Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (823)

Search Parameters:
Keywords = tubular structures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 3315 KiB  
Article
Searching for the Best Artificial Neural Network Architecture to Estimate Column and Beam Element Dimensions
by Ayla Ocak, Gebrail Bekdaş, Sinan Melih Nigdeli, Umit Işıkdağ and Zong Woo Geem
Information 2025, 16(8), 660; https://doi.org/10.3390/info16080660 (registering DOI) - 1 Aug 2025
Viewed by 116
Abstract
The cross-sectional dimensions of structural elements in a structure are design elements that need to be carefully designed and are related to the stiffness of the structure. Various optimization processes are applied to determine the optimum cross-sectional dimensions of beams or columns in [...] Read more.
The cross-sectional dimensions of structural elements in a structure are design elements that need to be carefully designed and are related to the stiffness of the structure. Various optimization processes are applied to determine the optimum cross-sectional dimensions of beams or columns in structures. By repeating the optimization processes for multiple load scenarios, it is possible to create a data set that shows the optimum design section properties. However, this step means repeating the same processes to produce the optimum cross-sectional dimensions. Artificial intelligence technology offers a short-cut solution to this by providing the opportunity to train itself with previously generated optimum cross-sectional dimensions and infer new cross-sectional dimensions. By processing the data, the artificial neural network can generate models that predict the cross-section for a new structural element. In this study, an optimization process is applied to a simple tubular column and an I-section beam, and the results are compiled to create a data set that presents the optimum section dimensions as a class. The harmony search (HS) algorithm, which is a metaheuristic method, was used in optimization. An artificial neural network (ANN) was created to predict the cross-sectional dimensions of the sample structural elements. The neural architecture search (NAS) method, which incorporates many metaheuristic algorithms designed to search for the best artificial neural network architecture, was applied. In this method, the best values of various parameters of the neural network, such as activation function, number of layers, and neurons, are searched for in the model with a tool called HyperNetExplorer. Model metrics were calculated to evaluate the prediction success of the developed model. An effective neural network architecture for column and beam elements is obtained. Full article
(This article belongs to the Special Issue Optimization Algorithms and Their Applications)
Show Figures

Figure 1

17 pages, 351 KiB  
Article
Special Curves and Tubes in the BCV-Sasakian Manifold
by Tuba Ağırman Aydın and Ensar Ağırman
Symmetry 2025, 17(8), 1215; https://doi.org/10.3390/sym17081215 - 1 Aug 2025
Viewed by 108
Abstract
In this study, theorems and proofs related to spherical and focal curves are presented in the BCV-Sasakian space. An approximate solution to the differential equation characterizing spherical curves in the BCV-Sasakian manifold M3 is obtained using the Taylor matrix collocation method. The [...] Read more.
In this study, theorems and proofs related to spherical and focal curves are presented in the BCV-Sasakian space. An approximate solution to the differential equation characterizing spherical curves in the BCV-Sasakian manifold M3 is obtained using the Taylor matrix collocation method. The general equations of canal and tubular surfaces are provided within this geometric framework. Additionally, the curvature properties of the tubular surface constructed around a non-vertex focal curve are computed and analyzed. All of these results are presented for the first time in the literature within the context of the BCV-Sasakian geometry. Thus, this study makes a substantial contribution to the differential geometry of contact metric manifolds by extending classical concepts into a more generalized and complex geometric structure. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

