Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (97)

Search Parameters:
Keywords = turmeric rhizome

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5245 KiB  
Article
Histopathological Picture of Lung Organs Towards Combination of Java Cardamom Seed Extract and Turmeric Rhizome as Anti-Colibacillosis in Broiler Chickens
by Tyagita Hartady, Mohammad Ghozali and Charles Parsonodihardjo
Vet. Sci. 2025, 12(8), 726; https://doi.org/10.3390/vetsci12080726 - 31 Jul 2025
Viewed by 126
Abstract
Colibacillosis is a poultry disease caused by the pathogenic bacterium Escherichia coli (E. coli). This study is an experimental cross-sectional study using herbal-based test materials from Javanese cardamom and turmeric rhizome as treatments to replace the role of antibiotics that experience [...] Read more.
Colibacillosis is a poultry disease caused by the pathogenic bacterium Escherichia coli (E. coli). This study is an experimental cross-sectional study using herbal-based test materials from Javanese cardamom and turmeric rhizome as treatments to replace the role of antibiotics that experience drug resistance in several types of bacteria. A total of 32 samples were utilized in this study, separated into two control groups and six treatment groups. The analysis was carried out by an histopathological examination of the lung organs using H&E and ImageJ staining to calculate the area of the slide image. The data results were analyzed statistically with one-way ANOVA method and qualitatively. The outcome of the statistical test showed that the differences were not statistically significant p value = 0.922 [p > 0.05] in all groups, and findings from qualitative histopathology showed morphological differences in the alveoli, parabronchi, and vasculature in the lung organs. Full article
(This article belongs to the Special Issue Advancements in Livestock Histology and Morphology)
Show Figures

Figure 1

15 pages, 1375 KiB  
Article
Photodegradation of Turmeric Oleoresin Under Fluorescent Light and White LED: Impacts on the Chemical Stability, Bioactivity, and Photosensitizing Property of Curcuminoids
by Heejeong Kim, Juyeon Oh and Jungil Hong
Molecules 2025, 30(15), 3187; https://doi.org/10.3390/molecules30153187 - 30 Jul 2025
Viewed by 231
Abstract
Turmeric oleoresin (TO), a natural pigment derived from Curcuma longa rhizomes, is valued for its health benefits, which are primarily attributed to its rich curcuminoid content (curcumin, demethoxycurcumin, and bisdemethoxycurcumin). Despite these benefits, curcuminoids are known to be light-sensitive and possess photosensitizing properties. [...] Read more.
Turmeric oleoresin (TO), a natural pigment derived from Curcuma longa rhizomes, is valued for its health benefits, which are primarily attributed to its rich curcuminoid content (curcumin, demethoxycurcumin, and bisdemethoxycurcumin). Despite these benefits, curcuminoids are known to be light-sensitive and possess photosensitizing properties. This study investigated the impact of common light sources, fluorescent light and white LED (both at 10 W/m2), on the chemical stability, antioxidant activity, cytotoxicity, and photosensitizing properties of TO. Exposure to both light sources significantly reduced TO’s color and fluorescence intensity, with white LED causing greater instability. HPLC analysis confirmed a decrease in individual curcuminoid levels, with curcumin degrading most rapidly under both conditions. The DPPH radical scavenging activity of irradiated TO decreased compared to fresh or dark-stored turmeric, whereas its ABTS radical scavenging activity increased upon light exposure. Photosensitizing potency, measured by formazan decolorization and lipid peroxide formation, declined as TO decomposed under light. Conversely, the cytotoxicity of TO against B16F10 melanoma cells was significantly enhanced under light exposure, though this effect was diminished significantly after 24 h of pre-irradiation. These findings underscore the instability of turmeric pigment under common lighting conditions, which should be a crucial consideration when processing, storing, and distributing turmeric-containing products. Full article
(This article belongs to the Special Issue Photochemistry in Asia)
Show Figures

