Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (230)

Search Parameters:
Keywords = twin screw extrusion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2626 KiB  
Article
Process–Structure–Property Correlations in Twin-Screw Extrusion of Graphitic Negative Electrode Pastes for Lithium Ion Batteries Focusing on Kneading Concentrations
by Kristina Borzutzki, Markus Börner, Olga Fromm, Uta Rodehorst and Martin Winter
Batteries 2025, 11(8), 299; https://doi.org/10.3390/batteries11080299 - 5 Aug 2025
Abstract
A continuous mixing process with a twin-screw extruder was investigated for graphite-based negative electrode pastes for high-power applications. In the extrusion-based mixing process, the first kneading concentration is one of the key processing parameters for systematic optimization of relevant electrode paste properties like [...] Read more.
A continuous mixing process with a twin-screw extruder was investigated for graphite-based negative electrode pastes for high-power applications. In the extrusion-based mixing process, the first kneading concentration is one of the key processing parameters for systematic optimization of relevant electrode paste properties like viscosity and particle size distribution. For different active materials at a constant electrode paste composition, a clear correlation of increasing kneading concentration with decreasing viscosity can be observed up to a certain reversal point, initiating a change in the trend and the rheological behavior, thus indicating a process limit. The fundamental effects causing this change and the associated impact on materials and battery performance were evaluated by applying further analytical methods and electrochemical characterization. It is revealed that the change in viscosity is associated with enhanced de-agglomeration of the carbon black additive and with partial particle grinding of the active material and thus a partial change in the interlayer distance of graphene layers and, correspondingly, the electrochemical behavior of the active material. Beyond this, correlations between processing parameters and product properties are presented. Furthermore, indicators are suggested with which monitoring of the machine parameters enables the detection of changes in the electrode paste characteristics. Full article
(This article belongs to the Special Issue Batteries: 10th Anniversary)
Show Figures

Graphical abstract

29 pages, 7510 KiB  
Article
Stretchability and Melt Strength Enhancement of Biodegradable Polymer Blends for Packaging Solutions
by Katy D. Laevsky, Achiad Zilberfarb, Amos Ophir and Ana L. Dotan
Molecules 2025, 30(15), 3211; https://doi.org/10.3390/molecules30153211 - 31 Jul 2025
Viewed by 320
Abstract
Biodegradable polymers offer environmental advantages compared to fossil-based alternatives, but they currently lack the stretchability required for demanding applications such as mesh fabrics for woven flexible intermediate bulk container (FIBC) bags and stretch, shrink, and cling films. The goal of this research is [...] Read more.
Biodegradable polymers offer environmental advantages compared to fossil-based alternatives, but they currently lack the stretchability required for demanding applications such as mesh fabrics for woven flexible intermediate bulk container (FIBC) bags and stretch, shrink, and cling films. The goal of this research is to enhance the stretchability of biodegradable blends based on 80% poly(butylene adipate-co-terephthalate) (PBAT) and 20% poly(lactic acid) (PLA) through reactive extrusion. Radical initiator (dicumyl peroxide (DCP)) and chain extenders (maleic anhydride (MA), glycidyl methacrylate (GMA)) were employed to improve the melt strength and elasticity of the extruded films. The reactive blends were initially prepared using a batch mixer and subsequently compounded in a twin-screw extruder. Films were produced via cast extrusion. 0.1% wt. DCP led to a 200% increase in elongation at break and a 44% improvement in tensile strength. Differential scanning calorimetry and scanning electron microscopy revealed enhanced miscibility between components. Shear and complex viscosity increased by 38% and 85%, compared to the neat blend, respectively. Reactive extrusion led to a better dispersion and distribution of the phases. An improved interfacial adhesion between the phases, in addition to higher molecular weight, led to enhanced melt strength and improved stretchability. Full article
Show Figures