16 pages, 2829 KiB  
Article
Axial Compression Behavior of Bamboo Scrimber-Filled Steel Tubular (BSFST) Column Under Different Loading Modes
by Ze Xing, Yang Wei, Kang Zhao, Jinwei Lu, Baoxing Wei and Yu Lin
Materials 2025, 18(15), 3607; https://doi.org/10.3390/ma18153607 (registering DOI) - 31 Jul 2025
Viewed by 103
Abstract
Bamboo scrimber is an environmentally friendly biomass building material with excellent mechanical properties. However, it is susceptible to delamination failure of the transverse fibers under compression, which limits its structural performance. To address this problem, this study utilizes steel tubes to encase bamboo [...] Read more.
Bamboo scrimber is an environmentally friendly biomass building material with excellent mechanical properties. However, it is susceptible to delamination failure of the transverse fibers under compression, which limits its structural performance. To address this problem, this study utilizes steel tubes to encase bamboo scrimber, forming a novel bamboo scrimber-filled steel tubular column. This configuration enables the steel tube to provide effective lateral restraint to the bamboo material. Axial compression tests were conducted on 18 specimens, including bamboo scrimber columns and bamboo scrimber-filled steel tubular columns, to investigate the effects of steel ratio and loading mode (full-section and core loading) on the axial compression performance. The test results indicate that the external steel tubes significantly enhance the structural load-bearing capacity and deformation capacity. Primary failure modes of the composite columns include shear failure and buckling. The ultimate stress and strain of the structure are positively correlated with the steel ratio; as the steel ratio increases, the ultimate stress of the specimens can increase by up to 19.2%, while the ultimate strain can increase by up to 37.7%. The core-loading specimens exhibited superior load-bearing capacity and deformation ability compared to the full-section-loading specimens. Considering the differences in the curves for full-section and core loading, the steel tube confinement coefficient was introduced, and the predictive models for the ultimate stress and ultimate strain of the bamboo scrimber-filled steel tubular column were developed with accurate prediction. Full article
Show Figures

Figure 1

16 pages, 16505 KiB  
Article
Delayed Starch Degradation Triggers Chromoplast Structural Aberration to Inhibit Carotenoid Cleavage: A Novel Mechanism for Flower Color Deepening in Osmanthus fragrans
by Xiangling Zeng, Yunfei Tan, Xin Wen, Qiang He, Hui Wu, Jingjing Zou, Jie Yang, Xuan Cai and Hongguo Chen
Horticulturae 2025, 11(7), 864; https://doi.org/10.3390/horticulturae11070864 - 21 Jul 2025
Viewed by 280
Abstract
The color of flowers in Osmanthus fragrans is regulated by carotenoid metabolism. The orange-red variety, Dangui, is believed to have evolved from the yellow variety, Jingui, through a natural bud mutation. This study uses the Jingui cultivar ‘Jinqiu Gui’ (JQG) and its bud [...] Read more.
The color of flowers in Osmanthus fragrans is regulated by carotenoid metabolism. The orange-red variety, Dangui, is believed to have evolved from the yellow variety, Jingui, through a natural bud mutation. This study uses the Jingui cultivar ‘Jinqiu Gui’ (JQG) and its bud mutation cultivar ‘Huolian Jindan’ (HLJD) as materials, combining genome resequencing, ultrastructural observation, targeted metabolomics, and transcriptomic analysis to elucidate the molecular and cellular mechanisms underlying flower color variation. Phylogenetic analysis confirms that HLJD is a natural bud mutation of JQG. Ultrastructural observations reveal that during petal development, chromoplasts are transformed from proplastids. In HLJD petals, starch granules degrade more slowly and exhibit abnormal morphology, resulting in chromoplasts displaying crystalline, tubular, and fibrous composite structures, in contrast to the typical spherical plastoglobuli found in JQG. Targeted metabolomics identified 34 carotenoids, showing significant increases in the levels of ε-carotene, γ-carotene, α-carotene, and β-carotene in HLJD petals compared to JQG, with these levels continuing to accumulate throughout the flowering process, while the levels of the cleavage products α-ionone and β-ionone decrease. Transcriptomic analysis indicates that carotenoid metabolic pathway genes do not correlate directly with the phenotype; however, 49 candidate genes significantly associated with pigment accumulation were identified. Among these, the expression of genes such as glycoside hydrolases (LYG036752, etc.), sucrose synthase (LYG010191), and glucose-1-phosphate adenylyltransferase (LYG003610) are downregulated in HLJD. This study proposes for the first time the pathway of “starch degradation delay → chromoplast structural abnormalities → carotenoid cleavage inhibition” for deepening flower color, providing a new theoretical model for the metabolic regulation of carotenoids in non-photosynthetic tissues of plants. This research not only identifies key target genes (such as glycoside hydrolases) for the color breeding of O. fragrans but also establishes a theoretical foundation for the color enhancement of other ornamental plants. Full article
Show Figures