Graphical abstract

27 pages, 1106 KiB  
Article
Blending Tradition and Technology: A Celery–Parsley–Turmeric Formulation for Functional Ingredient Applications
by Staniša Latinović, Olja Šovljanski, Slavica Grujić, Lato Pezo, Dubravka Škrobot, Jasna Čanadanović-Brunet, Dragoljub Cvetković, Ladislav Vasilišin, Nataša Lakić-Karalić, Biljana Pećanac, Goran Vučić, Mirjana Milošević and Jelena Vulić
Processes 2025, 13(6), 1849; https://doi.org/10.3390/pr13061849 - 11 Jun 2025
Viewed by 646
Abstract
This study links the traditional use of celery (Apium graveolens L.) and parsley (Petroselinum crispum L.) roots in Balkan cuisine and herbal medicine, along with the longstanding role of turmeric (Curcuma longa L.) rhizome in Ayurvedic and Asian medicinal practices, [...] Read more.
This study links the traditional use of celery (Apium graveolens L.) and parsley (Petroselinum crispum L.) roots in Balkan cuisine and herbal medicine, along with the longstanding role of turmeric (Curcuma longa L.) rhizome in Ayurvedic and Asian medicinal practices, with modern technological approaches to develop a functional food formulation. A series of blend variations were evaluated for total phenolic content, antioxidant capacity, and sensory quality. The incorporation of turmeric significantly enhanced the antioxidant potential of celery–parsley mixtures. Celery–parsley–turmeric root blend (CPT6), comprising equal parts, was identified as optimal, exhibiting high total phenolic content (9.56 mg gallic acid equivalent/g), strong antioxidant activities, and a favourable sensory profile rated as “very good” (3.58 average score). CPT6 further demonstrated promising biofunctional properties, including potent α-amylase and α-glucosidase inhibition activities (72% and 80%, respectively), alongside moderate antihypertension activity (ACE) (62%) and hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibition (55%). Chemometric analyses (PCA) and machine learning modelling (ANN) confirmed the significant role of turmeric proportion in enhancing both bioactivity and consumer acceptability. This research highlights the synergy between tradition and technology in creating novel, multifunctional food ingredients suited for functional food and nutraceutical applications. Full article
Show Figures

Figure 1

14 pages, 2070 KiB  
Article
Development of an Efficient Micropropagation Protocol for Curcuma longa L. cv. Trang 1
by Atcha Boonprasert, Pundanai Chitphet, Nuttha Sanevas, Ekaphan Kraichak, Supachai Vuttipongchaikij and Narong Wongkantrakorn
Int. J. Plant Biol. 2025, 16(2), 64; https://doi.org/10.3390/ijpb16020064 - 6 Jun 2025
Viewed by 578
Abstract
Turmeric (Curcuma longa L. cv. Trang 1), a high-value cultivar known for its elevated curcuminoid and volatile oil content, holds significant potential in pharmaceutical and food applications. However, its commercial propagation is constrained by low rhizome productivity and the limitations of conventional [...] Read more.
Turmeric (Curcuma longa L. cv. Trang 1), a high-value cultivar known for its elevated curcuminoid and volatile oil content, holds significant potential in pharmaceutical and food applications. However, its commercial propagation is constrained by low rhizome productivity and the limitations of conventional vegetative propagation. This study aimed to improve the propagation efficiency of turmeric cv. Trang 1 by developing optimized protocols for explant sterilization, shoot proliferation, root induction, and acclimatization. Sprouted rhizome buds were sterilized and cultured on a Murashige and Skoog (MS) medium supplemented with various plant growth regulators, including cytokinins (benzyladenine [BA], thidiazuron [TDZ], and meta-topolin [mT]) and auxins (indole-3-butyric acid [IBA] and 1-naphthaleneacetic acid [NAA]). The shoot induction (4.60 ± 1.47 shoots per explant) and shoot height (2.34 ± 0.61 cm) were observed on the MS medium with 3.0 mg/L BA, while the TDZ, at 0.5 mg/L, also induced a high number of shoots (5.22 ± 0.64). When using single shoots derived from bud explants, mT at 1.5 mg/L significantly enhanced the shoot formation. For the root induction, 2.0 mg/L IBA yielded the highest number of roots (7.33 ± 1.49), while NAA was less effective. The plantlets acclimatized in a 1:1 soil and peat moss mixture showed the highest survival rate (86.67%). This improved protocol enables the efficient production of turmeric plantlets, supporting commercial deployment. Full article
(This article belongs to the Section Plant Physiology)
Show Figures

