Degradation of Polypropylene and Polypropylene Compounds on Co-Rotating Twin-Screw Extruders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Used Materials
2.2. Processing
2.3. Measurement
3. Results
3.1. Machine Size Independent Modeling
3.2. Compounds
3.2.1. Experimental Results
3.2.2. Model Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FTIR | Fourier-transform infrared spectroscopy |
GPC | Gel Permeation Chromatography |
KTP | Kunststofftechik Paderborn |
MFR | Melt Flow Rate |
TiO2 | Titanium Dioxide |
PA | Polyamide |
PP | Polypropylene |
References
- Kohlgrüber, K. Der Gleichläufige Doppelscheckenextruder: Grundlagen, Technologie, Anwendung, 2nd ed.; Carl Hanser Verlag: Munich, Germany, 2016; ISBN 978-3-446-43597-1. [Google Scholar]
- Kohlgrüber, K.; Bierdel, M.; Rust, H. Polymer-Aufbereitung und Kunststoff-Compoundierung: Grundlagen, Apparate, Maschinen, Anwendungstechnik; Carl Hanser Verlag: Munich, Germany, 2019; ISBN 978-3-446-45832-1. [Google Scholar]
- Ehrenstein, W.; Pongratz, S. Beständigkeit von Kunststoffen, 1st ed.; Carl Hanser Verlag: Munich, Germany, 2007; ISBN 978-3-446-21851-2. [Google Scholar]
- Dahlmann, R.; Haberstroh, E.; Menges, G. Menges Werkstoffkunde Kunststoffe, 7th ed.; Carl Hanser Verlag: Munich, Germany, 2022; ISBN 978-3-446-45801-7. [Google Scholar]
- Pongratz, S. Alterung von Kunststoffen Während der Verarbeitung und im Gebrauch; Universität Erlangen-Nürnberg, Lehrstuhl für Kunststofftechnik: Erlangen, Germany, 2000. [Google Scholar]
- Kim, B.; White, J.L. Simulation of thermal degradation, peroxide induced degradation, and maleation of polypropylene in a modular co-rotating twin screw extruder. Polym. Eng. Sci. 1997, 37, 576–589. [Google Scholar] [CrossRef]
- Berzin, F.; Vergnes, B.; Dufossé, P.; Delamare, L. Modeling of Peroxide Initiated Controlled Degradation of Polypropylene in a Twin Screw Extruder. Polym. Eng. Sci. 2000, 40, 344–356. [Google Scholar] [CrossRef]
- Canevarolo, S.V. Chain Scission Distribution Function for Polypropylene Degradation During Multiple Extrusions. Polym. Degrad. Stab. 2000, 70, 71–76. [Google Scholar] [CrossRef]
- Canevarolo, S.V.; Babetto, A.C. Effect of Screw Element Type in Degradation of Polypropylene upon Multiple Extrusions. Adv. Polym. Technol. 2002, 21, 243–249. [Google Scholar] [CrossRef]
- González-González, V.A.; Neira-Velázquez, G.; Angulo-Sánchez, J.L. Polypropylene chain scissions and molecular weight changes in multiple extrusion. Polym. Degrad. Stab. 1998, 60, 33–42. [Google Scholar] [CrossRef]
- Alotaibi, M.; Aldhafeeri, T.; Barry, C. The Impact of Reprocessing with a Quad Screw Extruder on the Degradation of Polypropylene. Polymers 2022, 14, 2661. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Jothar, L.; Montes-Zavala, I.; Rivera-García, N.; Díaz-Ceja, Y.; Pérez, E.; Waldo-Mendoza, M.A. Thermal degradation of polypropylene reprocessed in a co-rotating twin-screw extruder: Kinetic model and relationship between Melt Flow Index and Molecular weight. RMIQ 2021, 20, 1079–1091. [Google Scholar] [CrossRef]
- Schall, C.; Schöppner, V. Measurement of material degradation in dependence of shear rate, temperature, and residence time. Polym. Eng. Sci. 2022, 62, 815–823. [Google Scholar] [CrossRef]
- Schall, C.; Schöppner, V. Material Characterization of Polypropylene and Polystyrene Regarding Molecular Degradation Behavior. Materials 2023, 16, 5891. [Google Scholar] [CrossRef] [PubMed]
- Littek, S.; Schneider, M.; Huber, K.; Schöppner, V. Measurement of the degradation of polypropylene. J. Plast. Technol. 2012, 8, 415–438. [Google Scholar]
- Littek, S.; Schöppner, V.; Döring, A.; Kuckling, D. Calculation of the material degradation of PP and PS in the plasticizing unit. Part 1: Stressing and modeling. J. Plast. Technol. 2016, 12, 338–355. [Google Scholar]
- Littek, S.; Schöppner, V.; Döring, A.; Kuckling, D. Calculation of the material degradation of PP and PS in the plasticizing unit. Part 2: Modeling and verification for the single screw extruder. J. Plast. Technol. 2016, 12, 449–464. [Google Scholar]
- Schöppner, V.; Altepeter, M. Materialabbau im Doppelschneckenextruder. Reproduzierbarkeitsnachweis und Handlungsempfehlungen für Polypropylen. Kunststoffe 2020, 12, 36–39. [Google Scholar]
- Schöppner, V.; Altepeter, M.; Wanke, S. Analysis and Modelling of the Material degradation of polypropylene on the Co-Rotating Twin-Screw Extruder. In Proceedings of the 36th Conference of the Polymer Processing Society (PPS), Montreal, QC, Canada, 26–29 September 2021; Volume 2607, p. 050003. [Google Scholar] [CrossRef]
- ISO 1133-1:2011; Plastics—Determination of the Melt Mass-Flow Rate (MFR) and Melt Volume-Flow Rate (MVR) of Thermoplastics—Part 1: Standard Method. Beuth Verlag: Berlin, Germany, 2012.
