Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (585)

Search Parameters:
Keywords = turn-off fluorescence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3086 KiB  
Article
A Carbazole-Based Aggregation-Induced Emission “Turn-On” Sensor for Mercury Ions in Aqueous Solution
by Remya Radha, Mohammed S. Valliyengal and Mohammad H. Al-Sayah
Chemosensors 2025, 13(8), 276; https://doi.org/10.3390/chemosensors13080276 - 25 Jul 2025
Viewed by 429
Abstract
The development of rapid detection methods to identify mercury ions in aqueous solutions is crucial for effectively monitoring environmental contamination. Fluorescent chemical sensors offer a fast and reliable approach to detect and analyze these metal ions. In this study, a sensor utilizing aggregation-induced [...] Read more.
The development of rapid detection methods to identify mercury ions in aqueous solutions is crucial for effectively monitoring environmental contamination. Fluorescent chemical sensors offer a fast and reliable approach to detect and analyze these metal ions. In this study, a sensor utilizing aggregation-induced emission (AIE) is introduced as a ’turn-on’ fluorescent sensor specifically designed for mercury ions in aqueous solutions. The sensor, based on carbazole, forms aggregates in aqueous solutions, resulting in a significant 800% enhancement of its fluorescence signal. When elemental iodine is added to the solution, the fluorescence of the aggregates is quenched by 90%. However, upon subsequent addition of mercury ions, the fluorescence is regenerated, and the intensity of the emission signal is directly proportional to the concentration of the ions across a wide concentration range. The carbazole-iodine complex acts as a fluorescent probe, enabling the detection of mercury ions in aqueous solutions. Full article
Show Figures

Graphical abstract

14 pages, 2099 KiB  
Article
A Turn-On Fluorescence Sensor Based on Guest-Induced Luminescence Ru(bpy)32+@UiO-66 for the Detection of Organophosphorus Pesticides
by Jun Li, Jianlan Deng, Qian Tao, Chenyu Yan, Yuxuan Liu, Jianxiao Yang and Zhong Cao
Molecules 2025, 30(15), 3130; https://doi.org/10.3390/molecules30153130 - 25 Jul 2025
Viewed by 253
Abstract
Luminescent metal–organic frameworks (MOFs) are used for the detection of organophosphorus pesticides (OPs) due to their large surface area and pore volume as well as their special optical properties. However, most self-luminescent MOFs are not only complex to synthesize and unstable in water [...] Read more.
Luminescent metal–organic frameworks (MOFs) are used for the detection of organophosphorus pesticides (OPs) due to their large surface area and pore volume as well as their special optical properties. However, most self-luminescent MOFs are not only complex to synthesize and unstable in water but also feature a “turn-off” sensing system, which has highly restricted their practical applications in OP detection. Herein, a “turn-on” fluorescence sensor based on the guest-induced luminescence MOF Ru(bpy)32+@UiO-66 was constructed, which realized the sensitive detection of OPs through a dual-enzyme system for the first time. Compared with self-luminescent MOFs, Ru(bpy)32+@UiO-66 was not only more easily synthesized but also had higher chemical and photostability in water. In this strategy, by means of the hydrolysis of AChE and ChOx, H2O2 will be produced, which can oxidize Fe2+ to Fe3+, thereby quenching the fluorescence of Ru(bpy)32+@UiO-66. In the presence of OPs, the activity of AChE can be inhibited, resulting in the inability to generate H2O2 and Fe3+, which will turn on the fluorescence signal of Ru(bpy)32+@UiO-66. As a result, the Ru(bpy)32+@UiO-66 sensing system not only had high sensitivity for OPs detection but also possessed a satisfactory detection recovery rate for parathion-methyl in real samples, which provides a new approach for OP detection in food safety as well as environmental monitoring. Full article
Show Figures