Figure 1

14 pages, 1954 KiB  
Article
Sunflower Seed Oil Enriched with Compounds from the Turmeric Rhizome: Extraction, Characterization and Cell Viability
by Késia Corsato de Oliveira Segantini, Oscar de Oliveira Santos Junior, Vitor Augusto Dos Santos Garcia, Djéssica Tatiane Raspe and Camila da Silva
Separations 2025, 12(5), 121; https://doi.org/10.3390/separations12050121 - 11 May 2025
Cited by 1 | Viewed by 561
Abstract
The present work aimed to obtain and characterize sunflower seed oil (SO) enriched with compounds from turmeric rhizome (TR). For this purpose, the enriched oil was obtained from two strategies: extraction of the compounds from TR using SO as solvent (ESO) and simultaneous [...] Read more.
The present work aimed to obtain and characterize sunflower seed oil (SO) enriched with compounds from turmeric rhizome (TR). For this purpose, the enriched oil was obtained from two strategies: extraction of the compounds from TR using SO as solvent (ESO) and simultaneous extraction of SO and TR compounds using ethyl acetate as solvent (ESOS). In these strategies, the effect of time (15 and 30 min) and temperature (60 and 70 °C) on the enrichment in relation to the curcuminoids content was determined. Evaluation of phytochemicals such as total phenolic compounds (TPCs), phenolic compound profile and fatty-acid profile and bioactivity by antioxidant potential (AP) was carriedoutin the enriched oils and in the SO;mean while, oxidative stability and cytotoxicity were evaluated using HaCaT (human immortalized keratinocyte) cells. From the results obtained, higher contents of curcuminoids (510 mg/100 g oil) were observed in the oil obtained from simultaneous extraction (ESOS) in a shorter time and lower temperature (15 min and 60 °C), and similar behavior was found for the content of phenolic compounds and antioxidant potential. The profile of phenolic compounds revealed the presence of phenolic acids, curcuminoids and terpenes in the composition of the enriched oils, which increased oxidative stability. The oils obtained did not show any cytotoxic effect against the cells tested, confirmed by the high survival rate (>88%) after 48 h of exposure. Full article
(This article belongs to the Special Issue Application of Sustainable Separation Techniques in Food Processing)
Show Figures

Graphical abstract

18 pages, 1901 KiB  
Article
Comparative Effects of Turmeric Secondary Metabolites Across Resorptive Bone Diseases
by Laura E. Wright, Jennifer B. Frye, Andrew G. Kunihiro, Barbara N. Timmermann and Janet L. Funk
Metabolites 2025, 15(4), 266; https://doi.org/10.3390/metabo15040266 - 11 Apr 2025
Viewed by 872
Abstract
Background: Turmeric (Curcuma longa L.) rhizomes, whose secondary metabolites include polyphenols and terpenoids, have been used medicinally for millennia. However, modern scientific inquiry has primarily focused on medicinal effects of turmeric’s polyphenolic curcuminoids, including when evaluating turmeric use to maintain bone [...] Read more.
Background: Turmeric (Curcuma longa L.) rhizomes, whose secondary metabolites include polyphenols and terpenoids, have been used medicinally for millennia. However, modern scientific inquiry has primarily focused on medicinal effects of turmeric’s polyphenolic curcuminoids, including when evaluating turmeric use to maintain bone health. Methods: Disease-specific biological effects of turmeric’s major secondary metabolites (polyphenols and/or terpenoids), with or without associated turmeric rhizome-derived polysaccharides, were determined in vivo using pre-clinical models of clinically relevant resorptive bone diseases induced by different mechanisms. These included inflammatory arthritis, cancer-driven osteolytic bone metastases, and hormone deficiency-driven post-menopausal osteoporosis. Results: In the arthritis model, the safety profile of curcuminoids alone was superior. However, curcuminoids and terpenoids each had anti-inflammatory effects and prevented bone resorption, with polysaccharide-containing curcuminoid extracts having greater effect than curcuminoids alone. In the human osteolytic breast cancer bone metastases model, curcuminoid extracts containing polysaccharides tended to yield greater effects in reducing bone osteolysis and tumor progression than curcuminoids alone or more complex extracts. In contrast, only purified curcuminoids prevented bone loss in a post-menopausal osteoporosis model, while polysaccharide-containing curcuminoid extracts were without effect. In vitro metabolite effects on disease-specific mechanistic pathways in synoviocytes, osteoclasts, or breast cancer cells were consistent with documented in vivo outcomes and included differential metabolite-specific effects. Conclusions: In summary, these findings suggest that turmeric’s potential medicinal musculoskeletal effects are complex, pathway- and target-specific, and not limited to curcuminoids, with safety concerns potentially limiting certain uses. Full article
Show Figures