- Bremner, T.; Rudin, A.; Cook, D.G. Melt Flow Index Values and Molecular Weight Distributions of Commercial Thermoplastics. J. Appl. Polym. Sci. 1990, 41, 1617–1627. [Google Scholar] [CrossRef]
- Schöppner, V.; Altepeter, M.; Wanke, S. Modelling of the material degradation of polypropylene on the co-rotating twin-screw extruder. In Proceedings of the 37th International Conference of the Polymer Processing Society (PPS), Fukuoka City, Japan, 11–15 April 2022; Volume 2884, p. 090001. [Google Scholar] [CrossRef]
- Altepeter, M.; Schöppner, V.; Wanke, S.; Austermeier, L.; Meinheit, P.; Schmidt, L. Polypropylene Degradation on Co-Rotating Twin-Screw Extruders. Polymers 2023, 15, 2181. [Google Scholar] [CrossRef] [PubMed]
- Sabic PP 500P Global Technical Data Sheet. Available online: https://www.sabic.com/en/products/documents/sabic-pp_500p_global_technical_data_sheet/en (accessed on 31 March 2025).
- Technical Data Sheet Tronox CR-470. Available online: https://www.tronox.com/download.php?path=11301 (accessed on 31 March 2025).
- Butler, T.I. The Influence of Extruder Residence Time Distribution On Polymer Degradation. J. Plast. Film Sheeting 1990, 6, 247–259. [Google Scholar] [CrossRef]
- Wang, K.; Bahlouli, N.; Addiego, F.; Ahzi, S.; Rémond, Y.; Ruch, D.; Muller, R. Effect of talc content on the degradation of re-extruded polypropylene/talc composites. Polym. Degrad. Stab. 2013, 98, 1275–1286. [Google Scholar] [CrossRef]
- Altay, L.; Sarikanat, M.; Sağlam, M.; Uysalman, T.; Seki, Y. The effect of various mineral fillers on thermal, mechanical, and rheological properties of polypropylene. Res. Eng. Struct. Mater 2021, 7, 361–373. [Google Scholar] [CrossRef]
- Awang, M.; Wan Mohd, W.R.; Sarifuddin, N. Study the effects of an addition of titanium dioxide (TiO2) on the mechanical and thermal properties of polypropylene-rice husk green composites. Mater. Res. Express 2019, 6, 75311. [Google Scholar] [CrossRef]
- Maier, R.-D.; Schiller, M. (Eds.) Handbuch Kunststoff-Additive; Carl Hanser Verlag: Munich, Germany, 2016; ISBN 978-3-446-22352-3. [Google Scholar]
Screw Diameter | [°C] | [s−1] | [s] |
---|---|---|---|
28 mm | 23,823.97 | 1219.07 | 11.29 |
25 mm | 23,278.54 | 741.84 | 8.75 |
45 mm | 931.81 | 16,809.61 | 4.50 |
Material Property | PP | TiO2 |
---|---|---|
Density [kg/m3] | 905 | 4100 |
Bulk density [kg/m3] | 550 | 700 |
Melt mass flow rate (230 °C, 2.16 kg) [g/10 min] | 3.0 | - |
Average particle size [µm] | 3500 | 0.2 |
Material | Extruder | Screw Speed [rpm] | Throughput [kg/h] |
---|---|---|---|
PP | 25 mm | 300 | 5 |
600 | 10 | ||
900 | 15 | ||
PP | 45 mm | 100 | 30 |
250 | 50 | ||
400 | 70 | ||
PP/ PP + 10% TiO2 | 28 mm | 300 | 10 |
450 | 30 | ||
600 | 50 |