Graphical abstract

15 pages, 2776 KiB  
Article
A Novel Fluorescent Probe AP for Highly Selective and Sensitive Detection of Hg2+ and Its Application in Environmental Monitoring
by Zhi Yang, Chaojie Lei, Qian Wang, Yonghui He and Senlin Tian
Processes 2025, 13(7), 2306; https://doi.org/10.3390/pr13072306 - 19 Jul 2025
Viewed by 342
Abstract
Mercury is a highly toxic heavy metal that poses serious threats to human health and environmental safety, highlighting the critical importance of accurate Hg2+ detection. In this study, a novel fluorescent probe AP was synthesized by conjugating fluorescein, serving as the luminescent [...] Read more.
Mercury is a highly toxic heavy metal that poses serious threats to human health and environmental safety, highlighting the critical importance of accurate Hg2+ detection. In this study, a novel fluorescent probe AP was synthesized by conjugating fluorescein, serving as the luminescent group, with pyridine-2-carboxaldehyde to enable selective Hg2+ detection. Hg2+ binds to AP in a 1:2 stoichiometric ratio, inducing the opening of the spiro-lactam ring and resulting in a significant fluorescence enhancement. The probe exhibited excellent selectivity and sensitivity toward Hg2+. A strong linear correlation was observed between its fluorescence intensity and Hg2+ concentration (R2 = 0.99952), with a detection limit of as low as 9.75 × 10−8 mol/L. The average recoveries of Hg2+ across various water matrices ranged from 95.23% to 103.40%, with relative standard deviations (RSDs) below 3.07%. These results indicate that the probe performs effectively in real water-sample testing. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

13 pages, 2581 KiB  
Article
Triazine Calixarene as a Dual-Channel Chemosensor for the Reversible Detection of Cu2+ and I Ions via Water Content Modulation
by Fuyong Wu, Long Chen, Mei Yu, Liang Zhao, Lu Jiang, Tianzhu Shi, Ju Guo, Huayan Zheng, Ruixiao Wang and Mingrui Liao
Molecules 2025, 30(13), 2815; https://doi.org/10.3390/molecules30132815 - 30 Jun 2025
Viewed by 335
Abstract
Rationally designing and synthesizing chemosensors capable of simultaneously detecting both anions and cations via water content modulation is challenging. In this study, we synthesized and characterized a novel triazine calixarene derivative-based iodide and copper ion-selective fluorescent “turn-off” sensor. This dual-channeled fluorescent probe is [...] Read more.
Rationally designing and synthesizing chemosensors capable of simultaneously detecting both anions and cations via water content modulation is challenging. In this study, we synthesized and characterized a novel triazine calixarene derivative-based iodide and copper ion-selective fluorescent “turn-off” sensor. This dual-channeled fluorescent probe is able to recognize Cu2+ and I ions simultaneously in aqueous systems. The fluorescent sensor s4 was synthesized by displacement reaction of acridine with 1, 3-bis (dichloro-mono-triazinoxy) benzene in acetonitrile. Mass spectrometry (MS), UV-vis, and fluorescence spectra were acquired to characterize the fluorescence response of s4 to different cations and anions, while infrared (IR) spectroscopy and isothermal titration calorimetry (ITC) were employed to study the underlying selectivity mechanism of s4 to Cu2+ and I. In detail, s4 displayed extremely high sensitivity to Cu2+ with over 80% fluorescence decrement caused by the paramagnetic nature of Cu2+ in the aqueous media. The reversible fluorescence response to Cu2+ and the responses to Cu2+ in the solution of other potential interferent cations, such as Li+, Na+, K+, Ca2+, Cd2+, Zn2+, Sr2+, Ni2+, Co2+ were also investigated. Probe s4 also exhibited very good fluorescence selectivity to iodide ions under various anion (F, Cl, Br, NO3, HSO4, ClO4, PF6, AcO, H2PO4) interferences. In addition to the fluorescent response to I, s4 showed a highly selective naked-eye-detectable color change from colorless to yellow with the other tested anions. Full article
Show Figures