Figure 1

12 pages, 3972 KiB  
Article
Anticancer Activity of Cerium Oxide Nanoparticles Towards Human Lung Cancer Cells
by Nithin Krisshna Gunasekaran, Nicole Nazario Bayon, Prathima Prabhu Tumkur, Krishnan Prabhakaran, Joseph C. Hall and Govindarajan T. Ramesh
Nanomanufacturing 2025, 5(2), 6; https://doi.org/10.3390/nanomanufacturing5020006 - 3 Apr 2025
Viewed by 821
Abstract
Cerium oxide nanoparticles (CeO2 NPs) have gained significant attention in various fields, including biomedicine, semiconductors, cosmetics, and fuel cells, due to their unique physico-chemical properties. Notably, green-synthesized CeO2 NPs have demonstrated enhanced potential as drug carriers, particularly in biomedical applications such [...] Read more.
Cerium oxide nanoparticles (CeO2 NPs) have gained significant attention in various fields, including biomedicine, semiconductors, cosmetics, and fuel cells, due to their unique physico-chemical properties. Notably, green-synthesized CeO2 NPs have demonstrated enhanced potential as drug carriers, particularly in biomedical applications such as anti-inflammatory, anticancer, antimicrobial, and anti-oxidant therapies. This study aimed to investigate the anticancer effects of cerium oxide nanoparticles synthesized using turmeric rhizomes on human lung cancer cells. The cytotoxicity and proliferation inhibition of these nanoparticles were assessed using MTT and Live/Dead assays, revealing a dose-dependent reduction in cell viability. Additionally, reactive oxygen species (ROS) generation was quantified through ROS assays, confirming oxidative stress induction as a key mechanism of cytotoxicity. Cell proliferation analysis further demonstrated that increasing concentrations of CeO2 NPs significantly reduced the multiplication of healthy lung cancer cells. These findings highlight the potential of turmeric-derived CeO2 NPs as a promising therapeutic agent for lung cancer treatment, warranting further exploration of their mechanism of action and in vivo efficacy. Full article
Show Figures

Figure 1

20 pages, 3734 KiB  
Article
Strengthened Effect of Surface-Active Ionic Liquids on Curcumin Solubility and Extraction Performance of Curcuminoids
by Dan Li, Yuxin Qin, Jingxing Li, Subhan Mahmood, Jianqin Shi, Yu Cao and Shun Yao
Separations 2025, 12(2), 29; https://doi.org/10.3390/separations12020029 - 26 Jan 2025
Viewed by 747
Abstract
As a kind of bioactive component in the rhizome of natural plant Curcuma longa L. (turmeric), curcumin is almost insoluble in water at neutral and acidic pH, which limits its further utilization and development. At the same time, traditional extraction and separation processes [...] Read more.
As a kind of bioactive component in the rhizome of natural plant Curcuma longa L. (turmeric), curcumin is almost insoluble in water at neutral and acidic pH, which limits its further utilization and development. At the same time, traditional extraction and separation processes typically require the use of a large number of organic solvents. Ionic liquids (ILs) are organic molten salts with melting points below 100 °C. When an ionic liquid exists in a liquid state at or near room temperature, it is referred to as a room-temperature ionic liquid (RTIL). They have a temperature range, good physical and chemical stability, and good structural designability. They have a strong solubilization enhancement effect for many organic compounds. This study first explored the molecular forms of curcumin in ionic liquid aqueous solutions and the intermolecular interactions between curcumin and ionic liquids using spectral analysis and computational chemistry methods; furthermore, using an ionic liquid aqueous solution as an extraction agent, curcumin-like substances (curcuminoids) were extracted from turmeric powders under ultrasound assisted conditions, revealing the relationship between the structure of the ionic liquid and the extraction efficiency. After that, a kinetic study was conducted for the extraction of curcuminoids from turmeric powders, using second-order kinetics fitting to obtain the rate constant and initial extraction rate during the extraction process. Finally, the comparison with a ComplexGAPI tool and antioxidant experiment was performed on the extraction by using ionic liquids and traditional solvent. The full results can provide reference for the design of IL extractants and their application for natural products. Full article
(This article belongs to the Special Issue Green Separation and Purification Technology)
Show Figures