Figure 1

22 pages, 15577 KiB  
Article
Evaluating Polylactic Acid and Basalt Fibre Composites as a Potential Bioabsorbable Stent Material
by Seán Mulkerins, Guangming Yan, Declan Mary Colbert, Declan M. Devine, Patrick Doran, Shane Connolly and Noel Gately
Polymers 2025, 17(14), 1948; https://doi.org/10.3390/polym17141948 - 16 Jul 2025
Viewed by 252
Abstract
Bioabsorbable polymer stents (BPSs) were developed to address the long-term clinical drawbacks associated with permanent metallic stents by gradually dissolving over time before these drawbacks have time to develop. However, the polymers used in BPSs, such as polylactic acid (PLA), have lower mechanical [...] Read more.
Bioabsorbable polymer stents (BPSs) were developed to address the long-term clinical drawbacks associated with permanent metallic stents by gradually dissolving over time before these drawbacks have time to develop. However, the polymers used in BPSs, such as polylactic acid (PLA), have lower mechanical properties than metals, often requiring larger struts to provide the necessary structural support. These larger struts have been linked to delayed endothelialisation and an increased risk of stent thrombosis. To address this limitation, this study investigated the incorporation of high-strength basalt fibres into PLA to enhance its mechanical performance, with an emphasis on optimising the processing conditions to achieve notable improvements at minimal fibre loadings. In this regard, PLA/basalt fibre composites were prepared via twin-screw extrusion at screw speeds of 50, 200, and 350 RPM. The effects were assessed through ash content testing, tensile testing, SEM, and rheometry. The results showed that lower screw speeds achieved adequate fibre dispersion while minimising the molecular weight reduction, leading to the most substantial improvement in the mechanical properties. To examine whether a second extrusion run could enhance the fibre dispersion, improving the composite’s uniformity and, therefore, mechanical enhancement, all the batches underwent a second extrusion run. This run improved the dispersion, leading to increased strength and an increased modulus; however, it also reduced the fibre–matrix adhesion and resulted in a notable reduction in the molecular weight. The highest mechanical performance was observed at 10% fibre loading and 50 RPM following a second extrusion run, with the tensile strength increasing by 20.23% and the modulus by 27.52%. This study demonstrates that the processing conditions can influence the fibres’ effectiveness, impacting dispersion, adhesion, and molecular weight retention, all of which affect this composite’s mechanical performance. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

17 pages, 2405 KiB  
Article
Development of Soy-Based Meat Analogues via Wet Twin-Screw Extrusion: Enhancing Textural and Structural Properties Through Whole Yeast Powder Supplementation
by Shikang Tang, Yidian Li, Xuejiao Wang, Linyan Zhou, Zhijia Liu, Lianzhou Jiang, Chaofan Guo and Junjie Yi
Foods 2025, 14(14), 2479; https://doi.org/10.3390/foods14142479 - 15 Jul 2025
Viewed by 402
Abstract
Amid growing global concerns about environmental sustainability and food security, plant-based meat substitutes have emerged as a promising alternative to conventional meat. However, current formulations, especially those based on soy protein isolate (SPI) often fail to replicate the desired texture and structural integrity. [...] Read more.
Amid growing global concerns about environmental sustainability and food security, plant-based meat substitutes have emerged as a promising alternative to conventional meat. However, current formulations, especially those based on soy protein isolate (SPI) often fail to replicate the desired texture and structural integrity. To address this limitation, this study aimed to evaluate the use of whole yeast powder (WYP) combined with SPI for producing plant-based meat analogues via high-moisture extrusion. Seven groups were designed: a control group with 0% WYP, five treatment groups with 5%, 10%, 20%, 30%, and 40% WYP, and one reference group containing 20% yeast protein powder (YPP). Although lower in protein content than yeast protein powder (YPP), whole yeast powder exhibits superior water-binding capacity and network-forming ability owing to its complex matrix and fiber content. At a 20% inclusion level, whole yeast powder demonstrated a higher fibrous degree (1.84 ± 0.02 vs. 1.81 ± 0.04), greater hardness (574.93 ± 5.84 N vs. 531.18 ± 17.34 N), and increased disulfide bonding (95.33 ± 0.92 mg/mL vs. 78.41 ± 0.78 mg/mL) compared to 20% YPP. Scanning electron microscopy (SEM) and low-field nuclear magnetic resonance (LF-NMR) revealed that whole yeast powder facilitated the formation of aligned fibrous networks and enhanced water binding. Fourier transform infrared spectroscopy (FTIR) confirmed an increase in β-sheet content (0.267 ± 0.003 vs. 0.260 ± 0.003), which contributed to improved protein aggregation. Increasing the WYP content to 30–40% led to a decline in these parameters, including a reduced fibrous degree (1.69 ± 0.06 at 40% WYP) and weakened molecular interactions (p < 0.05). The findings highlight 20% WYP as the optimal substitution level, offering superior textural enhancement and fibrous structure formation compared to YPP. These results suggest that WYP is not only a cost-effective and processing-friendly alternative to YPP but also holds great promise for scalable industrial application in the plant-based meat sector. Its compatibility with extrusion processes and ability to improve sensory and structural attributes supports its relevance for sustainable meat analogue production. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