Figure 1

17 pages, 3550 KiB  
Article
Substrate-Dependent Performance of ZnTTBPc–PMMA Composite Films on Rigid, Flexible, and Sustainable Materials for Wearable Devices
by María Elena Sánchez Vergara, Ismael Cosme and José Ramón Álvarez Bada
Polymers 2025, 17(11), 1574; https://doi.org/10.3390/polym17111574 - 5 Jun 2025
Viewed by 500
Abstract
The purpose of this work is to evaluate the potential use of zinc 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (ZnTTBPc) embedded in polymethyl methacrylate (PMMA) and deposited on different substrates in active films for wearable device (WD) applications. The inclusion of PMMA as a matrix facilitates the incorporation [...] Read more.
The purpose of this work is to evaluate the potential use of zinc 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (ZnTTBPc) embedded in polymethyl methacrylate (PMMA) and deposited on different substrates in active films for wearable device (WD) applications. The inclusion of PMMA as a matrix facilitates the incorporation of ZnTTBPc. The composite films were deposited by drop casting on PET, glass, and n-type silicon, as well as on innovative substrates, such as palm leaves and polyester. Regarding the composite films, surface analysis using SEM and AFM revealed substrate-dependent differences in film roughness, grain distribution, and crack formation, highlighting the influence of substrate morphology and drying dynamics on the structural integrity of the composite films. With respect to fluorescent and optical behavior, the highest fluorescence intensity (2573) and reflectance (75%) were obtained for the film deposited on palm, while the lowest optical band gap (1.52 eV) was found in the film on polyester fabric. Substrate–film interactions and deposition dynamics play a critical role in determining the structural integrity and topography of composite films, which, in turn, influence optical properties, fluorescence, and band gap. The multifaceted properties of all tested systems with the film structure, substrate/ZnTTBPc–PMMA suggest new possibilities for wearable electronics applications. Full article
(This article belongs to the Special Issue Polymer Thin Films and Their Applications)
Show Figures

Figure 1

14 pages, 1793 KiB  
Article
A Metal–Organic Hybrid Composed of Dual Quenching Cofactors as a Nanoquencher for the Fluorescent Determination of Protease Caspase-3
by Fengli Gao, Lin Liu, Cancan He, Yong Chang and Weiqiang Wang
Biosensors 2025, 15(6), 354; https://doi.org/10.3390/bios15060354 - 4 Jun 2025
Viewed by 541
Abstract
Nanoquenchers with a single quenching cofactor exhibit limited fluorescence quenching efficiency. In this work, a metal–organic hybrid with dual quenching cofactors (Cu2+ and pyrroloquinoline quinone or PQQ) was prepared by metal-coordinated assembly and used as a nanoquencher for a protease assay with [...] Read more.
Nanoquenchers with a single quenching cofactor exhibit limited fluorescence quenching efficiency. In this work, a metal–organic hybrid with dual quenching cofactors (Cu2+ and pyrroloquinoline quinone or PQQ) was prepared by metal-coordinated assembly and used as a nanoquencher for a protease assay with enhanced quenching efficiency. The peptide substrate with an oligohistidine (His6) tag was labeled with a fluorophore. Caspase-3 was determined as a protease example. The substrate was attached onto the surface of the Cu-PQQ nanoquencher by a metal coordination interaction between the unsaturated Cu2+ on the nanoparticle surface and the His6 tag in the peptide. The cleavage of the peptide substrate by enzymatic hydrolysis led to the release of a fluorophore-conjugated segment from the nanoquencher surface, thus turning on the fluorescence. The nanoprobe was used to determine caspase-3 with a linear range of 0.01–5 ng/mL and a detection limit of 7 pg/mL. Furthermore, the method was used to evaluate inhibition efficiency and monitor drug-induced cell apoptosis. In contrast to other means of peptide immobilization, such as physical adsorption and covalent coupling, the strategy based on the metal coordination interaction is simple and powerful, thereby achieving assays of caspase-3 activity in lysates with a satisfactory result. The work should be valuable for the design of nanoquenchers with multiple quenching cofactors and the development of novel biosensors. Full article
Show Figures