Figure 1

14 pages, 7478 KiB  
Article
Constructing a Ta3N5/Tubular Graphitic Carbon Nitride Van Der Waals Heterojunction for Enhanced Photocatalytic Hydrogen Production
by Junbo Yu, Guiming Ba, Fuhong Bi, Huilin Hu, Jinhua Ye and Defa Wang
Catalysts 2025, 15(7), 691; https://doi.org/10.3390/catal15070691 - 20 Jul 2025
Viewed by 381
Abstract
Constructing a heterojunction is considered one of the most effective strategies for enhancing photocatalytic activity. Herein, we employ Ta3N5 and tubular graphitic carbon nitride (TCN) to construct a Ta3N5/TCN van der Waals heterojunction via electrostatic self-assembly [...] Read more.
Constructing a heterojunction is considered one of the most effective strategies for enhancing photocatalytic activity. Herein, we employ Ta3N5 and tubular graphitic carbon nitride (TCN) to construct a Ta3N5/TCN van der Waals heterojunction via electrostatic self-assembly for enhanced photocatalytic H2 production. SEM and TEM results show that Ta3N5 particles (~300 nm in size) are successfully anchored onto the surface of TCN. The light absorption capability of the Ta3N5/TCN heterojunction is between those of Ta3N5 and TCN. The strong interaction between Ta3N5 and TCN with different energy structures (Fermi levels) by van der Waals force renders the formation of an interfacial electric field to drive the separation and transfer of photogenerated charge carriers in the Ta3N5/TCN heterojunction, as evidenced by the photoluminescence (PL) and photoelectrochemical (PEC) characterization results. Consequently, the optimal Ta3N5/TCN heterojunction exhibits a remarkable H2 production rate of 12.73 mmol g−1 h−1 under visible light irradiation, which is 3.3 and 16.8 times those of TCN and Ta3N5, respectively. Meanwhile, the cyclic experiment demonstrates excellent stability of the Ta3N5/TCN heterojunction upon photocatalytic reaction. Notably, the photocatalytic performance of 15-TaN/TCN outperforms the most previously reported CN-based and Ta3N5-based heterojunctions for H2 production. This work provides a new avenue for the rational design of CN-based van der Waals heterojunction photocatalysts with enhanced photocatalytic activity. Full article
Show Figures

Figure 1

23 pages, 1877 KiB  
Article
Synthesis and Cytotoxicity Evaluation of Denitroaristolochic Acids: Structural Insights and Mechanistic Implications in Nephrotoxicity
by Jianfei Gao, Mengtong Zhao, Jianhua Su, Yi Gao, Xiaofeng Zhang, Yongzhao Ding, Xiaoping Liu, Yang Luan and Chun Hu
Biomolecules 2025, 15(7), 1014; https://doi.org/10.3390/biom15071014 - 14 Jul 2025
Viewed by 291
Abstract
The efficient synthetic routes and evaluates cytotoxic profiles of denitroaristolochic acids II–V (DAA-II–V) were demonstrated in this study. Based on retrosynthetic analysis, a modular synthetic strategy was developed through Suzuki–Miyaura coupling, Wittig reaction, and bismuth triflate-catalyzed intramolecular Friedel–Crafts cyclization to efficiently construct the [...] Read more.
The efficient synthetic routes and evaluates cytotoxic profiles of denitroaristolochic acids II–V (DAA-II–V) were demonstrated in this study. Based on retrosynthetic analysis, a modular synthetic strategy was developed through Suzuki–Miyaura coupling, Wittig reaction, and bismuth triflate-catalyzed intramolecular Friedel–Crafts cyclization to efficiently construct the phenanthrene core. Process optimization significantly improved yields: aryl bromide intermediate A reached 50.8% yield via bromination refinement, while arylboronic ester intermediate B overcame selectivity limitations. Combining Darzens condensation with Wittig reaction enhanced throughput, achieving 88.4% yield in the key cyclization. Structures were confirmed by NMR and mass spectra. CCK-8 cytotoxicity assays in human renal proximal tubular epithelial cells revealed distinct toxicological profiles: DAA-III and DAA-IV exhibited IC50 values of 371 μM and 515 μM, respectively, significantly higher than the nitro-containing prototype AA-I (270 μM), indicating that the absence of nitro group attenuates but does not eliminate toxicity, potentially via altered metabolic activation. DAA-II and DAA-V showed no detectable cytotoxicity within assay limits, suggesting reduced toxicological impact. Structure–activity analysis exhibited that the nitro group is not essential for cytotoxicity, with methoxy substituents exerting limited influence on potency. This challenges the conventional DNA adduct-dependent toxicity paradigm, implying alternative mechanisms like oxidative stress or mitochondrial dysfunction may mediate damage in denitro derivatives. These systematic findings provide new perspectives for AA analog research and a foundation for the rational use and safety assessment of Aristolochiaceae plants. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

