Identification of Plant Metabolites: Characterization and Biological Activities, 2nd Edition

A special issue of Metabolites (ISSN 2218-1989). This special issue belongs to the section "Plant Metabolism".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 1650

Special Issue Editors


E-Mail Website
Guest Editor
Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Med-icine and Pharmacy “Iuliu Hațieganu”, 400347 Cluj-Napoca, Romania
Interests: polyphenols; flavonoids; terpenes; antioxidant; antimicrobial; antidiabetic; antiplasmodial; Cucurbitaceae; Lamiaceae
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400347 Cluj-Napoca, Romania
Interests: morphology; histology and anatomy of plant species; polyphenols and isoquinoline alkaloids; pharmacological activities of medicinal plants
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

“Identification of Plant Metabolites: Characterization and Biological Activities, 2nd Edition” is a Special Issue aiming to encourage researchers worldwide to discover novel insights concerning natural compounds from natural sources, especially focusing on their biological activities. The COVID-19 pandemic represents an important challenge that researchers have faced in their attempt to establish a common communication platform for the latest discoveries in the area of natural compounds; however, at the same time, this platform opened numerous paths for novel subjects and collaborations. In this context, the present Special Issue aims to provide a platform for exchanging ideas, subjects, and discoveries in the field of plant science, with the hope of providing an excellent opportunity for researchers to offer novel perspectives regarding the characterization of natural metabolites through different separation methods and their corresponding biological activities.

Dr. Irina Ielciu
Dr. Ramona Paltinean
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metabolites is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • natural compounds
  • plant metabolites
  • separation techniques
  • biological activities

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

25 pages, 4964 KiB  
Article
Optimization of Tunisian Myrtus communis L. Essential Oil Extraction by Complete Factorial Experimental Design
by Rania Zayani, Eya BenSalem, Mariem Khouja, Amani Bouhjar, Mohamed Boussaid and Chokri Messaoud
Metabolites 2025, 15(6), 369; https://doi.org/10.3390/metabo15060369 - 3 Jun 2025
Viewed by 397
Abstract
Background: Myrtus communis L. is a typical aromatic species of the Mediterranean basin, whose leaves are rich in essential oil known for its biological properties. Methods: The essential oil of Tunisian Myrtus communis L. leaves was extracted via hydrodistillation using a Clevenger-type [...] Read more.
Background: Myrtus communis L. is a typical aromatic species of the Mediterranean basin, whose leaves are rich in essential oil known for its biological properties. Methods: The essential oil of Tunisian Myrtus communis L. leaves was extracted via hydrodistillation using a Clevenger-type apparatus and optimized using a complete factorial design including three factors with two different modalities and one factor with three modalities, hence the total number of experiments Ntotal = 23 × 31. This optimization concerns the yield, the terpene composition by GC-MS and the antioxidant activity by the two radical scavenging assays, DPPH and ABTS. Four factors were retained, namely, the type of leaf used (dry or fresh sample), the leaf granulometry (whole or ground), the extraction time (1 h 30 min, 2 h 30 min and 3 h 30 min) and the water volume/plant material ratio (1/4 and 1/10). Results: The dry and whole leaves, duration 3 h 30 min, and V/M 1/10 modalities gave the best yield of essential oil (0.77%). The optimal contents of the majority of the terpene compounds, 1,8-cineole (37.23%), α-pinene (54.79%), myrtenyl acetate (23.43%) and limonene (17.77%), were recorded using the modalities dry and whole leaves, duration 2 h 30 min, V/M 1/10; dry and ground leaves, duration 1 h 30 min, V/M 1/4; fresh and whole leaves, duration 3 h 30 min, V/M 1/4; and fresh and whole leaves, duration 3 h 30 min, V/M 1/4, respectively. The antioxidant activity of the essential oil of myrtle leaves was optimized for the two DPPH (7.477 mg TE/g EO) with the GDL, duration 3 h 30 min, V/M 1/4 and ABTS assays (14.053 mg TE/g EO) with WDL terms, duration 3 h 30 min, V/M 1/10. Conclusions: Optimizing essential oil extraction is of significant interest to the cosmetic, perfumery, and pharmaceutical industries, which are constantly seeking optimal conditions to enhance essential oil yield and to ensure a high concentration of terpenic compounds, valued for their aromatic qualities and diverse biological activities. Full article
Show Figures

Figure 1

18 pages, 1901 KiB  
Article
Comparative Effects of Turmeric Secondary Metabolites Across Resorptive Bone Diseases
by Laura E. Wright, Jennifer B. Frye, Andrew G. Kunihiro, Barbara N. Timmermann and Janet L. Funk
Metabolites 2025, 15(4), 266; https://doi.org/10.3390/metabo15040266 - 11 Apr 2025
Viewed by 655
Abstract
Background: Turmeric (Curcuma longa L.) rhizomes, whose secondary metabolites include polyphenols and terpenoids, have been used medicinally for millennia. However, modern scientific inquiry has primarily focused on medicinal effects of turmeric’s polyphenolic curcuminoids, including when evaluating turmeric use to maintain bone [...] Read more.
Background: Turmeric (Curcuma longa L.) rhizomes, whose secondary metabolites include polyphenols and terpenoids, have been used medicinally for millennia. However, modern scientific inquiry has primarily focused on medicinal effects of turmeric’s polyphenolic curcuminoids, including when evaluating turmeric use to maintain bone health. Methods: Disease-specific biological effects of turmeric’s major secondary metabolites (polyphenols and/or terpenoids), with or without associated turmeric rhizome-derived polysaccharides, were determined in vivo using pre-clinical models of clinically relevant resorptive bone diseases induced by different mechanisms. These included inflammatory arthritis, cancer-driven osteolytic bone metastases, and hormone deficiency-driven post-menopausal osteoporosis. Results: In the arthritis model, the safety profile of curcuminoids alone was superior. However, curcuminoids and terpenoids each had anti-inflammatory effects and prevented bone resorption, with polysaccharide-containing curcuminoid extracts having greater effect than curcuminoids alone. In the human osteolytic breast cancer bone metastases model, curcuminoid extracts containing polysaccharides tended to yield greater effects in reducing bone osteolysis and tumor progression than curcuminoids alone or more complex extracts. In contrast, only purified curcuminoids prevented bone loss in a post-menopausal osteoporosis model, while polysaccharide-containing curcuminoid extracts were without effect. In vitro metabolite effects on disease-specific mechanistic pathways in synoviocytes, osteoclasts, or breast cancer cells were consistent with documented in vivo outcomes and included differential metabolite-specific effects. Conclusions: In summary, these findings suggest that turmeric’s potential medicinal musculoskeletal effects are complex, pathway- and target-specific, and not limited to curcuminoids, with safety concerns potentially limiting certain uses. Full article
Show Figures

Figure 1

Back to TopTop