Figure 1

15 pages, 1924 KiB  
Article
A Rhodamine B-Based “Turn-On” Fluorescent Probe for Selective Fe3+ Ions Detection
by Md Foridul Islam, Abdulkadir Zakari Abdulkadir, Smaher M. Elbayomi and Pengfei Zhang
Sensors 2025, 25(11), 3477; https://doi.org/10.3390/s25113477 - 31 May 2025
Viewed by 662
Abstract
Detecting heavy metal ions is essential for maintaining environmental safety, ensuring industrial quality control, and protecting public health. In this study, we have synthesized a novel Rhodamine B-based fluorescent probe, RhB-DCT, which is functionalized with 2,4-dichloro-1,3,5-triazine (DCT) to enhance selectivity and sensitivity for [...] Read more.
Detecting heavy metal ions is essential for maintaining environmental safety, ensuring industrial quality control, and protecting public health. In this study, we have synthesized a novel Rhodamine B-based fluorescent probe, RhB-DCT, which is functionalized with 2,4-dichloro-1,3,5-triazine (DCT) to enhance selectivity and sensitivity for metal ions detection. The probe functions through a “turn-on” fluorescence mechanism activated by the opening of the spiro-lactam ring induced by Fe3+ ions, resulting in a distinct color change from colorless to deep pink. The RhB-DCT probe demonstrated a rapid and robust fluorescence response within seconds, exhibited a broad pH stability from 4 to 13, showed excellent reversibility, and possessed a low detection limit of 0.0521 μM, surpassing numerous existing fluorescent probes. The RhB-DCT probe exhibited significant selectivity for Fe3+ than other competing metal ions. The integration of high sensitivity, rapid response, and strong stability positions RhB-DCT as a viable option for real-time detection of Fe3+ ions in aqueous settings. This study demonstrates the efficacy of the RhB-DCT probe in environmental monitoring, water quality assessment, and analytical sensing platforms, serving as an effective and dependable tool for detecting heavy metal ions. Full article
(This article belongs to the Special Issue Colorimetric and Fluorescent Sensors and Their Application)
Show Figures

Figure 1

12 pages, 2616 KiB  
Article
Intelligent Ultrasonic Aspirator Controlled by Fiber-Optic Neoplasm Sensor Detecting 5-Aminolevulinic Acid-Derived Porphyrin Fluorescence
by Yoshinaga Kajimoto, Hidefumi Ota, Masahiro Kameda, Naosuke Nonoguchi, Motomasa Furuse, Shinji Kawabata, Toshihiko Kuroiwa, Toshihiro Takami and Masahiko Wanibuchi
Sensors 2025, 25(11), 3412; https://doi.org/10.3390/s25113412 - 28 May 2025
Viewed by 520
Abstract
The development of an intelligent ultrasonic aspirator controlled by a fiber-optic neoplasm sensor that detects 5-aminolevulinic acid-derived porphyrin fluorescence presents a significant advancement in glioma surgery. By leveraging the fluorescence phenomenon associated with 5-aminolevulinic acid in malignant neoplasms, this device integrates an excitation [...] Read more.
The development of an intelligent ultrasonic aspirator controlled by a fiber-optic neoplasm sensor that detects 5-aminolevulinic acid-derived porphyrin fluorescence presents a significant advancement in glioma surgery. By leveraging the fluorescence phenomenon associated with 5-aminolevulinic acid in malignant neoplasms, this device integrates an excitation laser and a high-sensitivity photodiode into the tip of an ultrasonic aspirator handpiece. This setup allows for real-time tumor fluorescence detection, which in turn modulates the aspirator’s power based on fluorescence intensity. Preliminary testing demonstrated high sensitivity, with the device capable of differentiating between weak, strong, and no fluorescence. The sensor sensitivity was comparable to human visual perception, enabling effective tumor differentiation. Tumors with strong fluorescence were effectively crushed, while the aspirator ceased operation in non-fluorescent areas, enabling precise tissue resection. Furthermore, the device functioned efficiently in bright surgical environments and was designed to maintain a clean sensor tip through constant saline irrigation. The system was successfully applied in a surgical case of recurrent glioblastoma, selectively removing tumor tissue while preserving surrounding brain tissue. This innovative approach shows promise for safer, more efficient glioma surgeries and may pave the way for sensor-based robotic surgical systems integrated with navigation technologies. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