20 pages, 5477 KiB  
Article
Genome-Wide Identification of the CtNF-Y Gene Family and Expression Analysis of Different Flower Colours and Different Flowering Stages in Carthamus tinctorius L.
by Jianhang Zhang, Shuwei Qin, Lili Wang, Mengyuan Ma, Wanting Yang, Wenjie Shen, Yaqian Lu, Mingqiang Bao, Meng Zhao, Hongbin Li, Asigul Ismayil and Aiping Cao
Plants 2025, 14(14), 2111; https://doi.org/10.3390/plants14142111 - 9 Jul 2025
Viewed by 330
Abstract
Safflower (Carthamus tinctorius L.) is a plant in the family of Asteraceae, and the dried tubular flowers are used as medicine, which contain active ingredients such as safflower yellow pigment and safflower glycosides. They play important roles in many fields. NF-Y, as [...] Read more.
Safflower (Carthamus tinctorius L.) is a plant in the family of Asteraceae, and the dried tubular flowers are used as medicine, which contain active ingredients such as safflower yellow pigment and safflower glycosides. They play important roles in many fields. NF-Y, as an important transcription factor in plants, regulates a variety of plant life activities. In this study, we identified and analysed 11 CtNF-Y gene family members from safflower for the first time. Their core motifs, which are conserved structural domains, gene structures, and cis-acting elements, are described in this study. In addition, there was good collinearity between safflower CtNF-Y and other species. Protein–protein interaction network analysis showed that the CtNF-YA1 and CtNF-YB subfamilies were the core proteins of the interaction network. Real-time quantitative PCR (qRT-PCR) studies showed that the expression level of the CtNF-Y gene was regulated by safflower flower colour and safflower flowering period. Subcellular localisation results showed that three CtNF-Y proteins were located in the nucleus, the cellular regulatory centre of the plant. This study will provide valuable insights into the selection of key candidate genes in the network of regulatory mechanisms for the formation of safflower flower colour and flowering time. Full article
Show Figures

