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Abstract: Turmeric rhizomes (Curcuma longa) and black cumin seeds (Nigella sativa) are polyherbal
ingredients used for the management of cancer and other chronic inflammatory diseases in Nigerian
ethnomedicine. Previous studies have shown the antioxidant, anti-inflammatory, and anticancer activ-
ities of the individual plant extracts. However, the two spices have not been biologically potentiated
in their combined form. Therefore, this study obtained essential oils (EOs) from the combined spices
and evaluated their inhibitory effects on free radicals, protein denaturation, and cancer proliferation.
The EOs were extracted by hydro-distillation (HD) and characterized by gas chromatography-mass
spectrometry (GC-MS). In vitro antioxidant assessment was conducted based on DPPH, hydrogen
peroxide (H2O2), nitric oxide (NO), and ferric ion (Fe3+) radical scavenging assays. The cytotoxi-
city of the oil against non-tumorigenic (HEK293) and cancerous (HepG2 and HeLa) cell lines was
determined following the MTT cell viability assay. An in silico molecular docking analysis of the
oil constituents was also performed. Six batches of EOs I–VI were afforded, comprising twenty-two
major constituents, with aromatic Ar-turmerone being the most prominent compound. There was a
marked improvement in the bioactivity of the oils upon repeated HD and as a combination. The batch
VI oil exhibited the best activity, with a cytotoxicity (CC50) of 10.16 ± 1.69 µg/100 µL against the
HepG2 cell line, which was comparable to 5-fluorouracil (standard, CC50 = 8.59 ± 1.33 µg/100 µL).
In silico molecular docking suggested δ-curcumene, Ar-curcumene, Ar-turmerol, and Ar-turmerone
among the promising compounds based on their high binding energy scores with NOX2, NF-κB,
and mdm2 proteins. In conclusion, the oils from the turmeric–black cumin combined possess a
considerable inhibition ability against free radicals, protein denaturation, and cancer proliferation.
This study’s findings further underscore the effectiveness of turmeric–black cumin as a polyherbal
medicinal ingredient.
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1. Introduction

Reactive oxygen species (ROS) are chemical species that are formed upon incomplete
reduction of oxygen in the biological system [1]. They are oxidants, which include singlet
oxygen (1O2), hydroxyl radicals (·OH), hydrogen peroxide (H2O2), and superoxide anions
(O2·−) [2]. They become highly reactive in nature and can kill cells in the body by oxidizing
cellular components, including proteins, lipids, and nucleic acids, thus causing inflam-
mation [3]. ROS affect multiple inflammatory signaling pathways, including the nod-like
receptor family pyrin domain-containing 3 (NLRP3) inflammasome, the nuclear factor
kappa B (NF-κB), the mitogen-activated protein kinase (MAPK), the Janus kinase-signal
transducer and activator of transcription (JAK/STAT), the nuclear factor erythroid 2-related
factor 2 (Nrf2), and the phosphatidylinositol 3-kinase and protein kinase B (PI3K/Akt)
signaling pathways [4]. Their excessive production over endogenous antioxidant defense
mechanisms contribute to the emergence of oxidative stress, which contributes to the eti-
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ology of several chronic inflammatory diseases such as cardiovascular and autoimmune
diseases, diabetes, and cancer [5,6].

Antioxidants are a group of biologically active substances that protect cells and tissues
of living organisms against the harmful effects of free radicals by ultimately inactivating
ROS [7]. Studies have shown that antioxidants have the capacity to influence key signaling
pathways responsible for inflammation. For instance, they can modulate the activity of
NF-κB, MAPK, tumor necrosis factor (TNF-α) transcription, and arachidone pathways to
reduce inflammation in cells [7,8]. Synthetic antioxidants such as butylated hydroxy anisole,
butylated hydroxy toluene, and propyl gallate are associated with alterations in sleeping,
inducing changes in brain serotonin and norepinephrine levels, thyroid system damage,
metabolic and growth disorders, neurotoxicity, carcinogenesis, and allergic contact dermati-
tis [9–11]. Non-steroidal anti-inflammatory drugs (NSAIDs) such as diclofenac, ibuprofen,
naproxen, nimesulide, and sulindac can cause dyspepsia, ulcers, gastro-intestinal bleeding,
hypertension, and stroke in the cause of inflammation management [12]. In the same
vein, significant incidences of hypokalemia, hypophosphatemia, mucosal inflammation,
stomatitis, nephrotoxicity, neurotoxicity, and ototoxicity have been reported with the use
of the anticancer drugs 5-fluorouracil and cisplatin [13,14]. Thus, there is a continuous
search for less toxic and potent natural products that can effectively inhibit free radicals,
inflammation, and cancer proliferation.

Curcuma longa L. (Zingiberaceae) and Nigella sativa L. (Ranunculaceae), commonly
called turmeric and black cumin, respectively, are two essential oil-bearing (aromatic)
plants, which are widely exploited for their medicinal values [15,16]. Reports have shown
that the rhizomes of turmeric and black cumin seeds are part of the ingredients used in
traditional medicine for the management of rheumatism, metabolic diseases, cancer, and
other inflammatory ailments [17–19]. The potential health benefits of turmeric essential
oils (EOs), as natural antioxidant, anti-inflammatory, and antinociceptive agents, have been
reported with high composition of aromatic Ar-turmerone, curlone, and Ar-curcumene [20].
Similarly, the antioxidant, anti-inflammatory, and anticancer activities of black cumin oil
have been documented, with thymoquinone, p-cymene, and α-phellandrene among its
major constituents [21,22].