20 pages, 3330 KiB  
Article
Impact of Multiple Mechanical Recycling Cycles via Semi-Industrial Twin-Screw Extrusion on the Properties of Polybutylene Succinate (PBS)
by Vito Gigante, Laura Aliotta, Luigi Botta, Irene Bavasso, Alessandro Guzzini, Serena Gabrielli, Fabrizio Sarasini, Jacopo Tirillò and Andrea Lazzeri
Polymers 2025, 17(14), 1918; https://doi.org/10.3390/polym17141918 - 11 Jul 2025
Viewed by 541
Abstract
This study investigates the effects of repeated mechanical recycling on the structural, thermal, mechanical, and aesthetic properties of poly(butylene succinate) (PBS), a commercially available bio-based and biodegradable aliphatic polyester. PBS production scraps were subjected to five consecutive recycling cycles through semi-industrial extrusion compounding [...] Read more.
This study investigates the effects of repeated mechanical recycling on the structural, thermal, mechanical, and aesthetic properties of poly(butylene succinate) (PBS), a commercially available bio-based and biodegradable aliphatic polyester. PBS production scraps were subjected to five consecutive recycling cycles through semi-industrial extrusion compounding followed by injection molding to simulate realistic mechanical reprocessing conditions. Melt mass-flow rate (MFR) analysis revealed a progressive increase in melt fluidity. Initially, the trend of viscosity followed the melt flow rate; however, increasing the reprocessing number (up to 5) resulted in a partial recovery of viscosity, which was caused by chain branching mechanisms. The phenomenon was also confirmed by data of molecular weight evaluation. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) confirmed the thermal stability of the polymer, with minimal shifts in glass transition, crystallization, and degradation temperatures during the reprocessing cycles. Tensile tests revealed a slight reduction in strength and stiffness, but an increase in elongation at break, indicating improved ductility. Impact resistance declined moderately from 8.7 to 7.3 kJ/m2 upon reprocessing; however, it exhibited a pronounced reduction to 1.8 kJ/m2 at −50 °C, reflecting brittle behavior under sub-ambient conditions. Despite these variations, PBS maintained excellent color stability (ΔE < 1), ensuring aesthetic consistency while retaining good mechanical and thermal properties. Full article
Show Figures