23 pages, 13007 KiB  
Article
Sources and Characteristics of Dissolved Organic Matter (DOM) during the Winter Season in Hangzhou Bay: Insights from Chromophoric DOM and Fluorescent DOM
by Chenshuai Wei, Yanhong Xu, Dewang Li, Peisong Yu, Qian Li, Zhongqiang Ji, Bin Wang, Ying Luo, Ningxiao Yu, Lihong Chen and Haiyan Jin
Water 2025, 17(11), 1590; https://doi.org/10.3390/w17111590 - 24 May 2025
Viewed by 615
Abstract
Elucidating the compositions, sources and mixing processes of dissolved organic matter (DOM) is crucial for a gaining deeper understanding of the coastal carbon cycle and global carbon budget. Hangzhou Bay (HZB), a vital estuary in China, receives freshwater inputs in the upper bay, [...] Read more.
Elucidating the compositions, sources and mixing processes of dissolved organic matter (DOM) is crucial for a gaining deeper understanding of the coastal carbon cycle and global carbon budget. Hangzhou Bay (HZB), a vital estuary in China, receives freshwater inputs in the upper bay, borders the Changjiang River Estuary (CRE) to the north and is adjacent to Zhoushan Islands Region (ZIR) to the east. In HZB, the DOM sources and their compositions in estuaries remain unclear due to the complexity of this dynamic environment. In this study, we aimed to explore the chemical composition and sources of the DOM in the HZB and its adjacent coastal waters based on chromophoric DOM, fluorescent DOM indices and other hydrochemical parameters in the winter. The results showed that the DOM compositions in HZB have significant differences in the upper bay, middle bay and lower bay. The highest concentration of DOC was found in the CRE, close to the northern lower HZB, with high humification index (HIX), low biological index (BIX) and high proportion of humic-like fluorescent component (C1), indicating terrestrial inputs. In contrast, the DOM in the upper bay had high BIX and low HIX, being dominated by protein-like fluorescent components (C2 and C3), indicating an autochthonous source. The DOM in the middle bay showed mixed composition characteristics indicated by the chromophoric DOM (CDOM) and fluorescent DOM (FDOM) indices. Moreover, the terrestrial DOM transported via CDW intrusion accounted for a large proportion of the DOM in Northern HZB. Our study shows that, even in coastal estuaries with very strong hydrodynamics, the DOM composition can still retain its unique source signal, which, in turn, affects its migration and transformation processes. The results of this study provide supplement insights into the global carbon cycle and carbon budget estimation. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