Figure 1

16 pages, 1672 KiB  
Article
Comparative Investigation of Untargeted and Targeted Metabolomics in Turmeric Dietary Supplements and Rhizomes
by Jashbir Singh, Fakir Shahidullah Tareq and Devanand L. Luthria
Foods 2025, 14(1), 7; https://doi.org/10.3390/foods14010007 - 24 Dec 2024
Viewed by 1139
Abstract
In the present study, we analyzed the bioactive curcuminoids content in eight capsules (DS-1-DS-7 and DS-9), one tablet (DS-8), three ground turmeric samples (DS-10-DS-12), and three ground turmeric rhizomes (TR-1, TR-2, and TR-3). Initial screening with infrared and ultraviolet–visible spectroscopy coupled with a [...] Read more.
In the present study, we analyzed the bioactive curcuminoids content in eight capsules (DS-1-DS-7 and DS-9), one tablet (DS-8), three ground turmeric samples (DS-10-DS-12), and three ground turmeric rhizomes (TR-1, TR-2, and TR-3). Initial screening with infrared and ultraviolet–visible spectroscopy coupled with a principal component analysis (PCA) revealed distinct differences between the samples analyzed. Hence, targeted and untargeted analyses were performed using ultra-high-performance liquid chromatography and gas chromatography coupled with mass spectrometry detections. The results show that the total curcuminoids content ranged from 1.3 to 69.8 mg/100 mg and the volatile component ranged from 0.7 to 9.1 mg/100 mg. The percentage ratio of the three prominent curcuminoids, bisdesmethoxycurcumin (BMC), desmethoxycurcumin (DMC), and curcumin (CUR), also varied remarkably compared to the expected ratio (BMC:DMC:CUR ratio of 1:2:6) described in the literature. The three prominent volatile compounds identified in most samples were ar-turmerone, turmerone, and curlone. The results demonstrated significant differences in the volatile compound levels among the DS and dried rhizome samples. The non-targeted analysis resulted in the identification of over 40 compounds, including bioactives such as piperine, phenolic acids, and amino acids. A disintegration study was performed on limited DS according to the United States Pharmacopeia protocol. The results reveal that all the selected DS samples passed the disintegration test. An analysis of curcuminoids from DS samples in neutral and acidic solutions demonstrated that all curcuminoids (BMC, DMC, and CUR) existed in the keto and enol forms and their concentrations changed with pH. This study will be of significant interest to manufacturers, consumers, and pharmacologists to accurately understand the bioactivities of three curcuminoids in different isomeric forms. Full article
Show Figures

Figure 1

35 pages, 4474 KiB  
Review
Curcumin Derivatives in Medicinal Chemistry: Potential Applications in Cancer Treatment
by Joanna Kuzminska, Piotr Szyk, Dariusz T. Mlynarczyk, Pawel Bakun, Izabela Muszalska-Kolos, Katarzyna Dettlaff, Agnieszka Sobczak, Tomasz Goslinski and Anna Jelinska
Molecules 2024, 29(22), 5321; https://doi.org/10.3390/molecules29225321 - 12 Nov 2024
Cited by 14 | Viewed by 4486
Abstract
Curcumin, a naturally occurring compound found in the rhizome of Curcuma plants, particularly in turmeric (Curcuma longa L.), exhibits a broad range of biological activities, including anti-inflammatory, antioxidant, and anticancer properties. Curcumin has demonstrated effectiveness in inhibiting tumor growth, arousing interest for [...] Read more.
Curcumin, a naturally occurring compound found in the rhizome of Curcuma plants, particularly in turmeric (Curcuma longa L.), exhibits a broad range of biological activities, including anti-inflammatory, antioxidant, and anticancer properties. Curcumin has demonstrated effectiveness in inhibiting tumor growth, arousing interest for its potential in treating various cancers, such as breast, lung, prostate, and brain cancers. However, the clinical application of curcumin is limited due to its low chemical stability, poor water solubility, and low bioavailability. In response to these challenges, structural modifications of curcumin have been explored to improve its pharmacological properties, including enhanced anticancer selectivity index and bioavailability. This review highlights promising chemical modifications of curcumin that could lead to the development of more effective anticancer therapies. By functionalizing the parent curcumin molecule, researchers aim to create more stable and bioavailable compounds with enhanced therapeutic potential, making curcumin derivatives promising candidates for medical applications. Full article
(This article belongs to the Special Issue Curcumin and Its Derivatives)
Show Figures