Material | Extruder | Barrel Temperature Profile | TB1 [°C] | TB2 [°C] | TB3 [°C] | TB4 [°C] | TB5 [°C] | TB6 [°C] | TB7 [°C] | TB8 [°C] | TB9 [°C] | TB10 [°C] |
---|---|---|---|---|---|---|---|---|---|---|---|---|
All investigations | T1 | 20 | 180 | 200 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | |
PP | 25 mm | T2PP25 | 20 | 205 | 225 | 245 | 245 | 245 | 245 | 245 | 245 | 245 |
T3PP25 | 20 | 230 | 250 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | ||
PP | 45 mm | T2PP45 | 20 | 195 | 215 | 235 | 235 | 235 | 235 | 235 | 235 | 235 |
T3PP45 | 20 | 210 | 230 | 250 | 250 | 2850 | 250 | 250 | 250 | 250 | ||
PP + TiO2 | 28 mm | T2Comp | 20 | 230 | 250 | 250 | 270 | 270 | 270 | 270 | 270 | 250 |
T3Comp | 20 | 280 | 300 | 300 | 320 | 320 | 320 | 320 | 320 | 300 |
Screw Diameter | [°C] | [s−1] | |
---|---|---|---|
Independent | 62,672.89 | 682.73 | 12.12 |
25 mm Extruder | |||||||||
Screw speed [rpm] | 300 | 300 | 300 | 600 | 600 | 600 | 900 | 900 | 900 |
Throughput [kg/h] | 5 | 10 | 15 | 5 | 10 | 15 | 5 | 10 | 15 |
Spec. filling degree [kg·min/h] | 0.017 | 0.033 | 0.050 | 0.008 | 0.017 | 0.025 | 0.006 | 0.011 | 0.017 |
Avg. residence time [s] | 38.9 | 29.8 | 26.3 | 26.9 | 20 | 16.9 | 22.6 | 16.2 | 13.3 |
45 mm Extruder | |||||||||
Screw speed [rpm] | 100 | 100 | 100 | 250 | 250 | 250 | 400 | 400 | 400 |
Throughput [kg/h] | 30 | 50 | 70 | 30 | 50 | 70 | 30 | 50 | 70 |
Spec. filling degree [kg·min/h] | 0.300 | 0.500 | 0.700 | 0.120 | 0.200 | 0.280 | 0.075 | 0.125 | 0.175 |
Avg. residence time [s] | 69.3 | 68.8 | 68.1 | 27.9 | 27.8 | 27.8 | 17.4 | 17.4 | 17.4 |
28 mm Extruder | |||||||||
Screw speed [rpm] | 300 | 300 | 300 | 450 | 450 | 450 | 600 | 600 | 600 |
Throughput [kg/h] | 10 | 30 | 50 | 10 | 30 | 50 | 10 | 30 | 50 |
Spec. filling degree [kg·min/h] | 0.033 | 0.100 | 0.167 | 0.022 | 0.067 | 0.111 | 0.017 | 0.050 | 0.083 |
Avg. residence time [s] | 40.8 | 26.65 | 21.9 | 32.0 | 17.6 | 14.2 | 27.4 | 16.5 | 11.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albrecht, P.; Altepeter, M.; Brüning, F. Degradation of Polypropylene and Polypropylene Compounds on Co-Rotating Twin-Screw Extruders. Polymers 2025, 17, 1509. https://doi.org/10.3390/polym17111509
Albrecht P, Altepeter M, Brüning F. Degradation of Polypropylene and Polypropylene Compounds on Co-Rotating Twin-Screw Extruders. Polymers. 2025; 17(11):1509. https://doi.org/10.3390/polym17111509
Chicago/Turabian StyleAlbrecht, Paul, Matthias Altepeter, and Florian Brüning. 2025. "Degradation of Polypropylene and Polypropylene Compounds on Co-Rotating Twin-Screw Extruders" Polymers 17, no. 11: 1509. https://doi.org/10.3390/polym17111509
APA StyleAlbrecht, P., Altepeter, M., & Brüning, F. (2025). Degradation of Polypropylene and Polypropylene Compounds on Co-Rotating Twin-Screw Extruders. Polymers, 17(11), 1509. https://doi.org/10.3390/polym17111509