20 pages, 5717 KiB  
Article
Differential Diagenesis and Hydrocarbon Charge of the Tight-Sandstone Reservoir: A Case Study from Low-Permeable Sandstone Reservoirs in the Ninth Member of the Upper Triassic Yanchang Formation, Ordos Basin, China
by Caizhi Hu, Likuan Zhang, Yuhong Lei, Lan Yu, Jing Qin and Xiaotao Zhang
Minerals 2025, 15(5), 544; https://doi.org/10.3390/min15050544 - 20 May 2025
Viewed by 376
Abstract
Studies of hydrocarbon migration and enhanced oil recovery focus on the effects of reservoir heterogeneity on subsurface fluid flow and distribution. Differential diagenesis in clastic rock reservoirs is an important factor of internal-reservoir heterogeneity and its relationship to hydrocarbon charges is a key [...] Read more.
Studies of hydrocarbon migration and enhanced oil recovery focus on the effects of reservoir heterogeneity on subsurface fluid flow and distribution. Differential diagenesis in clastic rock reservoirs is an important factor of internal-reservoir heterogeneity and its relationship to hydrocarbon charges is a key scientific issue for understanding hydrocarbon accumulation mechanisms in tight-sandstone reservoirs. This paper focuses on the ninth member of the Upper Triassic Yanchang Formation (Chang 9), located in the central and western Ordos Basin, China. The aims of the paper are to examine the differential diagenesis of sandstone reservoirs and to illustrate the process of organic/inorganic fluid–rock interaction using an integrated method of petrography, UV fluorescence spectra, fluid inclusion, and basin modeling analyses. The Chang 9 reservoir comprises four sandstone types: mechanically compacted sandstone, calcite-cemented sandstone, water-bearing sandstone, and oil-bearing sandstone. These four types of sandstone experience contrasting diagenetic evolutions. During early diagenesis, mechanically compacted sandstone and calcite-cemented sandstone undergo strong deformation and cementation, respectively. The water-bearing and oil-bearing sandstones experience similar diagenetic evolutions, but significantly different from those two tight sandstones in fluid activity and diagenesis magnitude. Three types of porous bitumen were identified in the oil-bearing sandstone, whereas no bitumen was identified in the water-bearing sandstone. According to the contact relationship between bitumen, cements, and dissolution pores, the related diagenesis sequence of the oil-bearing sandstones of Chang 9 was reconstructed. Three phases of fluid flow occurred in turn, with hydrocarbon charging in the process, but no hydrocarbon charging occurred in the water-bearing sandstones. The research findings, in terms of organic and/or inorganic fluid–rock interaction, can be used as a reference for the differential diagenesis and process of fluid–rock interaction in low-permeability sandstone reservoirs with a highly heterogeneous internal reservoir framework. Furthermore, this study could help in understanding the internal heterogeneity characteristics of a fluvial sandstone reservoir and its relationship with hydrocarbon charging. Full article
(This article belongs to the Topic Recent Advances in Diagenesis and Reservoir 3D Modeling)
Show Figures

Figure 1

37 pages, 6833 KiB  
Review
Recent Advances in Aggregation-Induced Emission (AIE) Fluorescent Sensors for Biomolecule Detection
by Kavya S. Keremane, M. Gururaj Acharya, Praveen Naik, Chandi C. Malakar, Kai Wang and Bed Poudel
Chemosensors 2025, 13(5), 174; https://doi.org/10.3390/chemosensors13050174 - 9 May 2025
Cited by 1 | Viewed by 1272
Abstract
Fluorescent sensors are indispensable tools in fields such as molecular biology, clinical diagnostics, biotechnology, and environmental monitoring, due to their high sensitivity, selectivity, biocompatibility, rapid response, and ease of use. However, conventional fluorophores often suffer from aggregation-caused quenching (ACQ), leading to diminished fluorescence [...] Read more.
Fluorescent sensors are indispensable tools in fields such as molecular biology, clinical diagnostics, biotechnology, and environmental monitoring, due to their high sensitivity, selectivity, biocompatibility, rapid response, and ease of use. However, conventional fluorophores often suffer from aggregation-caused quenching (ACQ), leading to diminished fluorescence in the aggregated state. The advent of aggregation-induced emission (AIE) luminogens, which exhibit enhanced fluorescence upon aggregation, offers a powerful solution to this limitation. Their unique photophysical properties have made AIE-based materials highly valuable for diverse applications, including biomedical imaging, optoelectronics, stimuli-responsive systems, drug delivery, and chemical sensing. Notably, AIE-based fluorescent probes are emerging as attractive alternatives to traditional analytical methods owing to their low cost, fast detection, and high selectivity. Over the past two decades, considerable progress has been made in the rational design and development of AIE-active small-molecule fluorescent probes for detecting a wide variety of analytes, such as biologically relevant molecules, drug compounds, volatile organic compounds (VOCs), explosives, and contaminants associated with forensic and food safety analysis. This review highlights recent advances in organic AIE-based fluorescent probes, beginning with the fundamentals of AIE and typical “turn-on” sensing mechanisms, and concluding with a discussion of current challenges and future opportunities in this rapidly evolving research area. Full article
Show Figures