Turmeric rhizomes and black cumin seeds are often combined in Nigerian ethnomedicine
for the management of cancer and other chronic inflammatory diseases [23]. A turmeric–black
cumin polyherbal mixture from Pakistan has been reported to demonstrate enhanced efficacy
against metabolic syndrome both in fructose-fed rats and in clinical studies [18,19]. Currently,
there is a dearth of information on the antioxidant, anti-inflammatory, and anticancer prop-
erties of these spices in their combined form as well as their likely bioactive compounds. In
recent times, in silico studies are mostly employed in the process of drug discovery from
natural products (NPs), in conjunction with the acquisition of in vitro data, in order to build
models that facilitate not only the biological potential of NPs but also the identification and
refinement of lead compounds by providing insight into their druglike features in a timely
and cost-effective manner [24,25]. It is on this backdrop that this study reported, for the first
time, six batches of hydro-distilled EOs from a turmeric–black cumin herbal combination as
well as their capacity to inhibit free radicals, protein denaturation, and cancer cell proliferation
in vitro. Furthermore, the putative EO compounds were screened for their activity against
three proteins implicated in ROS, inflammation, and cancer.

The ROS protein nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2
(NOX2) is a multi-subunit enzyme complex that participates in the generation of superoxide
or hydrogen peroxide (H2O2). The hyperactivation of NOX2 increases oxidative stress,
which is involved in the pathogenesis of several diseases [26]. The inflammatory protein
NF-κβ is known to mediate cytokine production and cell viability and has occasionally
been linked to the etiology of cancer and autoimmune diseases [27]. Lastly, the cancer
protein E3 ubiquitin-protein ligase (mdm2), employed in this study, functions as a negative
regulator of the tumor suppressor gene (p53), increasing the risk of cancer [28]. Therefore,
sourcing natural products that can effectively inhibit the NOX2, NF-κβ, and mdm2 proteins
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may be a worthwhile strategy for the identification of ROS, inflammation, and cancer drug
candidates, respectively. Thus, the EO compounds identified in the turmeric–black cumin
combined, were further potentiated against the NOX2 (7U8G), NF-κβ (1NFK), and mdm2
(3W69) proteins following in silico molecular docking studies.

2. Results and Discussion
2.1. Physicochemical Characterization and TLC–Bioautography of Turmeric–Black Cumin Oils

Six batches of essential oils (EO I–VI) were obtained from the HD of Turmeric–black
cumin combined, as presented in Table 1. Generally, the EOs gave a woody aroma. It
is of note that the oils became roasty in aroma following the collection of batches III–V.
The spice mixture later became smoky during the collection of batch VI and had a foamy
appearance, indicating exhaustive HD of the oil from the herbal material. There was a
marked increase in the oil yield upon repeated extraction from batches I–IV, followed by a
noticeable reduction during extraction from batches IV–VI. As illustrated in Figure 1, there
was an observable change in the color intensity of the oils, from yellow, through red, to a
dark brown appearance. A preliminary assessment of the 2,2-diphenyl-1-picrylhydrazyl
(DPPH) rapid radical action of the EOs based on TLC-bioautography (Figure 1) revealed the
presence of strong free-radical-scavenging constituents, with batches III–VI having more
of such antioxidant (Ax) constituents. It is possible that repeated HD may be considered
for obtaining a good-quality yield of the free-radical-scavenging components from the
Turmeric–black cumin combined.

Table 1. Physical properties of EOs from turmeric–black cumin combined.

Essential Oil Color Sensory Characteristics % Yield

I Yellow Earthy, woody 0.35
II Golden yellow Earthy, woody 0.39
III Red Earthy, woody, roasty 0.41
IV Reddish brown Earthy, woody, nutty, roasty 0.43
V Reddish brown Woody, nutty, roasty 0.33
VI Dark brown Woody, nutty, smoky 0.25

Six batches of essential oils (I–VI), % yield expressed as w/w (g) × 100, starting weight of herbal material = 400 g.

2.2. Chemical Composition of Turmeric–Black Cumin Essential Oils

Gas chromatography–mass spectrometry (GC-MS) is a conventional hybrid method
designed for the separation and characterization of volatile and non-volatile constituents
of plant extracts. It is a specific, sensitive, linear, accurate, and precise analytical technique
for analyzing multicomponent plant-based substances containing terpenes [29]. The re-
sults of the GC-MS analysis of the turmeric–black cumin EOs are presented in Table 2. A
total of twenty-two (22) major constituents were identified in the six oil batches. Three
sesquiterpenoids, Ar-turmerone, curlone, and α-turmerone, were among the major con-
stituents in the oils. Also observed was a steady increase in the percentage composition
of Ar-turmerone upon repeated HD from batches I–V, with contents of 17.17% in batch I,
54.88% in batch III, and 91.97% in batch V. Studies have shown that turmerones in their Ar,
α, and β (curlone) forms are part of the major constituents of turmeric oil [30–32], while
they have also been reported to be present in black cumin seeds in trace amounts [33].
The presence of o- and p-cymene, α-phellandrene, o-guaiacol, and fatty acids (palmitic,
oleic, and stearic acids) in the oils were contributed by the black cumin seeds, as these
constituents have been reported in this plant [34,35].
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Figure 1. Six batches of essential oils from the hydro-distillation process, showing variation in oil
color and free-radical-scavenging properties. [TLC-bioautography of the oils revealed yellowish
spots against the purple DPPH background, indicating the presence of antioxidant (Ax) constituents
in the oils].

Table 2. Chemical composition of essential oils from turmeric–black cumin combined.