Figure 1

15 pages, 3412 KiB  
Article
From Waste to Function: Compatibilized r-PET/r-HDPE Blends for Pellet Extrusion 3D Printing
by Seyed Amir Ali Bozorgnia Tabary, Jean-Pierre Bresse and Haniyeh (Ramona) Fayazfar
Polymers 2025, 17(12), 1638; https://doi.org/10.3390/polym17121638 - 12 Jun 2025
Viewed by 920
Abstract
The increasing accumulation of plastic waste—especially from packaging and post-consumer sources—calls for the development of sustainable recycling strategies. Due to the challenges associated with sorting mixed waste, directly processing waste streams offers a practical approach. Polyethylene terephthalate (PET) and high-density polyethylene (HDPE) are [...] Read more.
The increasing accumulation of plastic waste—especially from packaging and post-consumer sources—calls for the development of sustainable recycling strategies. Due to the challenges associated with sorting mixed waste, directly processing waste streams offers a practical approach. Polyethylene terephthalate (PET) and high-density polyethylene (HDPE) are common consumer plastics, but they are difficult to recycle together due to immiscibility and degradation. In mixed waste, recycled HDPE (r-HDPE) often contaminates the recycled PET (r-PET) stream. Additive manufacturing (AM) offers a promising solution to upcycle these mixed polymers into functional products with minimal waste. This study investigates the processing and characterization of r-PET/r-HDPE blends for AM, focusing on the role of compatibilizers in enhancing their properties. Blends were melt-compounded using a twin-screw extruder to improve dispersion, followed by direct pellet-based 3D printing. A compatibilizer (0–7 php) was incorporated to improve miscibility. Rheological testing showed that the 5 php compatibilizer optimized viscosity and elasticity, ensuring smoother extrusion. Thermal analysis revealed a 30 °C increase in crystallization temperature and a shift in decomposition temperature from 370 °C to 400 °C, indicating improved thermal stability. Mechanical testing showed a tensile strength of 35 MPa and 17% elongation at break at optimal loading. Scanning electron microscopy (SEM) confirmed reduced phase separation and improved morphology. This work demonstrates that properly compatibilized r-PET/r-HDPE blends enable sustainable 3D printing without requiring polymer separation. The results highlight a viable path for the conversion of plastic waste into high-value, customizable components, contributing to landfill reduction and advancing circular economy practices in polymer manufacturing. Full article
Show Figures

Figure 1

18 pages, 1272 KiB  
Article
Novel Flame-Retardant Wood-Polymer Composites by Using Inorganic Mineral Huntite and Hydromagnesite: An Aspect of Application in Electrical Engineering
by Gül Yılmaz Atay, Jacek Lukasz Wilk-Jakubowski and Valentyna Loboichenko
Materials 2025, 18(11), 2652; https://doi.org/10.3390/ma18112652 - 5 Jun 2025
Viewed by 455
Abstract
In this study, a flame-retardant wood-polymer composite was produced using huntite-hydromagnesite mineral, recognized for its non- flammability properties. In this context, wood-polymer composites were produced with the co-rotating twin-screw extrusion technique, while polypropylene was applied as the composite matrix, medium density fiberboard waste [...] Read more.
In this study, a flame-retardant wood-polymer composite was produced using huntite-hydromagnesite mineral, recognized for its non- flammability properties. In this context, wood-polymer composites were produced with the co-rotating twin-screw extrusion technique, while polypropylene was applied as the composite matrix, medium density fiberboard waste and inorganic huntite-hydromagnesite mineral were used as the reinforcement material. The proportion of wood powder additives was changed to 10% and 20%, and the huntite and hydromagnesite ratio was changed to 30%, 40%, 50% and 60%. Maleic anhydride grafted polypropylene, i.e., MAPP, was applied as a binder at a rate of 3%. Polypropylene, wood fibers, mineral powders, and MAPP blended in the mixer were processed in the extruder and turned into granules. Structural, morphological, thermal, mechanical, and flame-retardant properties of the composites were analyzed using XRD, SEM, FTIR, TGA, tensile testing, and the UL-94 vertical flammability test. Test samples were prepared to evaluate the physical and mechanical properties with a compression molding machine. It was concluded that the composites gained significant flame retardancy with the addition of huntite hydromagnesite. The potential for using this material in various fields and its compliance with the principles of circular economy and the Sustainable Development Goals (SDG 12) were noted. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