Figure 1

22 pages, 2175 KiB  
Article
Impact of Drying Methods on Phenolic Composition and Bioactivity of Celery, Parsley, and Turmeric—Chemometric Approach
by Staniša Latinović, Ladislav Vasilišin, Lato Pezo, Nataša Lakić-Karalić, Dragoljub Cvetković, Aleksandra Ranitović, Sara Brunet, Teodora Cvanić and Jelena Vulić
Foods 2024, 13(21), 3355; https://doi.org/10.3390/foods13213355 - 23 Oct 2024
Cited by 1 | Viewed by 2129
Abstract
Drying is one of the most commonly used methods for food preservation, and in spice processing, it has a significant impact on quality. In this paper, the influences of drying at room temperature, 60 °C, and 90 °C and freeze-drying on celery and [...] Read more.
Drying is one of the most commonly used methods for food preservation, and in spice processing, it has a significant impact on quality. In this paper, the influences of drying at room temperature, 60 °C, and 90 °C and freeze-drying on celery and parsley roots and turmeric rhizomes were examined. The highest content of total phenolics was found in celery dried at 60 °C (C60), parsley at room temperature (PRT), and freeze-dried turmeric (TFD) (1.44, 1.58, and 44.92 mg GAE/gdm, respectively). Celery dried at room temperature (CRT), PRT, and TFD showed the highest antioxidant activity regarding the DPPH and ABTS radicals and FRAP. The analysis of color parameters revealed that celery dried at 90 °C (C90); PFD and TFD showed the most similar values to control samples. The drying process was optimized using a combination of standard score (SS) and artificial neural network (ANN) methods. The ANN model effectively evaluated the significance of drying parameters, demonstrating high predictive accuracy for total phenolics, total flavonoids, total flavonols, total flavan-3-ols, IC50ABTS, and FRAP. TFD showed the strongest α-glucosidase inhibitory potential. Also, TFD extract showed good antibacterial activity against Staphylococcus aureus but not against Escherichia coli. C90 and PFD extracts did not show antibacterial activity against the tested microorganisms. Full article
(This article belongs to the Special Issue Food Drying Applications for Plant Products: A Comparative Analysis)
Show Figures

Figure 1

11 pages, 1928 KiB  
Article
Assessing Antioxidant and Pour Point Depressant Capacity of Turmeric Rhizome Extract in Biolubricants
by Joseph Samuel, Muhammad U. Kaisan, Yinka S. Sanusi, Sunny Narayan, Brahim Menacer, Marian Valenzuela, Alexis Salas, Angelo Oñate, Faisal O. Mahroogi and Víctor Tuninetti
Lubricants 2024, 12(8), 282; https://doi.org/10.3390/lubricants12080282 - 7 Aug 2024
Cited by 6 | Viewed by 1670
Abstract
Natural polyphenols found in plants are secondary metabolites and act as natural antioxidants. Phenols prevent lipid oxidation by donating their hydrogen to free radicals generated between reactions of oxygen with unsaturated fatty acids. This work aims to examine turmeric extract for its capacity [...] Read more.
Natural polyphenols found in plants are secondary metabolites and act as natural antioxidants. Phenols prevent lipid oxidation by donating their hydrogen to free radicals generated between reactions of oxygen with unsaturated fatty acids. This work aims to examine turmeric extract for its capacity to act as an antioxidant and pour point depressant additive in biolubricants. The study involved extracting turmeric rhizome and analyzing the extract using the gas chromatography-mass spectrometry (GC-MS) and Fourier-transform infrared spectroscopy (FTIR) techniques to identify phenolic compounds and the nature of bonds in terms of abundance peak areas. The yield of concentrated turmeric rhizome extract by weight was 3.7%. The FTIR analysis revealed O-H band at 3336 cm−1, C-H asymmetric and symmetric stretching at 2940 and 2834 cm−1, C=C cyclic ring at 1680–1515 cm−1. The phenols detected by the GC-MS technique are phenol, 2 -methoxy-3-(2-propenyl) occupying 36.3% area at 16.5 min retention time and Phenol, 2-methoxy-4-(2-propenyl)-, acetate having 3.8% area at 3.8 min retention time. The results show promising capacity of turmeric rhizome extract to act as antioxidant and pour point depressant additive in biolubricants. Full article
Show Figures