S/N Major Essential Oil Constituent tR (min) KI a KI [36–38]
% Composition of Oil

I II III IV V VI

1 α-Phellandrene 11.59 1004 1003 - - 1.17 - - -
2 p-Cymene 12.35 1022 1020 4.38 - - - - -
3 o-Cymene 12.40 1025 1022 2.29 1.13 - - - -
4 p-Cresol 12.51 1074 1071 - - 13.28 - - -
5 o-Guaiacol 12.60 1090 1087 - - - - - 37.12
6 Trans-4-methoxy thujane 15.68 1124 1120 0.99 - - - - -
7 4-Methyl-1-(1-methylethyl)-3-cyclohexenol 17.58 1176 1171 2.26 - - - - -
8 p-Thymol 21.27 1334 1332 1.27 - - - - -
9 2-epi-α-Funebrene 22.63 1385 1380 0.82 - - - - -
10 Ar-Curcumene 26.33 1481 1480 4.01 - - - - -
11 δ-Curcumene 26.57 1483 1486 1.04 - - - - -
12 β-Sesquiphellandrene 27.03 1523 1521 2.43 - - - - -
13 Ar-Turmerol 28.34 1580 1582 - 1.85 - - - -
14 Ar-Turmerone 30.39 1673 1672 17.17 46.39 54.88 59.61 91.97 58.82
15 α-Turmerone 31.15 1683 1680 9.21 18.22 7.13 - - -
16 Curlone 31.19 1701 1701 8.53 22.29 17.37 31.31 - -
17 (Z)-γ-Atlantone 31.24 1744 1706 0.50 - - - - -
18 (Z)-α-Atlantone 31.42 1720 1717 0.53 0.50 - - - -
19 (E)-α-Atlantone 32.70 1777 1773 2.18 2.51 2.46 - - -
20 Palmitic acid 36.86 1969 1965 29.21 - - - - -
21 Oleic acid 39.83 2142 2140 7.79 - - - - -
22 Stearic acid 40.17 2180 2177 1.43 - - - - -

Total 96.04 92.89 96.29 90.92 91.97 95.94

a Kovats’ index (KI) on HP-5 MS column fused with 5% phenylmethylsiloxane at 5 ◦C/min for 50–240 ◦C in
reference to n-alkanes, absent (-), retention time (tR), six essential oil batches (I–VI).

2.3. Free-Radical-Scavenging Activity

Spectrophotometric methods are analytical techniques employed for the quantitative
measurement of the free-radical-scavenging activity of natural products due to their sen-
sitivity, reproducibility, rapidness, and cost-effectiveness [39]. They measure the relative
abilities of antioxidants in any particular extract to scavenge free radicals in comparison
with standard antioxidants such as L-ascorbic acid, gallic acid, and trolox [39]. In this
study, spectrophotometric methods such as the 2,2-diphenyl-1-picrylhydrazyl (DPPH),
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hydrogen peroxide (H2O2), nitric oxide (NO), and ferric ion (Fe3+) radical scavenging assay
methods were used to determine the antioxidant activities of the EOs obtained from the
turmeric–black cumin combined spice, as indicated by the 50% inhibitory concentration
(IC50) of the radicals as well as the ascorbic acid equivalent (AAE).

The results (Table 3) showed a general improvement in the free-radical-scavenging
capacity of the turmeric–black cumin herbal combination upon repeated HD, with the
batch VI oil showing more activity than each of the separate oils. The batch VI oil, with
Ar-turmerone (58.82%) and guaiacol (37.12%) as its major constituents, showed significantly
(p < 0.05) better activity than the batch V oil containing mainly Ar-turmerone (91.97%),
suggesting that both Ar-turmerone and o-guaiacol contributed to the antioxidant capacity
of the former. Studies have shown that turmeric alone, having a 61.79% content of Ar-
turmerone, is capable of scavenging free radicals such as DPPH, superoxide, and hydroxyl
radicals at 1000, 135, and 200 µg/mL IC50 values, respectively [20]. Also, o-guaiacol,
which was found to be the major component (39.12%) in black cumin, has previously
been documented to exhibit strong antioxidant properties [40,41]. Therefore, it may not
be far-fetched to mention that the repeated HD of the turmeric-black cumin combined
afforded EOs with improved antioxidant activity, while Ar-turmerone and o-guaiacol
may have jointly influenced the antioxidant activity of the oil in terms of scavenging free
radicals. It is also worth mentioning that the remarkable free-radical-scavenging activity
of the batch VI oil further underscores the usefulness of the two spices for polyherbal
medicinal applications.

Table 3. Antioxidant activity of essential oils from turmeric–black cumin combined.

Essential Oil
IC50 ± S.D. (µg/mL)

FRAP (mgAAE/g ± S.D.)
DPPH H2O2 NO

I 63.29 ± 2.08 75.88 ± 4.15 41.62 ± 3.01 331.72 ± 23.79
II 30.41 ± 1.64 55.70 ± 2.72 49.83 ± 2.14 476.08 ± 34.04
III 33.15 ± 3.06 26.91 ± 2.16 20.49 ± 1.48 519.67 ± 18.25
IV 44.92 ± 2.55 30.24 ± 1.86 21.71 ± 2.62 * 488.63 ± 27.12
V 35.47 ± 2.21 32.41 ± 2.30 28.30 ± 2.55 451.85 ± 20.93
VI 14.14 ± 1.63 * 12.69 ± 1.55 * 22.36 ± 1.10 * 679.20 ± 31.37 **

Turmeric oil 30.19 ± 2.44 28.64 ± 1.75 26.79 ± 1.44 535.10 ± 12.33
Black cumin oil 61.58 ± 2.13 41.53 ± 2.62 43.56 ± 3.30 288.68 ± 17.05
L-ascorbic acid 8.91 ± 1.07 * 9.01 ± 0.81 * 11.49 ± 1.08 * NA

Turmeric–black cumin essential oil batches (I–VI), data are expressed as mean ± standard deviation (S.D., n = 3),
NA—not applicable, values significantly (p < 0.05) lower than turmeric oil are indicated with an asterisk (*), while
samples with a double asterisk (**) indicate that the ferric-reducing antioxidant power (FRAP) of sample was
higher than that of turmeric oil alone at p < 0.01.