Figure 1

15 pages, 4230 KiB  
Article
Synergistic Cs/P Co-Doping in Tubular g-C3N4 for Enhanced Photocatalytic Hydrogen Evolution
by Juanfeng Gao, Xiao Lin, Bowen Jiang, Haiyan Zhang and Youji Li
Hydrogen 2025, 6(3), 45; https://doi.org/10.3390/hydrogen6030045 - 3 Jul 2025
Viewed by 275
Abstract
Developing high-performance photocatalysts for solar hydrogen production requires the synergistic modulation of chemical composition, nanostructure, and charge carrier transport pathways. Herein, we report a Cs and P co-doped tubular graphitic carbon nitride (Cs/PTCN-x) photocatalyst synthesized via a strategy that integrates elemental doping with [...] Read more.
Developing high-performance photocatalysts for solar hydrogen production requires the synergistic modulation of chemical composition, nanostructure, and charge carrier transport pathways. Herein, we report a Cs and P co-doped tubular graphitic carbon nitride (Cs/PTCN-x) photocatalyst synthesized via a strategy that integrates elemental doping with morphological engineering. Structural characterizations reveal that phosphorus atoms substitute lattice carbon to form P-N bonds, while Cs+ ions intercalate between g-C3N4 layers, collectively modulating surface electronic states and enhancing charge transport. Under visible-light irradiation (λ ≥ 400 nm), the optimized Cs/PTCN-3 catalyst achieves an impressive hydrogen evolution rate of 8.085 mmol·g−1·h−1—over 33 times higher than that of pristine g-C3N4. This remarkable performance is attributed to the multidimensional synergy between band structure tailoring and hierarchical porous tubular architecture, which together enhance light absorption, charge separation, and surface reaction kinetics. This work offers a versatile approach for the rational design of g-C3N4-based photocatalysts toward efficient solar-to-hydrogen energy conversion. Full article
Show Figures

Figure 1

27 pages, 6141 KiB  
Article
Pore-Throat Structure, Fractal Characteristics, and Main Controlling Factors in Extremely Low-Permeability Sandstone Reservoirs: The Case of Chang 3 Section in Huachi Area, Ordos Basin
by Huanmeng Zhang, Chenyang Wang, Jinkuo Sui, Yujuan Lv, Ling Guo and Zhiyu Wu
Fractal Fract. 2025, 9(7), 439; https://doi.org/10.3390/fractalfract9070439 - 3 Jul 2025
Viewed by 345
Abstract
The pore-throat structure of the extremely low-permeability sandstone reservoir in the Huachi area of the Ordos Basin is complex and highly heterogeneous. Currently, there are issues such as unclear understanding of the micro-pore-throat structural characteristics, primary controlling factors of reservoir quality, and classification [...] Read more.
The pore-throat structure of the extremely low-permeability sandstone reservoir in the Huachi area of the Ordos Basin is complex and highly heterogeneous. Currently, there are issues such as unclear understanding of the micro-pore-throat structural characteristics, primary controlling factors of reservoir quality, and classification boundaries of the reservoir in the study area, which seriously restricts the exploration and development effectiveness of the reservoir in this region. It is necessary to use a combination of various analytical techniques to comprehensively characterize the pore-throat structure and establish reservoir classification evaluation standards in order to better understand the reservoir. This study employs a suite of analytical and testing techniques, including cast thin sections (CTS), scanning electron microscopy (SEM), cathodoluminescence (CL), X-ray diffraction (XRD), as well as high-pressure mercury injection (HPMI) and constant-rate mercury injection (CRMI), and applies fractal theory for analysis. The research findings indicate that the extremely low-permeability sandstone reservoir of the Chang 3 section primarily consists of arkose and a minor amount of lithic arkose. The types of pore-throat are diverse, with intergranular pores, feldspar dissolution pores, and clay interstitial pores and microcracks being the most prevalent. The throat types are predominantly sheet-type, followed by pore shrinkage-type and tubular throats. The pore-throat network of low-permeability sandstone is primarily composed of nanopores (pore-throat radius r < 0.01 μm), micropores (0.01 < r < 0.1 μm), mesopores (0.1 < r < 1.0 μm), and macropores (r > 1.0 μm). The complexity of the reservoir pore-throat structure was quantitatively characterized by fractal theory. Nanopores do not exhibit ideal fractal characteristics. By splicing high-pressure mercury injection and constant-rate mercury injection at a pore-throat radius of 0.12 μm, a more detailed characterization of the full pore-throat size distribution can be achieved. The average fractal dimensions for micropores (Dh2), mesopores (Dc3), and macropores (Dc4) are 2.43, 2.75, and 2.95, respectively. This indicates that the larger the pore-throat size, the rougher the surface, and the more complex the structure. The degree of development and surface roughness of large pores significantly influence the heterogeneity and permeability of the reservoir in the study area. Dh2, Dc3, and Dc4 are primarily controlled by a combination of pore-throat structural parameters, sedimentary processes, and diagenetic processes. Underwater diversion channels and dissolution are key factors in the formation of effective storage space. Based on sedimentary processes, reservoir space types, pore-throat structural parameters, and the characteristics of mercury injection curves, the study area is divided into three categories. This classification provides a theoretical basis for predicting sweet spots in oil and gas exploration within the study area. Full article
Show Figures