14 pages, 13138 KiB  
Article
Effect of Multiple Phosphorus-Nitrogen Flame Retardant on the Properties of PA66
by Haoyang Zhang, Jiyu He and Xiangmei Li
Polymers 2025, 17(11), 1537; https://doi.org/10.3390/polym17111537 - 31 May 2025
Cited by 1 | Viewed by 651
Abstract
PA66 is a widely used engineering plastic, but its flammability reduces safety during application. The 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) and its derivatives are a class of flame retardants with excellent flame-retardant efficiency, which can significantly improve the flame retardancy of PA66. This work synthesized [...] Read more.
PA66 is a widely used engineering plastic, but its flammability reduces safety during application. The 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) and its derivatives are a class of flame retardants with excellent flame-retardant efficiency, which can significantly improve the flame retardancy of PA66. This work synthesized a DOPO derivative flame retardant, DT, containing multiple P/N elements and comprehensively characterized its structure using FTIR and NMR. Flame-retardant PA66 materials were prepared by twin-screw extrusion blending with PA66, and their thermal stability, crystallization properties, flame retardancy, and mechanical properties were investigated. When the DT content reached 15%, the vertical burning classification test achieved the UL-94 V-0, and the limiting oxygen index (LOI) rose up 27.2%. In the cone calorimeter test, the peak of heat release rate (PHRR) and total heat release (THR) of the material decreased significantly, and a distinct char layer formed, increasing NH3 release and decreasing the C-H structure after combustion, improving PA66 flame-retardant properties. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Figure 1

24 pages, 5031 KiB  
Article
Polydimethylsiloxane as a Modifier of the Processing, Surface and Mechanical Properties of the Linear Low-Density Polyethylene Recyclate
by Arkadiusz Kloziński, Przemysław Postawa, Paulina Jakubowska and Milena Trzaskalska
Materials 2025, 18(11), 2552; https://doi.org/10.3390/ma18112552 - 29 May 2025
Viewed by 525
Abstract
This study investigated the effect of adding polydimethylsiloxane (PDMS) on the processing, surface and mechanical properties of linear low-density polyethylene (rLLDPE) recyclate generated as post-production waste in the rotational molding process. Polymer blends containing 0.1, 0.2, 0.4, 1.0 and 2.0 wt.% of polydimethylsiloxane [...] Read more.
This study investigated the effect of adding polydimethylsiloxane (PDMS) on the processing, surface and mechanical properties of linear low-density polyethylene (rLLDPE) recyclate generated as post-production waste in the rotational molding process. Polymer blends containing 0.1, 0.2, 0.4, 1.0 and 2.0 wt.% of polydimethylsiloxane were produced during twin-screw extrusion, followed by cold granulation. The addition of the modifier at the adopted concentration range lowered the water absorption of the recyclate and contributed to a slight increase in processing shrinkage; however, it did not significantly affect its processability (MFR~const). The modification carried out increased the hydrophobic character of the recyclate surface (the wetting angle for water was enhanced) and decreased the value of the dynamic friction coefficient. It also contributed to an improvement in surface gloss. The deterioration of point hardness and scratch hardness of the recyclate was noted with an increase in the PDMS content in the mixture. The addition of polydimethylsiloxane caused changes in the nature of resulting cracks (increased width and reduced longitudinal deformation), which led to surface smoothing and increased the sliding effects. There was no negative effect of PDMS addition on the mechanical properties (static tensile) of the recyclate. The impact strength of rLLDPE deteriorated slightly. The research conducted shows the high application potential of PDMS as a modifier of the surface properties of low-density polyethylene linear recyclate and of selected processing properties, which can contribute to the shortening of the production cycle, thus potentially increasing its attractiveness compared to the original raw materials. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