2.4. Inhibitory Effect of Oils on Protein Denaturation

Protein denaturation has been well correlated with the occurrence of chronic inflam-
matory diseases including cancer [42,43]. The egg albumin (protein) denaturation test is
a fast and reliable analytical technique for assessing the anti-inflammatory response of
natural products [44]. The mean percentage inhibitions of the oils from batches I–VI on
egg albumin denaturation are presented in Figure 2. The results showed a concentration-
dependent increase in inhibition. At the lowest test concentration, diclofenac demonstrated
comparable activity to the oils from batches VI, III, and II with about 20% inhibition.
Moreover, at a higher concentration of 25, the batch VI oil exhibited a 75.15 ± 2.19%
inhibition, which was significantly (p < 0.01) higher in activity compared to diclofenac
(66.05 ± 1.77% inhibition) but comparable with the batch III oil (73.56 ± 1.47% inhibi-
tion). At 50 and 100 µg/mL, batches III and VI and diclofenac were all comparable.
The 50% inhibitory effects of the oils (IC50) assisted in the final ranking of the activity
of the EOs. Overall, the batch VI oil demonstrated the best activity, with an IC50 of
25.36 ± 1.61 µg/mL. Interestingly, the activity displayed by the batch VI oil was com-
parable with diclofenac, with an IC50 of 21.57 ± 2.66 µg/mL. The study findings are in
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agreement with the antioxidant activity pattern of the oils described earlier. This may
imply that their inhibitory activity may be due to the displayed free-radical-scavenging
activity. Ar-Turmerone and guaiacol, which were the major constituents identified in the
batch VI oil, are known anti-inflammatory agents. Ar-Turmerone has been reported to
alleviate skin inflammation in HaCaT keratinocytes by inactivating the Hedgehog path-
way [45], while the latter has been reported to demonstrate anti-inflammatory activity
by inhibiting lipopolysaccharide (LPS)-stimulated NF-κB activation and cyclooxygenase
(COX)-2 gene expression in a murine macrophage cell line (RAW 264.7) [46]. Further
assessment was carried out to determine the potency level of the oils as separate entities
(turmeric alone and black cumin alone) and in combination (batch VI oil) (Figure 3). The
batch VI oil showed a higher inhibition of EAD than each of the separate oils across the
tested concentrations. At 25 µg/mL, it exhibited a significantly (p < 0.01) higher activity
(76.82 ± 2.31% inhibition) than diclofenac (68.27 ± 1.53% inhibition) at the same concen-
tration. However, it exhibited comparable activity with diclofenac at higher concentrations
(50 and 100 µg/mL). The activity (IC50) ranking of the tested samples is presented as fol-
lows: diclofenac (17.19 ± 1.88 µg/mL) > batch VI oil (22.17 ± 2.19 µg/mL) > turmeric oil
(46.33 ± 0.97 µg/mL) > black cumin oil (105.56 ± 3.37 µg/mL). This study has also shown
that a combination of turmeric and black cumin may better attenuate protein denatura-
tion, leading to an enhanced anti-inflammatory response than when utilized as separate
herbal ingredients.
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2.5. Anticancer Activity

The MTT cell viability test is a versatile and popular colorimetric assay method that
involves the conversion of the water-soluble yellow dye MTT [3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide] to an insoluble purple formazan by the action of
mitochondrial reductase [47]. The formazan is then solubilized, and the concentration
is determined by the optical density, producing excellent linearity up to ~106 cells per
well and allowing one to detect cell stress upon exposure to cytotoxic agents [47]. The
MTT assay method was used in this study to determine the level of viability of HEK293,
HepG2, and HeLa cell lines after treatment with the turmeric–black cumin oils at varying
concentrations and under standard conditions, thus evaluating the potency (cytotoxicity) of
the oils, as presented in Table 4. The results showed that each of the six oil batches demon-
strated a lower level of cytotoxicity to the non-tumorigenic cell line HEK293 compared
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to 5-fluorouracil, which gave a CC50 value of 16.18 ± 1.43 µg/100 µL. However, the black
cumin oil alone showed the highest cytotoxicity to this cell line among the oils at a CC50
value of 37.16 ± 2.17 µg/mL. A previous chronic toxicity investigation of black cumin oil
showed a mild toxicity at 2 mL/kg [48].
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Table 4. Anticancer activity of essential oils from turmeric–black cumin combined.

Essential Oil
CC50 ± S.D. (µg/100 µL)

HEK293 HepG2 HeLa

I 38.96 ± 2.02 12.77 ± 2.38 b 17.53 ± 1.11 *
II 58.84 ± 3.18 26.30 ± 1.88 f 28.92 ± 2.68
III 41.42 ± 2.62 32.18 ± 2.09 g 39.74 ± 3.13
IV 76.60 ± 3.55 31.05 ± 2.61 g 25.07 ± 2.06
V 47.06 ± 2.41 18.72 ± 1.17 c 23.51 ± 2.12
VI 46.98 ± 1.80 10.16 ± 1.69 ab 14.83 ± 2.05 *

Turmeric oil 42.97 ± 2.26 21.79 ± 1.01 d 22.07 ± 2.22
Black cumin oil 37.16 ± 2.17 * 24.43 ± 1.64 e 29.48 ± 2.57
5-Fluorouracil 16.18 ± 1.43 * 8.59 ± 1.33 a 9.71 ± 1.25 *

Turmeric–black cumin essential oil batches (I–VI), non-tumorigenic cell line (HEK293), liver cancer cell line
(HepG2), cervical cancer cell line (HeLa), data are expressed as mean ± standard deviation (S.D., n = 3), values
significantly (p < 0.05) lower than turmeric oil alone are indicated with an asterisk (*), values with different
alphabets in superscript were significantly different at p < 0.001, concentration that causes 50% cytotoxicity (CC50).

