.; Cantoni, F.; Porras Hernández, A.M.; Searle, S.S.; Johansson, S.; Barbe, L.; Antfolk, M.; Pohlit, H. A practical guide to microfabrication and patterning of hydrogels for biomimetic cell culture scaffolds. Organs-on-a-Chip 2020, 2, 100003. [Google Scholar] [CrossRef]
- Ovsianikov, A.; Deiwick, A.; van Vlierberghe, S.; Pflaum, M.; Wilhelmi, M.; Dubruel, P.; Chichkov, B. Laser Fabrication of 3D Gelatin Scaffolds for the Generation of Bioartificial Tissues. Materials 2011, 4, 288–299. [Google Scholar] [CrossRef]
- Kloxin, A.M.; Kloxin, C.J.; Bowman, C.N.; Anseth, K.S. Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv. Mater. 2010, 22, 3484–3494. [Google Scholar] [CrossRef]
- Gauvin, R.; Parenteau-Bareil, R.; Dokmeci, M.R.; Merryman, W.D.; Khademhosseini, A. Hydrogels and microtechnologies for engineering the cellular microenvironment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2012, 4, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Cushing, M.C.; Anseth, K.S. Materials science. Hydrogel cell cultures. Science 2007, 316, 1133–1134. [Google Scholar] [CrossRef] [PubMed]
- Thakur, V.K.; Thakur, M.K. Hydrogels; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
- Ciuciu, A.I.; Cywiński, P.J. Two-photon polymerization of hydrogels—Versatile solutions to fabricate well-defined 3D structures. RSC Adv. 2014, 4, 45504–45516. [Google Scholar] [CrossRef]
- Selimis, A.; Mironov, V.; Farsari, M. Direct laser writing: Principles and materials for scaffold 3D printing. Microelectron. Eng. 2015, 132, 83–89. [Google Scholar] [CrossRef]
- Torgersen, J.; Ovsianikov, A.; Mironov, V.; Pucher, N.; Qin, X.; Li, Z.; Cicha, K.; Machacek, T.; Liska, R.; Jantsch, V.; et al. Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms. J. Biomed. Opt. 2012, 17, 105008. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Guell Izard, A.; Zhang, Y.; Baldacchini, T.; Valdevit, L. Programmable Mechanical Properties of Two–Photon Polymerized Materials: From Nanowires to Bulk. Adv. Mater. Technol. 2019, 4, 1900146. [Google Scholar] [CrossRef]
- Bertz, A.; Ehlers, J.E.; Wöhl-Bruhn, S.; Bunjes, H.; Gericke, K.H.; Menzel, H. Mobility of green fluorescent protein in hydrogel-based drug-delivery systems studied by anisotropy and fluorescence recovery after photobleaching. Macromol. Biosci. 2013, 13, 215–226. [Google Scholar] [CrossRef]
- Wöhl-Bruhn, S.; Bertz, A.; Harling, S.; Menzel, H.; Bunjes, H. Hydroxyethyl starch-based polymers for the controlled release of biomacromolecules from hydrogel microspheres. Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft Pharm. Verfahrenstechnik E.V 2012, 81, 573–581. [Google Scholar] [CrossRef]
- Fairbanks, B.D.; Schwartz, M.P.; Bowman, C.N.; Anseth, K.S. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: Polymerization rate and cytocompatibility. Biomaterials 2009, 30, 6702–6707. [Google Scholar] [CrossRef] [PubMed]
- Bertz, A.; Wöhl-Bruhn, S.; Miethe, S.; Tiersch, B.; Koetz, J.; Hust, M.; Bunjes, H.; Menzel, H. Encapsulation of proteins in hydrogel carrier systems for controlled drug delivery: Influence of network structure and drug size on release rate. J. Biotechnol. 2013, 163, 243–249. [Google Scholar] [CrossRef]
- Kotz, F.; Plewa, K.; Bauer, W.; Schneider, N.; Keller, N.; Nargang, T.; Helmer, D.; Sachsenheimer, K.; Schäfer, M.; Worgull, M.; et al. Liquid Glass: A Facile Soft Replication Method for Structuring Glass. Adv. Mater. 2016, 28, 4646–4650. [Google Scholar] [CrossRef]
- Erfle, P.; Riewe, J.; Bunjes, H.; Dietzel, A. Stabilized Production of Lipid Nanoparticles of Tunable Size in Taylor Flow Glass Devices with High-Surface-Quality 3D Microchannels. Micromachines 2019, 10, 220. [Google Scholar] [CrossRef] [PubMed]
- Jean-Luc Dellis, J.-L. Zfit: MATLAB Central File Exchange. 2023. Available online: https://www.mathworks.com/matlabcentral/fileexchange/19460-zfit (accessed on 7 July 2023).
- Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence Properties of the Nelder—Mead Simplex Method in Low Dimensions. SIAM J. Optim. 1998, 9, 112–147. [Google Scholar] [CrossRef]
- Raicu, V.; Raicu, G.; Turcu, G. Dielectric properties of yeast cells as simulated by the two-shell model. Biochim. Biophys. Acta 1996, 1274, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, M.C.; Funke, M.; Büchs, J.; Mokwa, W.; Schnakenberg, U. Development of a four electrode sensor array for impedance spectroscopy in high content screenings of fermentation processes. Sens. Actuators B Chem. 2010, 147, 93–99. [Google Scholar] [CrossRef]
- Lin, C.C.; Metters, A.T. Hydrogels in controlled release formulations: Network design and mathematical modeling. Adv. Drug Deliv. Rev. 2006, 58, 1379–1408. [Google Scholar] [CrossRef]
- Phillips, R.; Kondev, J.; Theriot, J.; Orme, N.; Garcia, H.G. (Eds.) Physical Biology of the Cell; Reprinted edition; GS Garland Science: New York, NY, USA, 2010. [Google Scholar]
Element | Value | Dependency | Description |
---|---|---|---|
11–18 | positive correlation with conductivity | polarization resistance of the outer electrodes | |
× 10−11 | none, fixed | CPE, double-layer capacity of the outer electrodes | |
none, fixed | CPE exponent | ||
2–5 | negative correlation with conductivity | medium resistance | |
positive correlation with biomass expected, fixed on samples without biomass | capacity of the suspension | ||
none, fixed | polarization resistance of the parasitic branch | ||
none, fixed | double-layer capacity of the parasitic path | ||
17–42 | proportional to , proportional factor based on an average over all samples measured without biomass | resistance of the medium in the parasitic path |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meinen, S.; Brinkmann, S.; Viebrock, K.; Elbardisy, B.; Menzel, H.; Krull, R.; Dietzel, A. 2PP-Hydrogel Covered Electrodes to Compensate for Media Effects in the Determination of Biomass in a Capillary Wave Micro Bioreactor. Biosensors 2024, 14, 438. https://doi.org/10.3390/bios14090438
Meinen S, Brinkmann S, Viebrock K, Elbardisy B, Menzel H, Krull R, Dietzel A. 2PP-Hydrogel Covered Electrodes to Compensate for Media Effects in the Determination of Biomass in a Capillary Wave Micro Bioreactor. Biosensors. 2024; 14(9):438. https://doi.org/10.3390/bios14090438
Chicago/Turabian StyleMeinen, Sven, Steffen Brinkmann, Kevin Viebrock, Bassant Elbardisy, Henning Menzel, Rainer Krull, and Andreas Dietzel. 2024. "2PP-Hydrogel Covered Electrodes to Compensate for Media Effects in the Determination of Biomass in a Capillary Wave Micro Bioreactor" Biosensors 14, no. 9: 438. https://doi.org/10.3390/bios14090438
APA StyleMeinen, S., Brinkmann, S., Viebrock, K., Elbardisy, B., Menzel, H., Krull, R., & Dietzel, A. (2024). 2PP-Hydrogel Covered Electrodes to Compensate for Media Effects in the Determination of Biomass in a Capillary Wave Micro Bioreactor. Biosensors, 14(9), 438. https://doi.org/10.3390/bios14090438