Figure 1

7 pages, 1272 KiB  
Case Report
Extraovarian Brenner Tumor in the Vagina: A Case Report and Review of Literature
by Angel Yordanov, Milen Karaivanov, Stoyan Kostov, Vanya Savova and Vasilena Dimitrova
Reports 2025, 8(3), 103; https://doi.org/10.3390/reports8030103 - 29 Jun 2025
Viewed by 318
Abstract
Background and Clinical Significance: Brenner tumors are rare epithelial tumors that can occur in both males and females. They consist of ovarian transition cells surrounded by dense fibrous tissue and can be classified as benign, borderline, or malignant. While most commonly found in [...] Read more.
Background and Clinical Significance: Brenner tumors are rare epithelial tumors that can occur in both males and females. They consist of ovarian transition cells surrounded by dense fibrous tissue and can be classified as benign, borderline, or malignant. While most commonly found in the ovary, extraovarian Brenner tumors (EOBTs) have been reported in the uterus, vagina, broad ligament, and omentum. Case Presentation: A 71-year-old postmenopausal woman presented with a polypous formation on the upper third of the posterior vaginal wall, which was found at a routine health check. Macroscopically, the lesion appeared as a solid, polypoid mass with a yellowish-gray cut surface, measuring approximately 25 × 20 mm. Histological examination revealed a polypoid formation covered by stratified squamous epithelium, with a dense fibrous stroma (Van Gieson [VG]+) and tubular structures lined by clear epithelial cells. Parenchymal cells showed low proliferative activity, with Ki-67 expression in less than 5% of cells, also Cytokeratin (CK) 7/+/p63:/+/ CK AE1/AE3: /+/ Estrogen Receptor (ER): /+/ and Progesterone Receptor (PR)/−/; CK20/-/; p53/−/, Wilms’ Tumor (WT)-1/−/; Prostate-Specific Acid Phosphatase (PSAP)/−/. The final diagnosis was an extraovarian Brenner tumor. The patient was monitored for two months post-excision, with no signs of recurrence. Conclusions: EOBTs are extremely rarely seen and vaginal involvement is far less common. Due to their rarity, these tumors may be confused with other benign or malignant vaginal lesions. In order to differentiate EOBTs from other neoplasms, histological analysis is crucial due to their characteristic transitional-type epithelium and large fibrous stroma. Further studies are required to understand the origin and clinical behavior of EOBTs. Long-term monitoring should be performed to look for any recurrence or malignant change, even though benign Brenner tumors usually have a good prognosis. Awareness of EOBTs and their possible locations is essential for accurate diagnosis and appropriate management. Full article
(This article belongs to the Section Obstetrics/Gynaecology)
Show Figures