Further assessment of the cytotoxicity of the oils against the cancerous HeLa cell line
showed batch VI, which contained Ar-turmerone and o-guaiacol, exhibiting the best activity
among the oils. This was closely followed by the batch I oil (CC50 = 17.53 ± 1.11 µg/100 µL),
which contained 18 of the 22 identified constituents. Additionally, the batch VI oil gave the
best activity against the liver cancer cell line HepG2, with a CC50 of 10.16 ± 1.69 µg/100 µL,
and this was comparable to 5-fluorouracil (CC50 = 8.59 ± 1.33 µg/100 µL) and the batch I
oil (CC50 = 12.77 ± 2.38 µg/100 µL). Turmeric oil alone has been reported to exhibit 100%
cytotoxicity against the pancreatic cancer cell line PANC-1 at 110.5 µg/mL, yielding a CC50
of 73.7 µg/mL for the unpurified oil fraction, and a CC50 of 23.3 µg/mL for the purified oil
fraction [49]. Black cumin oil has also been reported to demonstrate a CC50 ≤ 250 µg/mL
against the human liver cancer cell line A59 [50]. Based on the study findings, the oils from
batches VI and I may be candidate cytotoxic agents against cervical (HeLa) and liver (HepG2)
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cancer cells. It has also been demonstrated through this study that turmeric and black cumin
spices may be more effective as a combination rather than as separate administrations, while
the improvement in the anticancer activity following repeated HD may be an indication to
adopt this extraction method to obtain the putative bioactive constituents of the turmeric–
black cumin combined.

2.6. In Silico Molecular Docking

The major constituents identified in the EOs of the turmeric–black cumin combined
were molecularly docked against the NOX2, NF-κβ, and mdm2 proteins. Table 5 displays
the binding energy scores of the oil constituents against the NOX2 protein. The results
of the study showed that Ile67, Leu186, Ile189, Phe216, Phe215, Phe212, His209, His101,
Leu68, Val71, Arg284, His210, Tyr280, Trp206, Arg287, Arg73, Phe202, Phe205, Arg198,
Leu98, His101, Ser193, Trp106, Lys102, Ala105, Ile190, and Ile108 formed the active site
pocket in NOX2 (PDB ID 7U8G) (Figure 4). Among the twenty-two phytocompounds,
Ar-curcumene showed the best binding energy score of −8.0 kcal/mol with hydrophobic
interactions (Ile108, Phe216), Pi-alkyl interactions, including Ile67, Leu68, Val71, His 101,
Ala105, Leu186, Ile189, Ile190, His209, and Phe212, and Pi-sigma interactions (Phe215)
(Figure 5A). It is interesting to note that these residues found in the active site (Figure 4)
were linked to Ar-curcumene, a substance that has been demonstrated to play a crucial
part in the interaction between NOX2 and small-molecule inhibitors (Figure 5A). The
enzyme NOX is a membrane-bound ROS producer. When the enzyme NOX moves an
electron from one oxygen atom to another, superoxide is created. Catalase (CAT) uses
reduced glutathione (GSH) to further catalyze the conversion of H2O2, during which it
first converted from superoxide to water [51]. The standard L-ascorbic acid showed a
binding energy score of −5.7 kcal/mol with hydrophobic interactions (His115, His119,
Ala175, and Ile182) and hydrogen bond interactions (Gly176, Gly179, Thr183, and His222)
(Table 5 and Figure 5B).

Table 5. Binding energy scores of essential oil constituents from Turmeric–black cumin combined
with NOX2, NF-κβ, and mdm2 proteins.

Essential Oil Compounds
Binding Energy Score kcal/mol

NOX 2 NF-κβ mdm2

α-Phellandrene −7.1 −4.9 −6.3
p-Cymene −7.1 −4.8 −5.5
o-Cymene −6.9 −5.1 −5.1
p-Cresol −6.5 −4.2 −5.8

o-Guaiacol −5.2 −4.5 −4.4
Trans-4-methoxy thujane −5.4 −4.7 −4.2

4-Methyl-1-(1-methylethyl)-3-cyclohexenol −5.7 −5.5 −6.0
p-Thymol −5.5 −5.8 −4.5

2-epi-α-Funebrene −7.3 −5.6 −6.9
Ar-Curcumene −8.0 −6.1 −7.1
δ-Curcumene −7.8 −8.1 −8.5

β-Sesquiphellandrene −7.4 −6.2 −6.8
Ar-Turmerol −7.5 −5.8 −6.5

Ar-Turmerone −7.5 −5.7 −6.1
α-Turmerone −7.2 −5.3 −6.5

Curlone −7.1 −5.7 −5.1
(Z)-γ-Atlantone −7.2 −6.2 −6.2
(Z)-α-Atlantone −6.9 −5.8 −5.2
(E)-α-Atlantone −7.5 −5.3 −4.9

Palmitic acid −5.8 −4.7 −4.5
Oleic acid −5.1 −4.1 −4.3

Stearic acid −5.5 −4.3 −4.7

Standard L-ascorbic acid
(−5.7)

Diclofenac
(−5.9)