Figure 1

20 pages, 11107 KiB  
Article
Incorporation of Nanostructural Hydroxyapatite and Curcumin Extract from Curcuma longa L. Rhizome into Polylactide to Obtain Green Composite
by Magdalena Osial, Sławomir Wilczewski, Urszula Godlewska, Katarzyna Skórczewska, Jakub Hilus, Joanna Szulc, Agata Roszkiewicz, Agnieszka Dąbrowska, Zahra Moazzami Goudarzi, Krzysztof Lewandowski, Tomasz P. Wypych, Phuong Thu Nguyen, Grzegorz Sumara and Michael Giersig
Polymers 2024, 16(15), 2169; https://doi.org/10.3390/polym16152169 - 30 Jul 2024
Cited by 1 | Viewed by 1735
Abstract
This study showed that a polylactide (PLA)-based composite filled with nanostructured hydroxyapatite (HAp) and a natural extract from the rhizome of Curcuma longa L. could provide an alternative to commonly used fossil-based plasticsfor food packaging. The incorporation of HAp into the PLA matrix [...] Read more.
This study showed that a polylactide (PLA)-based composite filled with nanostructured hydroxyapatite (HAp) and a natural extract from the rhizome of Curcuma longa L. could provide an alternative to commonly used fossil-based plasticsfor food packaging. The incorporation of HAp into the PLA matrix had a positive effect on improving selected properties of the composites; the beneficial effect could be enhanced by introducing a green modifier in the form of an extract. Prior to the fabrication of the composite, the filler was characterized in terms of morphology and composition, and the composite was then fully characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman and Fourier transform infrared spectroscopy (FT-IR), and the mechanical, thermal, thermomechanical, and optical properties were investigated. The proposed material exhibits antioxidant properties against DPPH radicals and antibacterial performance against Escherichia coli (E. coli). The results showed that the nanocomposite has the highest antioxidant and antibacterial properties for 10 wt% HAp with an average diameter of rod-shaped structures below 100 nm. In addition, the introduction of turmeric extract had a positive effect on the tensile strength of the nanocomposites containing 1 and 5% HAp. As the resulting material adsorbs light in a specific wavelength range, it can be used in the medical sector, food-packaging, or coatings. Full article
Show Figures