Figure 1

14 pages, 4047 KiB  
Article
Impact of Long-Term Alkaline Cleaning on Ultrafiltration Tubular PVDF Membrane Performances
by Marek Gryta and Piotr Woźniak
Membranes 2025, 15(7), 192; https://doi.org/10.3390/membranes15070192 - 27 Jun 2025
Viewed by 523
Abstract
The application of an ultrafiltration (UF) process with periodic membrane cleaning with the use of alkaline detergent solutions was proposed for the recovery of wash water from car wash effluent. In order to test the resistance of the membranes to the degradation caused [...] Read more.
The application of an ultrafiltration (UF) process with periodic membrane cleaning with the use of alkaline detergent solutions was proposed for the recovery of wash water from car wash effluent. In order to test the resistance of the membranes to the degradation caused by the cleaning solutions, a pilot plant study was carried out for almost two years. The installation included an industrial module with FP100 tubular membranes made of polyvinylidene fluoride (PVDF). The module was fed with synthetic effluent obtained by mixing foaming agents and hydrowax. To limit the fouling phenomenon, the membranes were cleaned cyclically with P3 Ultrasil 11 solution (pH = 11.7) or Insect solution (pH = 11.5). During plant shutdowns, the membrane module was maintained with a sodium metabisulphite solution. Changes in the permeate flux, turbidity, COD, and surfactant rejection were analysed during the study. Scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC), and Fourier-transform infrared spectroscopy (FTIR) analysis were used to determine the changes in the membrane structure. As a result of the repeated chemical cleaning, the pore size increased, resulting in a more than 50% increase in permeate flux. However, the quality of the recovered wash water did not deteriorate, as an additional separation layer was formed on the membrane surface due to the fouling phenomenon. Full article
(This article belongs to the Special Issue Recent Advances in Polymeric Membranes—Preparation and Applications)
Show Figures

Figure 1

14 pages, 2179 KiB  
Article
One-Pot Anodic Electrodeposition of Dual-Cation-Crosslinked Sodium Alginate/Carboxymethyl Chitosan Interpenetrating Hydrogel with Vessel-Mimetic Heterostructures
by Xuli Li, Yuqing Qu, Yong Zhang, Pei Chen, Siyu Ding, Miaomiao Nie, Kun Yan and Shefeng Li
J. Funct. Biomater. 2025, 16(7), 235; https://doi.org/10.3390/jfb16070235 - 26 Jun 2025
Viewed by 657
Abstract
This study develops a one-pot anodic templating electrodeposition strategy using dual-cation-crosslinking and interpenetrating networks, coupled with pulsed electrical signals, to fabricate a vessel-mimetic multilayered tubular hydrogel. Typically, the anodic electrodeposition is performed in a mixture of sodium alginate (SA) and carboxymethyl chitosan (CMC), [...] Read more.
This study develops a one-pot anodic templating electrodeposition strategy using dual-cation-crosslinking and interpenetrating networks, coupled with pulsed electrical signals, to fabricate a vessel-mimetic multilayered tubular hydrogel. Typically, the anodic electrodeposition is performed in a mixture of sodium alginate (SA) and carboxymethyl chitosan (CMC), with the ethylenediaminetetraacetic acid calcium disodium salt hydrate (EDTA·Na2Ca) incorporated to provide a secondary ionic crosslinker (i.e., Ca2+) and modulate the cascade reaction diffusion process. The copper wire electrodes serve as templates for electrochemical oxidation and enable a copper ion (i.e., Cu2+)-induced tubular hydrogel coating formation, while pulsed electric fields regulate layer-by-layer deposition. The dual-cation-crosslinked interpenetrating hydrogels (CMC/SA-Cu/Ca) exhibit rapid growth rates and tailored mechanical strength, along with excellent antibacterial performance. By integrating the unique pulsed electro-fabrication with biomimetic self-assembly, this study addresses challenges in vessel-mimicking structural complexity and mechanical compatibility. The approach enables scalable production of customizable multilayered hydrogels for artificial vessel grafts, smart wound dressings, and bioengineered organ interfaces, demonstrating broad biomedical potential. Full article
Show Figures