5-Fluorouracil
(−4.7)
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The NF-κβ protein and the native ligand produced the active site pocket (Figure 6).
The molecule δ-curcumene was found to have a slight upper hand compared to the re-
maining constituents, returning a binding energy score of −8.1 kcal/mol with hydrophobic
interactions (Arg161, Gly162, Asn164, Gly166, Leu176, Gln177, and Thr226) and Pi-alkyl
interactions (Pro165, Leu167, Phe217, and Arg228) with the protein NF-κβ (Figure 7A).
However, the standard diclofenac was not far behind, as it showed a value of −5.9 kcal/mol,
with hydrophobic interactions (Gly162, Asn164, Leu173, Ala174, Gln177, Phe217, and
Thr226), hydrogen bonds (Leu167), Pi-alkyl interactions (Pro165), and Pi-cation (Arg228)
interactions (Table 5 and Figure 7B). Interestingly, Figure 6 shows that these active site
residues were associated with δ-curcumene, a substance that has been shown to have a
significant role in the interaction between mdm2 and small-molecule inhibitors (Figure 7A).
NF-κβ is known to be a primary source of inflammation. It also regulates cell viability
and cytokine production and has occasionally been linked to autoimmune disorders and
cancer [52]. Therefore, for illnesses associated with inflammation, blocking this protein
may be a good strategy.
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The active site residues in mdm2 are depicted in Figure 8. The active regions in the
tertiary structures of enzymes are often located in a “cleft”, which requires substrate and
product diffusion. Due to the folding necessary for the tertiary structure, the amino acid
residues of the active site may be separated greatly in the primary structure [53]. Changes in
the structure of amino acids at or near the active site of an enzyme typically affect the activity
of the enzyme because of their important involvement in substrate binding and attraction.
Proteins can frequently be stabilized through complexation with small molecules, nucleic
acids, substrates, or cofactors [53]. A binding energy score of −8.5 kcal/mol was observed
in the interaction of δ-curcumene with hydrophobic interactions (Leu54, Gly58, and Ile103)
and Pi-alkyl interactions (Leu57, Ile61, Met62, Tyr67, Val75, Phe86, Phe91, Val93, and Ile99)
with the mdm2 protein (Table 5 and Figure 9A). The standard 5-fluorouracil showed a
binding energy score of −4.7 kcal/mol with hydrophobic interactions (Tyr67, Gly87, Asn79,
and Val88), hydrogen bonding (Arg65, Ser78, and Gly83), Pi-alkyl interactions (Pro89) and
Pi-anion interactions (Asp68, Glu69, and Asp84) (Table 5 and Figure 9B). Interestingly, these
residues identified in the active site (Figure 8) were associated with δ-curcumene, which
is essential for the interaction of mdm2 with small-molecule inhibitors (Figure 9A). It is
also worth mentioning that 5-fluorouracil did not bind to any of the active site residues
of the mdm2 protein, unlike δ-curcumene. This in silico result might be the reason for the
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lower binding energy score of 5-fluorouracil (−4.7 kcal/mol) compared to δ-curcumene
(−8.5 kcal/mol). Thus, δ-curcumene showed considerable outcomes in terms of its in silico
analysis. Studies have shown the involvement of α-curcumene from Curcuma zedoara in the
in vitro anti-proliferation of the ovarian cancer cell line SiHa based on the concentration-
dependent activation of caspase-3, which is one of the main executors of the apoptotic
process [54].
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3. Materials and Methods
3.1. Preparation of Herbal Material

The rhizomes of Curcuma longa (turmeric) and the seeds of Nigella sativa (black cumin)
were collected from Osogbo, Osun State, Nigeria (latitude 7◦33′00′′ N and longitude
4◦33′00′′ E). They were authenticated by a plant taxonomist, Herbert C. Illoh, while the
herbarium specimens were deposited at the Ife Herbarium, Obafemi Awolowo University
(Ile-Ife, Nigeria), with voucher numbers 18,597 (turmeric) and 18,599 (black cumin) for
future reference.

3.2. Hydro-Distillation (HD) of Turmeric–Black Cumin Combined Spice

A total of 200 g each of the chopped rhizomes of turmeric and the seeds of black cumin
were mixed and introduced into a 5 L round-bottomed flask containing 2.5 L of distilled
water. The combined spice was hydro-distilled for its EOs on a Clevenger apparatus, as
described by Oyedeji et al. [55] with slight modification. The heating mantle temperature
was set at 100 ◦C with constant boiling for 3 h, after which it was allowed to cool. Then, the
first batch of oil was collected over n-hexane, followed by drying over anhydrous sodium
sulfate to remove excess solvent from the oil. The HD was repeated five times until there
was no visible sign of oil distilling out of the system. The afforded batches of oil were
collected in amber vials and refrigerated until further analysis.

3.3. Physicochemical Analyses of Turmeric–Black Cumin Oils

The EOs were physically characterized by color, odor, and percentage yield. Thin-
layer chromatography (TLC)-bioautography was carried out on Silica gel 60 F254 GF
plates (0.25 mm, Merck KGaA, Darmstadt, Germany), with the TLC plates developed in
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a pre-saturated tank of n-hexane–ethyl acetate (9:1) in duplicate. The chromatograms
were sprayed with 10% sulfuric acid and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical
(Sigma-Aldrich, St. Louis, MO, USA) for the general detection of organic compounds and
the qualitative assessment of the free-radical-scavenging properties, respectively [56].

3.4. GC-MS Analysis of Turmeric–Black Cumin Oils

The EOs were chemically analyzed on a Bruker 450 Gas Chromatograph connected to
a 300 MS/MS mass spectrometer system (Karlsruhe, Germany) following the method of
Miya et al. [57]. The GC-MS system was operated in an electrospray ionization (EI) mode at
70 eV. The gas chromatogram comprised an HP-5 MS fused silica capillary system (Agilent,
Santa Clara, CA, USA) with 5% phenylmethylsiloxane as the stationary phase. The capillary
column parameters were 30 m in length by 0.25 mm in internal diameter by 0.25 µm in film
thickness. The column temperature was increased from 50–240 ◦C at a rate of 5 ◦C/min,
while the final temperature was maintained at 450 ◦C for a duration of 66 min. The carrier
gas was helium (1.0 mL/min flow rate), the scanning range was 35–450 amu, and the
split ratio was 100:1. One microliter (1 µL) of the diluted oil (50 µL oil:350 µL hexane) was
injected for the analysis. The percentage composition of the chemical constituents was
computed from the GC peak areas. Identification of the oil constituents was conducted
based on the spectral matching of their fragmentation patterns, with the constituents
recorded in the system database. Each constituent was confirmed by comparison of its
Kovats’ index (KI) to those reported in the NIST Standard Reference Database and other
sources in the literature [36–38].

