Machine Learning-Based Identification of Plastic Types Using Handheld Spectrometers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Spectroscopy
2.3. Machine Learning Analysis
2.3.1. Feature Engineering
2.3.2. Classification Models
3. Results and Discussion
3.1. Plastic-Type Spectroscopy
3.2. Classification Using Machine Learning
3.3. Cross-Correlation and Feature Importance
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NIRS | Near-Infrared Spectrometer |
PScanner | Plastic Scanner |
SP | SpectraPod |
LED | Light-Emitting Diode |
SVM | Support Vector Machine |
XGBoost | eXtreme Gradient Boosting |
PET | Polyethylene Terephthalate |
HDPE | High-Density Polyethylene |
PVC | Polyvinyl Chloride |
LDPE | Low-Density Polyethylene |
PP | Polypropylene |
PS | Polystyrene |
InGaAs | Indium Gallium Arsenide |
References
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Napper, I.; Thompson, R. Plastics and the Environment. Annu. Rev. Environ. Resour. 2023, 48, 55–79. [Google Scholar] [CrossRef]
- Salahuddin, U.; Sun, J.; Zhu, C.; Wu, M.; Zhao, B.; Gao, P.X. Plastic recycling: A review on life cycle, methods, misconceptions, and techno-economic analysis. Adv. Sustain. Syst. 2023, 7, 2200471. [Google Scholar] [CrossRef]
- Mehrubeoglu, M.; Van Sickle, A.; Turner, J. Detection and identification of plastics using SWIR hyperspectral imaging. In Proceedings of the SPIE: Imaging Spectrometry XXIV: Applications, Sensors, and Processing, Online, 24 August–4 September 2020; Volume 11504, pp. 85–95. [Google Scholar]
- Moshtaghi, M.; Knaeps, E.; Sterckx, S.; Garaba, S.; Meire, D. Spectral reflectance of marine macroplastics in the VNIR and SWIR measured in a controlled environment. Sci. Rep. 2021, 11, 5436. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, M.L.; Karlsen, C.B.; Klarskov, P.; Hinge, M. Plastic classification via in-line hyperspectral camera analysis and unsupervised machine learning. Vib. Spectrosc. 2022, 118, 103329. [Google Scholar] [CrossRef]
- Dzoh Fonkou, J.P.; Beggio, G.; Salviulo, G.; Lavagnolo, M.C. Analytical Methods for In-Depth Assessment of Recycled Plastics: A Review. Environments 2025, 12, 154. [Google Scholar] [CrossRef]
- Hakkel, K.D.; Petruzzella, M.; Ou, F.; van Klinken, A.; Pagliano, F.; Liu, T.; van Veldhoven, R.P.; Fiore, A. Integrated near-infrared spectral sensing. Nat. Commun. 2022, 13, 103. [Google Scholar] [CrossRef] [PubMed]
- Ou, F.; van Klinken, A.; Ševo, P.; Petruzzella, M.; Li, C.; van Elst, D.M.; Hakkel, K.D.; Pagliano, F.; van Veldhoven, R.P.; Fiore, A. Handheld NIR spectral sensor module based on a fully-integrated detector array. Sensors 2022, 22, 7027. [Google Scholar] [CrossRef] [PubMed]
- Vabalas, A.; Gowen, E.; Poliakoff, E.; Casson, A.J. Machine learning algorithm validation with a limited sample size. PLoS ONE 2019, 14, e0224365. [Google Scholar] [CrossRef] [PubMed]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Hand, D.J.; Yu, K. Idiot’s Bayes—Not so stupid after all? Int. Stat. Rev. 2001, 69, 385–398. [Google Scholar]
- Martinez-Hernandez, U.; West, G.; Assaf, T. Low-Cost Recognition of Plastic Waste Using Deep Learning and a Multi-Spectral Near-Infrared Sensor. Sensors 2024, 24, 2821. [Google Scholar] [CrossRef] [PubMed]
- Pakhomova, S.; Zhdanov, I.; van Bavel, B. Polymer type identification of marine plastic litter using a miniature near-infrared spectrometer (MicroNIR). Appl. Sci. 2020, 10, 8707. [Google Scholar] [CrossRef]
- West, G.; Assaf, T.; Martinez-Hernandez, U. Towards Low-cost Plastic Recognition using Machine Learning and Multi-spectra Near-infrared Sensor. In Proceedings of the 2023 IEEE SENSORS, Vienna, Austria, 28 October–1 November 2023; pp. 1–4. [Google Scholar]
Class | NIRS | SP | PScanner |
---|---|---|---|
PP | 229 | 244 | 177 |
PET | 158 | 168 | 131 |
HDPE | 156 | 185 | 121 |
LDPE | 56 | 71 | 49 |
PS | 84 | 94 | 78 |
PVC | 52 | 66 | 49 |
Unknown | 78 | 86 | 74 |
Total | 813 | 914 | 679 |
Model | NIRS | SP | PScanner |
---|---|---|---|
SVM | 0.969 ± 0.006 | 0.93 ± 0.01 | 0.70 ± 0.03 |
XGBoost | 0.962 ± 0.006 | 0.90 ± 0.03 | 0.69 ± 0.04 |
Random Forest | 0.974 ± 0.005 | 0.87 ± 0.03 | 0.69 ± 0.03 |
Gaussian Naïve Bayes | 0.909 ± 0.026 | 0.50 ± 0.04 | 0.38 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Hoorn, H.; Pourmohammadi, F.; de Leeuw, A.-W.; Vasulkar, A.; de Vos, J.; van den Berg, S. Machine Learning-Based Identification of Plastic Types Using Handheld Spectrometers. Sensors 2025, 25, 3777. https://doi.org/10.3390/s25123777
van Hoorn H, Pourmohammadi F, de Leeuw A-W, Vasulkar A, de Vos J, van den Berg S. Machine Learning-Based Identification of Plastic Types Using Handheld Spectrometers. Sensors. 2025; 25(12):3777. https://doi.org/10.3390/s25123777
Chicago/Turabian Stylevan Hoorn, Hedde, Fahimeh Pourmohammadi, Arie-Willem de Leeuw, Amey Vasulkar, Jerry de Vos, and Steven van den Berg. 2025. "Machine Learning-Based Identification of Plastic Types Using Handheld Spectrometers" Sensors 25, no. 12: 3777. https://doi.org/10.3390/s25123777
APA Stylevan Hoorn, H., Pourmohammadi, F., de Leeuw, A.-W., Vasulkar, A., de Vos, J., & van den Berg, S. (2025). Machine Learning-Based Identification of Plastic Types Using Handheld Spectrometers. Sensors, 25(12), 3777. https://doi.org/10.3390/s25123777