13 pages, 2042 KiB  
Article
Degradation of Polypropylene and Polypropylene Compounds on Co-Rotating Twin-Screw Extruders
by Paul Albrecht, Matthias Altepeter and Florian Brüning
Polymers 2025, 17(11), 1509; https://doi.org/10.3390/polym17111509 - 28 May 2025
Viewed by 719
Abstract
The degradation of polypropylene (PP) through thermal and mechanical stress, as well as the influence of oxygen, are unavoidable when processing on a co-rotating twin-screw extruder. In previous studies, a mathematical model was developed to predict the degradation while compounding on different twin-screw [...] Read more.
The degradation of polypropylene (PP) through thermal and mechanical stress, as well as the influence of oxygen, are unavoidable when processing on a co-rotating twin-screw extruder. In previous studies, a mathematical model was developed to predict the degradation while compounding on different twin-screw extruder sizes. Additionally, the examination of filled PPs was conducted. To this end, a range of operating parameters and extruder sizes were used to process PP, and the molar mass was then determined by melt flow rate (MFR) and gel permeation chromatography (GPC) measurements to derive the degree of degradation. The model was then modified by adjusting the sensitivity parameters to allow the degradation behavior of the PPs to be described independently of extruder size. Consistent with prior research, comprehensive measurements of a PP/titanium dioxide (TiO2) compound revealed that, with a few exceptions, increasing temperatures and screw speeds and decreasing throughputs generally resulted in higher degradation. However, the application of the model to the compounds did not achieve good agreement with the measured degradation, indicating different degradation conditions due to the different thermodynamic and rheological properties of the compounds. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

30 pages, 13935 KiB  
Article
Bio-Based Polyhydroxyalkanoate (PHA) Blends for 3D Printing: Rheological, Mechanical, Biocompatibility, and Biodegradation Properties
by Michal Ďurfina, Nafiseh Babaei, Zuzana Vanovčanová, Jozef Feranc, Vojtech Horváth, Ida Vašková, Ján Kruželák, Katarína Tomanová and Roderik Plavec
Polymers 2025, 17(11), 1477; https://doi.org/10.3390/polym17111477 - 26 May 2025
Viewed by 1009
Abstract
This study develops highly flexible, biodegradable polymer blends using bio-based polyhydroxyalkanoate (PHA) polymers for Fused Deposition Modeling (FDM) 3D printing. A Design of Experiment (DoE) approach optimized blend compositions by varying crystallinity levels of three PHAs, processed via twin-screw extrusion. Rheological analysis revealed [...] Read more.
This study develops highly flexible, biodegradable polymer blends using bio-based polyhydroxyalkanoate (PHA) polymers for Fused Deposition Modeling (FDM) 3D printing. A Design of Experiment (DoE) approach optimized blend compositions by varying crystallinity levels of three PHAs, processed via twin-screw extrusion. Rheological analysis revealed that PHA blends exhibited 30–50% lower viscosity than PLA at low shear rates, ensuring improved processability. Tensile testing confirmed favorable mechanical properties, with elongation at break exceeding 2000%, significantly surpassing PLA (29%). Differential scanning calorimetry (DSC) indicated partial miscibility and crystallinity reductions of up to 50%, influencing printability. Optimized 3D printing parameters demonstrated minimal warping for blends with crystallinity below 18%, ensuring high-dimensional stability. During home composting tests, PHA blends showed significant degradation within two months, whereas PLA remained intact. Scanning electron microscopy (SEM) confirmed microbial degradation. Cytotoxicity tests demonstrated that the blends were non-toxic, supporting applications in tissue engineering. These findings highlight the potential of PHA-based blends as sustainable, high-performance materials for biomedical, packaging, and environmental applications. Full article
Show Figures