3.5. Free Radical Scavenging Analyses of EOs
3.5.1. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Spectrophotometric Assay

This was carried out by following the standard experimental procedures for DPPH as-
says [58]. An amount (0.5 mL) of 0.1 mM DPPH radical in methanol was added to 0.5 mL of
serially diluted test samples (EOs and L-ascorbic acid) at 100, 50, 25, 12.5, 6.25, and 3.125 µg/mL
concentrations in triplicate. The separate oils of turmeric and black cumin were also tested
for reference purposes. The reaction mixture was incubated in the dark at 25 ◦C for 30 min.
The absorbance was measured at 517 nm on a 680-Bio-Rad Microplate Reader (Serial Num-
ber 14966, Hercules, CA, USA). The percentage inhibition of the radical was calculated according
to Equation (1):

% Inhibition =
ABScontrol − ABSsample

ABScontrol
× 100 (1)

where ABSsample = absorbance of the test sample, i.e., EOs and L-ascorbic acid. ABScontrol
= absorbance of the negative control (methanol).

3.5.2. Nitric Oxide (NO) Inhibition Assay

The inhibitory effect of the EOs against the NO radical was investigated using the
method described by Jimoh et al. [59]. Here, 0.5 mL of the test samples at varying con-
centrations (100–3.125 µg/mL) was added to sodium nitroprusside (2 mL, 0.2 mM) in
triplicate. The reaction mixture was incubated at 25 ◦C for 3 h. Then, 0.5 mL of the mixture
was mixed with Griess reagent [0.33% sulphanilamide dissolved in 20% glacial acetic acid
and mixed with 1 mL of naphthylethylenediamine chloride (0.1% w/v)]. The mixture
of the complex and Griess reagent was then incubated at room temperature for 30 min.
Thereafter, it was measured at an absorbance of 540 nm on a 680-Bio-Rad Microplate Reader
(Serial Number 14966, Hercules, CA, USA). The percentage inhibition of the NO radical
was calculated using Equation (1).

3.5.3. Hydrogen Peroxide Inhibition Assay

The ability of the essential oils to inhibit the H2O2 radical was measured using the
standard colorimetric method, as described by Okeleye et al. [60]. The test samples (400 µL
each) were serially diluted from 100 to 3.125 µg/mL concentrations and mixed with 60 µL
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of hydrogen peroxide solution (4 mM) prepared in 0.1 M phosphate-buffered saline (pH 7.4)
in triplicate inside a 96-well plate. The reaction mixture was incubated at room temperature
(≈25 ◦C) for 10 min. Thereafter, the absorbance was measured at 405 nm on a 680-Bio-Rad
Microplate Reader (Serial Number 14966, Hercules, CA, USA). The percentage inhibition of
the peroxyl radical was determined using Equation (1).

3.5.4. Ferric-Reducing Antioxidant Power (FRAP) Assay

This procedure was conducted based on the ability of the EOs to reduce the greenish
ferric ion (Fe3+) 2,4,6-tri-(2-pyridyl)-1,3,5-triazine (TPTZ) to the bluish ferrous ion (Fe2+)
at a 593 nm absorbance measurement, as previously described by Benzie and Strain [61].
Thus, the ferric-reducing power of the essential oils was determined as the ascorbic acid
equivalent (AAE) from the calibration curve of the positive control (L-ascorbic acid) at
concentrations of 1000, 500, 250, 125, 62.5, and 31.25 µg/mL in methanol.

3.6. In Vitro Anti-Inflammatory Analysis of EOs

This procedure was performed using the protein denaturation assay method described
by Chatterjee et al. [62]. A reaction mixture comprising 0.2 mL of the albumin content of
fresh chicken egg, 2.8 mL of phosphate-buffered saline (pH 6.4), and 2 mL each of the EOs
at varying concentrations (100–6.25 µg/mL) was prepared in triplicate. The mixture was
incubated at 37 ◦C for 15 min away from direct light and thereafter boiled at 70 ◦C for 5 min
in a thermostatic water bath. The resulting mixture was cooled, and the absorbance was
measured at 655 nm on a 680-Bio-Rad Microplate Reader (Serial Number 14966, Hercules,
CA, USA). Diclofenac and separate oils of turmeric and black cumin were also tested for
reference purposes. The percentage inhibition of the test samples was calculated according
to Equation (1).

3.7. Cytotoxicity Study
3.7.1. Cell Culture

The human hepatocarcinoma (HepG2) and cervical (HeLa) cancer cell lines were
supplied by Highveld Biologicals (Pty) Ltd., Lyndhurst, South Africa. The non-tumorigenic
HEK293 cell line, which served as the control, was obtained from the University of Witwa-
tersrand Medical School, South Africa. The culture medium comprised Eagle’s Minimal
Essential Medium (EMEM) with L-glutamine from Lonza BioWhittaker (Verviers, Belgium),
fetal bovine serum (FBS) from HyClone UK Ltd. (Cramlington, Northumberland, UK),
and penicillin/streptomycin mixture (10,000 U/mL penicillin, 10,000 µg/mL streptomycin)
from Lonza BioWhittaker (Verviers, Belgium). Sterile plastic wares for the cell culture were
purchased from Corning Inc. (Corning, NY, USA), while 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) salt and dimethylsulphoxide (DMSO) were purchased
from Merck, Darmstadt, Germany.

3.7.2. MTT Assay

The cytotoxicity of the EOs against the HEK293, HepG2, and HeLa cell lines was
determined based on the MTT assay method that was previously described by Jagaran and
Singh [63]. The three cell lines were propagated in growth medium (EMEM supplemented
with 10% (v/v) FBS, 100 U/mL penicillin, and 100 µg/mL streptomycin). Cells were seeded
at an average density of 25,000 cells/well in 96-well plates and maintained at 37 ◦C for 24 h
to reach semi-confluency. The cells were prepared by draining the wells and adding fresh
medium (100 µL/well). The EOs were dissolved in 10% (v/v) DMSO with brief vortexing
and sonication. Stock concentrations of the oils comprising 1, 2.5, 5, 7.5, and 10 µg/µL were
prepared. The test samples, which comprised the combined spice oils (10 µL each), the stan-
dard anticancer drug (5-fluorouracil), and the reference oils (turmeric alone and black cumin
alone), were introduced to give final concentrations of 10, 25, 50, 75, and 100 µg/100 µL in
triplicate. The final concentration of DMSO to which the treated cells were exposed was 1%
(v/v). Untreated cells were included as positive (100% cell viability) controls. Cells treated
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with 10% (v/v) DMSO (10 µL/well) served as additional controls. Cells were incubated at
37 ◦C for 48 h. The growth medium was aspirated, and the cells were incubated (37 ◦C,
4 h) with 100 µL each of the medium and MTT solution (5 mg/mL in PBS) per well. The
wells were drained, and formazan crystals were dissolved in DMSO (100 µL/well) to give
purple-colored solutions. Absorbance was read at 540 nm in a Mindray microplate reader,
MR 96A (Vacutec, Hamburg, Germany), against pure DMSO as a blank. The percentage
cell viability was calculated as per Equation (2):