Figure 1

15 pages, 1998 KiB  
Article
Rationally Designed Pentapeptide Analogs of Aβ19–23 Fragment as Potent Inhibitors of Aβ42 Aggregation
by Sachin B. Baravkar, Yan Lu, Qi Zhao, Hongying Peng, Weilie Zhou and Song Hong
Molecules 2025, 30(9), 2071; https://doi.org/10.3390/molecules30092071 - 7 May 2025
Viewed by 653
Abstract
Amyloid beta (Aβ42 and Aβ40) aggregation, along with neurofibrillary tangles, is one of the major neurotoxic events responsible for the onset of Alzheimer’s disease. Many potent peptide-based inhibitors mainly focusing on central hydrophobic core Aβ16–20 (KLVFF) have been reported in recent years. Herein, [...] Read more.
Amyloid beta (Aβ42 and Aβ40) aggregation, along with neurofibrillary tangles, is one of the major neurotoxic events responsible for the onset of Alzheimer’s disease. Many potent peptide-based inhibitors mainly focusing on central hydrophobic core Aβ16–20 (KLVFF) have been reported in recent years. Herein, we report pentapeptides 14, based on the β-turn-inducing fragment Aβ19–23 (FFAED). The synthesis of peptides 14 was carried out using Fmoc/tBu-based solid-phase peptide synthesis technique, and it was found that pentapeptide 3 potently inhibit the aggregation propensity of Aβ42, when incubated with it at 37 °C for 48 h. The aggregation inhibition study was conducted using thioflavin T-based fluorescence assay and circular dichroism spectroscopy, and supported by transmission electron microscope imaging. The conformational change on the aggregation of Aβ42 and aggregation inhibition by peptides 14 was further evaluated using 1H–15N HSQC NMR spectroscopy. The results demonstrated that the most potent analog, peptide 3, effectively disrupts the aggregation process. This study is the first to demonstrate that an Aβ19–23 fragment mimic can disrupt the aggregation propensity of Aβ42. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Macromolecular Chemistry)
Show Figures

Figure 1

19 pages, 2546 KiB  
Article
Physical Modification of Whey Protein by Interacting with Methyl Hesperidin: Impacts on Antioxidant Activity and Underlying Mechanism
by Songbo Ma, Shuang Yang, Suqi Yang, Lili Chen, Meilan Yuan, Yong Jiang, Li Zhao and Chunqing Bai
Biology 2025, 14(5), 492; https://doi.org/10.3390/biology14050492 - 1 May 2025
Viewed by 433
Abstract
In this work, the possibility of enhancing the antioxidant capacity of whey protein (WP) through non-covalent interaction with methyl hesperidin (MH, a hesperidin derivative) was assessed. The underlying mechanism was analyzed in terms of multi-spectroscopy methods, thermodynamic analysis, and molecular docking simulation. The [...] Read more.
In this work, the possibility of enhancing the antioxidant capacity of whey protein (WP) through non-covalent interaction with methyl hesperidin (MH, a hesperidin derivative) was assessed. The underlying mechanism was analyzed in terms of multi-spectroscopy methods, thermodynamic analysis, and molecular docking simulation. The data indicated that MH could spontaneously bind to WP and form a non-fluorescent complex when physically mixed together. The presence of MH statically quenched the intrinsic fluorescence of WP, changed the microenvironment of amino acid residue, and altered the secondary and tertiary structure of WP, which in turn enhanced the antioxidant capacity of WP. The underlying mechanism may be assigned to hydrophobic interactions, which promoted MH inserting itself into the hydrophobic cavity in WP. The methoxy group on the B ring of MH may form hydrogen bonds with amino acids, which enhances the freedom of the phenyl hydroxyl group, resulting in higher antioxidant capacity than other hesperidin structural analogs. This research would enrich the theoretical basis about the interaction between protein and hesperidin-based derivatives, and it may supply valuable information for its application in the food and medicine fields. Full article
Show Figures