Figure 1

17 pages, 449 KiB  
Article
New Functional Extruded Products Based on Corn and Lentil Flour Formulated with Winemaking By-Products
by Mario Cotacallapa-Sucapuca, José de J. Berrios, James Pan, Priscila Alves, Claudia Arribas, Mercedes M. Pedrosa, Patricia Morales and Montaña Cámara
Processes 2025, 13(6), 1635; https://doi.org/10.3390/pr13061635 - 22 May 2025
Viewed by 615
Abstract
To enhance the nutritional value of food products, new functional extruded products have been developed based on combinations of corn and lentil flour (70:30), with added salt (1.25%), sugar (5%), and resistant starch V (5–20%), and fortified winemaking by-products (fermented and unfermented pomace/pomace [...] Read more.
To enhance the nutritional value of food products, new functional extruded products have been developed based on combinations of corn and lentil flour (70:30), with added salt (1.25%), sugar (5%), and resistant starch V (5–20%), and fortified winemaking by-products (fermented and unfermented pomace/pomace seeds) (5–20%). The formulations were processed through a 32 mm twin screw extruder. The developed extrudates were analyzed for bioactive content. The findings show that among the experimental formulations, those with the highest concentration (20%) presented the greatest amounts of the following functional compound total dietary fiber, total arabinoxylans, resistant starch, total phenols, total flavonols, and total anthocyanins, and the lowest content of raffinose and stachyose. These study results indicate that extrusion is an effective method for adding value to underutilized commodities, such as winemaking by-products. A future sensory evaluation study will be conducted on the extruded products with the highest amount of winemaking by-products of 20%. Full article
Show Figures

Figure 1

21 pages, 1491 KiB  
Article
Formulation and Evaluation of a Nutritionally Enriched Plant Protein-Based Matrix Using Low Temperature Extrusion Cooking—Air Drying Technology
by Ghaidaa Alharaty and Hosahalli S. Ramaswamy
Foods 2025, 14(11), 1846; https://doi.org/10.3390/foods14111846 - 22 May 2025
Viewed by 667
Abstract
Extrusion cooking is broadly used in the food industry due to its easiness and simplicity. In this study a twin-screw extruder is applied at 150 rpm and 24–28 °C for the production of a nutritionally enriched extruded matrix, where hypo-allergenic rice protein (RP) [...] Read more.
Extrusion cooking is broadly used in the food industry due to its easiness and simplicity. In this study a twin-screw extruder is applied at 150 rpm and 24–28 °C for the production of a nutritionally enriched extruded matrix, where hypo-allergenic rice protein (RP) and pea protein (PP) were used in the entrapment of natural antioxidant blueberry powder. The higher-moisture-content extrusion (40% MC) used with protein mixture (75 PP:25 RP) reduced the output temperature from 61.97 °C to 55 °C, the expansion ratio from 1.26 to 1, and the rehydration ratio from 78.70% to 31.90%, when compared with low-moisture-content extrusion used with RP samples (25% MC). Combining RP and PP showed also an enhancement in the textural properties of the extruded samples where firmness and toughness increased to 1503 (g) and 1822 (g.s), respectively, and preserved the anthocyanin content and antioxidant activity during extrusion processing and subsequent finish air drying. Moreover, the addition of maltodextrin in low concentration (5%) enhanced the antioxidant activity and anthocyanin retention (by 98.59% in mixture samples after extrusion and 92.13% after drying) and improved the appearance and sensory properties of the extruded matrices including firmness, toughness, and the color of the added blueberry powder. Full article
Show Figures