[A540nm(treatedcells)− A540nm(blank)]
[A540nm(untreatedcells)− A540nm(blank)]

× 100 (2)

The concentration that showed 50% cytotoxicity (reduced the viability of each cell line
by 50%) was determined as the CC50 value of each test sample in µg/100 µL.

3.8. In Silico Molecular Docking of EO Constituents
3.8.1. Preparation and Refinement of the Protein and Ligand Structures

The investigation involving molecular docking was carried out using the major com-
pounds identified in the EOs of turmeric–black cumin combined against oxidative stress
and inflammation. The PDB structures of NOX 2, NF-κβ, and mdm2, with PDB Ids
7U8G [64], 1NFK [65] and 3W69 [66], respectively, were acquired from the Protein Data
Bank (http://www.rcsb.org). To prepare the protein structures for docking, polar hy-
drogen atoms and Kollman charges were added after the removal of water atoms using
AutoDockTools. The concerned phytocompounds were downloaded from NCBI PubChem
(https://pubchem.ncbi.nlm.nih.gov/, accessed on 12 May 2024). The Open Babel Server
was then used to transform the downloaded sdf structures into pdb structures [67]. The
ligand structures underwent energy minimization using a Gromos 96 force field after the
PRODRG server [68] was used to optimize their energy.

3.8.2. Determination of the Active Site and Molecular Docking

The active sites of the proteins (NOX2, NF-κβ, and mdm2) were predicted using the
literature [64,66,69] and validated through the CASTp 3.0 (Computed Atlas of Surface
Topography of Proteins) online server [70]. The processed proteins without a native
inhibitor were uploaded to the CASTp 3.0 server, and the top result from the best 3 potential
ligand-binding sites was chosen for docking. The amino acid residues predicted by CASTp
3.0 were then compared with the amino acids in the active site of the native inhibitor–
NOX2 co-crystallized complex, native inhibitor–NFκβ co-crystallized complex, and native
inhibitor–mdm2 co-crystallized complex. This was carried out by manually opening the
co-crystallized complex in the Discovery studio visualization tool [71] to verify the active
site. This allowed for the identification of the interacting residues, which were found to be
quite similar to those predicted by the CASTp 3.0 server. The Autodock and Autogrid tools
integrated with Autodock4 were used to generate grid maps (X, Y, and Z confirmations;
Box center and Box dimension) for each atom of the native inhibitor ligand. In order
to obtain the X, Y, and Z confirmations (Box center and Box dimension) as the potential
target site, molecular docking was carried out using Autodock4. The ligands of interest
were molecularly docked at the active binding sites of the relevant proteins utilizing a stiff
protein receptor and a flexible ligand docking methodology through the use of a grid-based
molecular docking technology [71,72]. A grid box involving the active site residues of the
NOX2 protein was created, with center_x = 144.171, center_y = 141.09, center_z = 151.26,
size_x = 21.0, size_y = 34.0, and size_z = 35.0. For, NFκβ protein with center_x = −8.0,
center_y = 30.1, center_z = −4.6, size_x = 24.0, size_y = 15.1, and size_z = 18.9. Similarly, a
grid box covering the active binding pocket of mdm2 was employed, with center_x = −34.4,
center_y = 29.1, center_z = −11.1, size_x = 15.7, size_y = 18.5, and size_z = 28.9. After
Autodock Vina finished the molecular docking procedure, the docked complexes were
visualized using the Discovery Studio visualization tool [73].

http://www.rcsb.org
https://pubchem.ncbi.nlm.nih.gov/
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3.9. Statistical Analysis

The in vitro antioxidant, anti-inflammatory, and cytotoxicity data were expressed as
mean ± standard deviation (S.D.) using Microsoft Excel version 365 (Microsoft Corporation,
Washington, DC, USA). The results were analyzed using one-way analysis of variance
(ANOVA) followed by Student’s and Newman–Keuls’ post hoc tests on GraphPad Prism 5
(GraphPad Software Inc., San Diego, CA, USA).

4. Conclusions

This study presented six essential oil batches, I–VI, from turmeric–black cumin com-
bined spice. Twenty-two (22) major constituents were identified in the oils, with Ar-
turmerone being the most prominent compound. The oils, notably those of batch VI,
inhibited DPPH, NO, H2O2, and Fe3+ free radical free radicals in vitro. They also atten-
uated the protein denaturation and proliferation of liver (HepG2) and cervical (HeLa)
cancer cells. The in silico studies suggested δ-curcumene, Ar-curcumene, Ar-turmerol, and
Ar-turmerone as the most promising compounds in the oils based on their high binding
energy scores with the NOX2, NF-κβ, and mdm2 proteins implicated in ROS, inflammation,
and cancer, respectively. Thus, the oils of a combination turmeric–black cumin possess
a considerable inhibition ability against free radicals, protein denaturation, and cancer
proliferation. This study’s findings further underscore the effectiveness of turmeric–black
cumin as a polyherbal medicinal ingredient. Future research endeavors may examine the
in vivo bioavailability, bioactivity, and safety profiles of the turmeric–black cumin essential
oil combination and its putative compounds, notably δ-curcumene.
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