Figure 1

19 pages, 4973 KiB  
Article
Turmeric–Black Cumin Essential Oils and Their Capacity to Attenuate Free Radicals, Protein Denaturation, and Cancer Proliferation
by Ayodeji Oluwabunmi Oriola
Molecules 2024, 29(15), 3523; https://doi.org/10.3390/molecules29153523 - 26 Jul 2024
Cited by 1 | Viewed by 3203
Abstract
Turmeric rhizomes (Curcuma longa) and black cumin seeds (Nigella sativa) are polyherbal ingredients used for the management of cancer and other chronic inflammatory diseases in Nigerian ethnomedicine. Previous studies have shown the antioxidant, anti-inflammatory, and anticancer activities of the [...] Read more.
Turmeric rhizomes (Curcuma longa) and black cumin seeds (Nigella sativa) are polyherbal ingredients used for the management of cancer and other chronic inflammatory diseases in Nigerian ethnomedicine. Previous studies have shown the antioxidant, anti-inflammatory, and anticancer activities of the individual plant extracts. However, the two spices have not been biologically potentiated in their combined form. Therefore, this study obtained essential oils (EOs) from the combined spices and evaluated their inhibitory effects on free radicals, protein denaturation, and cancer proliferation. The EOs were extracted by hydro-distillation (HD) and characterized by gas chromatography-mass spectrometry (GC-MS). In vitro antioxidant assessment was conducted based on DPPH, hydrogen peroxide (H2O2), nitric oxide (NO), and ferric ion (Fe3+) radical scavenging assays. The cytotoxicity of the oil against non-tumorigenic (HEK293) and cancerous (HepG2 and HeLa) cell lines was determined following the MTT cell viability assay. An in silico molecular docking analysis of the oil constituents was also performed. Six batches of EOs I–VI were afforded, comprising twenty-two major constituents, with aromatic Ar-turmerone being the most prominent compound. There was a marked improvement in the bioactivity of the oils upon repeated HD and as a combination. The batch VI oil exhibited the best activity, with a cytotoxicity (CC50) of 10.16 ± 1.69 µg/100 µL against the HepG2 cell line, which was comparable to 5-fluorouracil (standard, CC50 = 8.59 ± 1.33 µg/100 µL). In silico molecular docking suggested δ-curcumene, Ar-curcumene, Ar-turmerol, and Ar-turmerone among the promising compounds based on their high binding energy scores with NOX2, NF-κB, and mdm2 proteins. In conclusion, the oils from the turmeric–black cumin combined possess a considerable inhibition ability against free radicals, protein denaturation, and cancer proliferation. This study’s findings further underscore the effectiveness of turmeric–black cumin as a polyherbal medicinal ingredient. Full article
(This article belongs to the Special Issue Chemical Composition and Anti-Inflammatory Activity of Essential Oils)
Show Figures

Graphical abstract

27 pages, 6571 KiB  
Article
Cyclocurcumin, a Minor Curcuminoid, Is a Novel Candidate for Hypopigmentary Skin Disorders with Melanogenesis-Stimulating Capacity
by Shilpi Goenka
Drugs Drug Candidates 2024, 3(2), 410-436; https://doi.org/10.3390/ddc3020025 - 17 Jun 2024
Cited by 4 | Viewed by 2549
Abstract
Effective therapies to treat skin hypopigmentation disorders caused by diminished melanin synthesis or export are limited due to potential side effects. In this work, we explored if cyclocurcumin (CYC), a curcuminoid found in minor amounts in turmeric rhizomes, might enhance the process of [...] Read more.
Effective therapies to treat skin hypopigmentation disorders caused by diminished melanin synthesis or export are limited due to potential side effects. In this work, we explored if cyclocurcumin (CYC), a curcuminoid found in minor amounts in turmeric rhizomes, might enhance the process of melanogenesis. CYC did not demonstrate antioxidant activity as evaluated by the DPPH assay. At noncytotoxic concentrations, CYC robustly enhanced melanin synthesis and melanin export in B16F10 mouse melanoma cells, which was correlated to increased cellular tyrosinase activity. The melanogenesis-stimulating efficacy of CYC was enhanced in B16F10 cocultures with HaCaT cells. Next, our results in MNT-1 human melanoma cells confirmed that CYC is a stimulator of both melanin synthesis and melanin export and acts by upregulating microphthalmia transcription factor (MITF) protein, although CYC did not alter tyrosinase protein or tyrosinase activity in MNT-1 cells. Moreover, the examination of CYC in MNT-1:HaCaT cocultures continued to show a more potent effect on stimulating melanin synthesis, as well as its export to recipient keratinocytes. Finally, CYC was shown to demonstrate a potent capacity to stimulate melanin production in primary human melanocytes from a Caucasian donor (HEMn-LP cells), although the effects on cellular tyrosinase activity were biphasic. Taken together, this is the first study to report the novel finding that CYC is a potent promelanogenic candidate that exhibits potential utility in the therapeutic management of skin disorders arising due to hypopigmentation in humans. Future studies that examine the molecular mechanisms and elucidate the promelanogenic efficacy of CYC in vivo are necessary. Full article
(This article belongs to the Section Preclinical Research)
Show Figures

Graphical abstract

Back to TopTop