Graphical abstract

17 pages, 4677 KiB  
Article
Fullerene-Functionalized Cellulosic Hydrogel Biosensor with Bacterial Turn-on Fluorescence Response Derived from Carboxymethyl Cellulose for Intelligent Food Packaging with DFT Calculations and Molecular Docking
by Hebat-Allah S. Tohamy
Gels 2025, 11(5), 329; https://doi.org/10.3390/gels11050329 - 28 Apr 2025
Cited by 2 | Viewed by 718
Abstract
This study reports the synthesis and characterization of a novel carboxymethyl cellulose–N-fullerene–g-poly(co-acrylamido-2-methyl-1-propane sulfonic acid) (CMC–N-fullerene–AMPS) hydrogel for potential application in biosensing within food packaging. The hydrogel was synthesized via free radical polymerization and characterized using FTIR, SEM, and fluorescence microscopy. FTIR analysis confirmed [...] Read more.
This study reports the synthesis and characterization of a novel carboxymethyl cellulose–N-fullerene–g-poly(co-acrylamido-2-methyl-1-propane sulfonic acid) (CMC–N-fullerene–AMPS) hydrogel for potential application in biosensing within food packaging. The hydrogel was synthesized via free radical polymerization and characterized using FTIR, SEM, and fluorescence microscopy. FTIR analysis confirmed the successful grafting of AMPS and incorporation of N-fullerenes, indicated by characteristic peaks and a shift in the N–H/O–H stretching frequency. Density Functional Theory (DFT) calculations revealed that the CMC–N-fullerene–AMPS hydrogel exhibited higher stability and a lower band gap energy (0.0871 eV) compared to the CMC–AMPS hydrogel, which means a high reactivity of CMC–N-fullerene–AMPS. The incorporation of N-fullerenes significantly enhanced the hydrogel’s antibacterial activity, demonstrating a 22 mm inhibition zone against E. coli and a 24 mm zone against S. aureus, suggesting potential for active food packaging applications. Critically, the hydrogel displayed a unique “turn-on” fluorescence response in the presence of bacteria, with distinct color changes observed upon interaction with E. coli (orange-red) and S. aureus (bright green). This fluorescence enhancement, coupled with the porous morphology observed via SEM (pore size 377–931 µm), suggests the potential of this hydrogel as a sensing platform for bacterial contamination within food packaging. These combined properties of enhanced antibacterial activity and a distinct, bacteria-induced fluorescence signal make the CMC–N-fullerene–AMPS hydrogel a promising candidate for developing intelligent food packaging materials capable of detecting bacterial spoilage. Full article
(This article belongs to the Special Issue Recent Progress of Hydrogel Sensors and Biosensors)
Show Figures

Graphical abstract

14 pages, 3165 KiB  
Article
A Molecularly Imprinted Fluorescence Sensor for the Simultaneous and Rapid Detection of Histamine and Tyramine in Cheese
by Xinpei Li, Zhiwei Wu, Hui Cao, Tai Ye, Liling Hao, Jinsong Yu, Min Yuan and Fei Xu
Foods 2025, 14(9), 1475; https://doi.org/10.3390/foods14091475 - 23 Apr 2025
Viewed by 640
Abstract
Based on dual-template molecular imprinting polymerization technology, a fluorescent molecularly imprinted polymer doped with CdSe/ZnS quantum dots was developed to construct a “Turn-on” fluorescence sensor for the rapid, sensitive, and specific detection of two biogenic amines. The biogenic amines bind to the quantum [...] Read more.
Based on dual-template molecular imprinting polymerization technology, a fluorescent molecularly imprinted polymer doped with CdSe/ZnS quantum dots was developed to construct a “Turn-on” fluorescence sensor for the rapid, sensitive, and specific detection of two biogenic amines. The biogenic amines bind to the quantum dots, which eliminates surface defects and enhances the fluorescence emission intensity of the quantum dots. By optimizing both the polymerization and detection processes, the results demonstrate that the sensor can detect biogenic amines within the range of 0.01–10 mmol/L, with a low detection limit of 14.57 μmol/L and a detection time of only ten minutes. Moreover, the sensor is cost-effective and does not require specialized instrument operation, offering a practical approach for the rapid detection of biogenic amines in complex food matrices. This study advances the development of simultaneous recognition and rapid detection technologies for multiple target molecules. Full article
Show Figures

Figure 1

Back to TopTop