Machine Learning-Based Identification of Plastic Types Using Handheld Spectrometers
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Spectroscopy
2.3. Machine Learning Analysis
2.3.1. Feature Engineering
2.3.2. Classification Models
3. Results and Discussion
3.1. Plastic-Type Spectroscopy
3.2. Classification Using Machine Learning
3.3. Cross-Correlation and Feature Importance
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NIRS | Near-Infrared Spectrometer |
PScanner | Plastic Scanner |
SP | SpectraPod |
LED | Light-Emitting Diode |
SVM | Support Vector Machine |
XGBoost | eXtreme Gradient Boosting |
PET | Polyethylene Terephthalate |
HDPE | High-Density Polyethylene |
PVC | Polyvinyl Chloride |
LDPE | Low-Density Polyethylene |
PP | Polypropylene |
PS | Polystyrene |
InGaAs | Indium Gallium Arsenide |
References
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Napper, I.; Thompson, R. Plastics and the Environment. Annu. Rev. Environ. Resour. 2023, 48, 55–79. [Google Scholar] [CrossRef]
- Salahuddin, U.; Sun, J.; Zhu, C.; Wu, M.; Zhao, B.; Gao, P.X. Plastic recycling: A review on life cycle, methods, misconceptions, and techno-economic analysis. Adv. Sustain. Syst. 2023, 7, 2200471. [Google Scholar] [CrossRef]
- Mehrubeoglu, M.; Van Sickle, A.; Turner, J. Detection and identification of plastics using SWIR hyperspectral imaging. In Proceedings of the SPIE: Imaging Spectrometry XXIV: Applications, Sensors, and Processing, Online, 24 August–4 September 2020; Volume 11504, pp. 85–95. [Google Scholar]
- Moshtaghi, M.; Knaeps, E.; Sterckx, S.; Garaba, S.; Meire, D. Spectral reflectance of marine macroplastics in the VNIR and SWIR measured in a controlled environment. Sci. Rep. 2021, 11, 5436. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, M.L.; Karlsen, C.B.; Klarskov, P.; Hinge, M. Plastic classification via in-line hyperspectral camera analysis and unsupervised machine learning. Vib. Spectrosc. 2022, 118, 103329. [Google Scholar] [CrossRef]
- Dzoh Fonkou, J.P.; Beggio, G.; Salviulo, G.; Lavagnolo, M.C. Analytical Methods for In-Depth Assessment of Recycled Plastics: A Review. Environments 2025, 12, 154. [Google Scholar] [CrossRef]
- Hakkel, K.D.; Petruzzella, M.; Ou, F.; van Klinken, A.; Pagliano, F.; Liu, T.; van Veldhoven, R.P.; Fiore, A. Integrated near-infrared spectral sensing. Nat. Commun. 2022, 13, 103. [Google Scholar] [CrossRef] [PubMed]
- Ou, F.; van Klinken, A.; Ševo, P.; Petruzzella, M.; Li, C.; van Elst, D.M.; Hakkel, K.D.; Pagliano, F.; van Veldhoven, R.P.; Fiore, A. Handheld NIR spectral sensor module based on a fully-integrated detector array. Sensors 2022, 22, 7027. [Google Scholar] [CrossRef] [PubMed]
- Vabalas, A.; Gowen, E.; Poliakoff, E.; Casson, A.J. Machine learning algorithm validation with a limited sample size. PLoS ONE 2019, 14, e0224365. [Google Scholar] [CrossRef] [PubMed]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Hand, D.J.; Yu, K. Idiot’s Bayes—Not so stupid after all? Int. Stat. Rev. 2001, 69, 385–398. [Google Scholar]
- Martinez-Hernandez, U.; West, G.; Assaf, T. Low-Cost Recognition of Plastic Waste Using Deep Learning and a Multi-Spectral Near-Infrared Sensor. Sensors 2024, 24, 2821. [Google Scholar] [CrossRef] [PubMed]
- Pakhomova, S.; Zhdanov, I.; van Bavel, B. Polymer type identification of marine plastic litter using a miniature near-infrared spectrometer (MicroNIR). Appl. Sci. 2020, 10, 8707. [Google Scholar] [CrossRef]
- West, G.; Assaf, T.; Martinez-Hernandez, U. Towards Low-cost Plastic Recognition using Machine Learning and Multi-spectra Near-infrared Sensor. In Proceedings of the 2023 IEEE SENSORS, Vienna, Austria, 28 October–1 November 2023; pp. 1–4. [Google Scholar]
Class | NIRS | SP | PScanner |
---|---|---|---|
PP | 229 | 244 | 177 |
PET | 158 | 168 | 131 |
HDPE | 156 | 185 | 121 |
LDPE | 56 | 71 | 49 |
PS | 84 | 94 | 78 |
PVC | 52 | 66 | 49 |
Unknown | 78 | 86 | 74 |
Total | 813 | 914 | 679 |
Model | NIRS | SP | PScanner |
---|---|---|---|
SVM | 0.969 ± 0.006 | 0.93 ± 0.01 | 0.70 ± 0.03 |
XGBoost | 0.962 ± 0.006 | 0.90 ± 0.03 | 0.69 ± 0.04 |
Random Forest | 0.974 ± 0.005 | 0.87 ± 0.03 | 0.69 ± 0.03 |
Gaussian Naïve Bayes | 0.909 ± 0.026 | 0.50 ± 0.04 | 0.38 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Hoorn, H.; Pourmohammadi, F.; de Leeuw, A.-W.; Vasulkar, A.; de Vos, J.; van den Berg, S. Machine Learning-Based Identification of Plastic Types Using Handheld Spectrometers. Sensors 2025, 25, 3777. https://doi.org/10.3390/s25123777
van Hoorn H, Pourmohammadi F, de Leeuw A-W, Vasulkar A, de Vos J, van den Berg S. Machine Learning-Based Identification of Plastic Types Using Handheld Spectrometers. Sensors. 2025; 25(12):3777. https://doi.org/10.3390/s25123777
Chicago/Turabian Stylevan Hoorn, Hedde, Fahimeh Pourmohammadi, Arie-Willem de Leeuw, Amey Vasulkar, Jerry de Vos, and Steven van den Berg. 2025. "Machine Learning-Based Identification of Plastic Types Using Handheld Spectrometers" Sensors 25, no. 12: 3777. https://doi.org/10.3390/s25123777
APA Stylevan Hoorn, H., Pourmohammadi, F., de Leeuw, A.-W., Vasulkar, A., de Vos, J., & van den Berg, S. (2025). Machine Learning-Based Identification of Plastic Types Using Handheld Spectrometers. Sensors, 25(12), 3777. https://doi.org/10.3390/s25123777