Figure 1

23 pages, 2454 KiB  
Article
Rheological Behavior and Mechanical Performance of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Natural Rubber Blends Modified with Coffee Oil Epoxide for Sustainable Packaging Applications
by Rinky Ghosh, Xiaoying Zhao and Yael Vodovotz
Polymers 2025, 17(10), 1324; https://doi.org/10.3390/polym17101324 - 13 May 2025
Viewed by 653
Abstract
The inherent brittleness of bio-based poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) significantly restricts its industrial applications despite its industrial compostability. Blending with elastomeric polymers addresses mechanical limitations; however, interfacial incompatibility compromises miscibility as our previous work established. Herein, we investigate coffee oil epoxide (COE) as a bio-based [...] Read more.
The inherent brittleness of bio-based poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) significantly restricts its industrial applications despite its industrial compostability. Blending with elastomeric polymers addresses mechanical limitations; however, interfacial incompatibility compromises miscibility as our previous work established. Herein, we investigate coffee oil epoxide (COE) as a bio-based plasticizer for PHBV/natural rubber (NR) blends in sustainable packaging applications. COE, derived from spent coffee grounds, was incorporated into PHBV/NR/peroxide/coagent composites via twin-screw extrusion. FTIR spectroscopy with chemometric analysis confirmed successful COE incorporation (intensified CH2 stretching: 2847, 2920 cm−1; reduced crystallinity), with PCA and PLS-DA accounting for 67.9% and 54.4% of spectral variance. COE incorporation improved optical properties (7.73% increased lightness; 21.9% reduced yellowness). Rheological characterization through Cole–Cole and Han plots demonstrated enhanced phase compatibility in the PHBV/NR/COE blends. Mechanical testing showed characteristic reductions in flexural properties: strength decreased by 16.5% and modulus by 36.8%. Dynamic mechanical analysis revealed PHBV/NR/COE blends exhibited a single relaxation transition at 32 °C versus distinct glass transition temperatures in PHBV/NR blends. Tan δ deconvolution confirmed the transformation from bimodal distribution to a single broadened peak, indicating enhanced interfacial interactions and improved miscibility. These findings demonstrated COE’s potential as a sustainable additive for biodegradable PHBV-based packaging while valorizing food waste. Full article
(This article belongs to the Special Issue Biodegradable Polymers in Sustainable and Biomedical Applications)
Show Figures

Figure 1

23 pages, 6564 KiB  
Article
Reusing Kaolin Residue from the Mining Industry to Produce PCL-Based Composites: Accelerating the Crystallization Process and Improving Mechanical Properties
by Carlos Bruno Barreto Luna, Jessika Andrade dos Santos Nogueira, José Vinícius Melo Barreto, Elieber Barros Bezerra, Fabiano Santana da Silva, Lorena Vanessa Medeiros Dantas, Renate Maria Ramos Wellen and Edcleide Maria Araújo
Int. J. Mol. Sci. 2025, 26(10), 4632; https://doi.org/10.3390/ijms26104632 - 13 May 2025
Viewed by 444
Abstract
The impact of adding 1%, 3%, and 5% by mass of kaolin residue (KR) was investigated regarding the mechanical, thermomechanical, and morphological properties, as well as the non-isothermal crystallization and melting kinetics of poly(ε-caprolactone) (PCL). The processing to obtain the PCL/KR composites was [...] Read more.
The impact of adding 1%, 3%, and 5% by mass of kaolin residue (KR) was investigated regarding the mechanical, thermomechanical, and morphological properties, as well as the non-isothermal crystallization and melting kinetics of poly(ε-caprolactone) (PCL). The processing to obtain the PCL/KR composites was carried out through extrusion in a twin-screw extruder, followed by injection molding. This study investigated the events of first melting, fusion crystallization, and second melting using differential scanning calorimetry (DSC), with heating rates ranging from 5 to 25 °C/min. Additionally, models for the expanded Prout–Tompkins equation (BNA), the nth-order reaction with m-power autocatalysis by product (Cnm), and the Sestak and Berggren equation (SB) were tested. The PCL/KR composites exhibited an increase in the elastic modulus and the heat deflection temperature (HDT) compared to the pure PCL. Furthermore, high ductility was observed, as evidenced by the impact strength and elongation at break. The good distribution of KR in the PCL matrix was confirmed by scanning electron microscopy (SEM), which contributed to a more efficient crystallization process. The increase in KR content in the PCL matrix shifted the crystallization sigmoids to higher temperatures, acting as a nucleating agent, which reduced the energy barriers and increased the crystallization temperature by up to 5 °C. The melting events did not show significant changes with the addition of the KR. The results are important for the plastics processing industry, mainly due to the opportunity to add value to the waste and use it as an additive. Full article
Show Figures

Figure 1

Back to TopTop