Figure 1

18 pages, 3135 KiB  
Article
Obesity-Associated NAFLD Coexists with a Chronic Inflammatory Kidney Condition That Is Partially Mitigated by Short-Term Oral Metformin
by Amod Sharma, Reza Hakkak, Neriman Gokden, Neelam Joshi and Nirmala Parajuli
Nutrients 2025, 17(13), 2115; https://doi.org/10.3390/nu17132115 - 26 Jun 2025
Viewed by 588
Abstract
Background/Objectives: Chronic kidney disease (CKD) is twice as prevalent in individuals with obesity-associated non-alcoholic fatty liver disease (Ob-NAFLD), highlighting the need to determine the link and mechanisms of kidney injury as well as explore therapies. Metformin, a first-line treatment for type 2 diabetes, [...] Read more.
Background/Objectives: Chronic kidney disease (CKD) is twice as prevalent in individuals with obesity-associated non-alcoholic fatty liver disease (Ob-NAFLD), highlighting the need to determine the link and mechanisms of kidney injury as well as explore therapies. Metformin, a first-line treatment for type 2 diabetes, shows promise in managing NAFLD, but its renal benefits in Ob-NAFLD remain unclear. This study investigates the impact of Ob-NAFLD on kidney injury and assesses the potential protective effects of metformin. Methods: Five-week-old female Zucker rats (obese fa/fa and lean Fa/Fa) were fed an AIN-93G diet for 8 weeks to induce Ob-NAFLD, then fed the diet with Metformin for 10 weeks. Kidneys were collected for histopathological and biochemical analyses. Results: Histopathological studies showed increased tubular injury, mesangial matrix expansion, and fibrosis in kidneys with Ob-NAFLD compared to lean control (LC) rats. Immunohistochemistry further revealed an elevated macrophage and neutrophil infiltration and increased levels of nitrotyrosine and p22phox in Ob-NAFLD kidneys. Furthermore, Ob-NAFLD rat kidneys showed upregulation of TNF-α and CCL2 genes and increased levels of caspase-3 (total and cleaved). Interestingly, metformin treatment significantly decreased TNF-α mRNA and blunted nitrotyrosine levels, and modestly reduced immune cell infiltration in Ob-NAFLD. Conclusions: These findings indicate that Ob-NAFLD promotes CKD as evidenced by tubular injury, oxidative stress, inflammation, and fibrosis. While short-term metformin treatment showed anti-oxidative and anti-inflammatory effects in Ob-NAFLD, its impact on structural kidney damage was limited, highlighting the need for longer treatment or alternative therapeutics such as oxidant scavengers and anti-inflammatory drugs to effectively mitigate renal pathologies. Full article
(This article belongs to the Section Nutrition and Obesity)
Show Figures

Figure 1

12 pages, 2254 KiB  
Article
Hydrophobic Boron Nitride Nanoflower Coatings on Mild Steel Surfaces
by Aamir Nadeem, Muhammad Faheem Maqsood, Mohsin Ali Raza, Syed Muhammad Zain Mehdi and Shahbaz Ahmad
Surfaces 2025, 8(3), 42; https://doi.org/10.3390/surfaces8030042 - 25 Jun 2025
Viewed by 541
Abstract
Growing demand for chemically resistant, thermally stable, and anti-icing coatings has intensified interest in boron nitride (BN)-based materials and surface coatings. In this study, BN coatings were developed on mild steel (MS) via chemical vapour deposition (CVD) at 1200 °C for 15, 30, [...] Read more.
Growing demand for chemically resistant, thermally stable, and anti-icing coatings has intensified interest in boron nitride (BN)-based materials and surface coatings. In this study, BN coatings were developed on mild steel (MS) via chemical vapour deposition (CVD) at 1200 °C for 15, 30, and 60 min, and their structural, surface, and water-repellent characteristics were evaluated. X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) spectroscopy confirmed the successful formation of BN, while water contact angle measurements indicated high hydrophobicity, demonstrating excellent barrier properties. Scanning electron microscopy (SEM) revealed morphological evolution from flower- and needle-like BN structures in the sample placed in the CVD furnace for 15 min to dense, coral-like, and tubular networks in the samples placed for 30 and 60 min. These findings highlight that BN coatings, particularly the one obtained after 30 min of deposition, have a high hydrophobic character following the Cassie–Baxter model and can be used for corrosion resistance and anti-icing on MS, making them ideal for industrial applications requiring long-lasting protection. Full article
(This article belongs to the Special Issue Surface Engineering of Thin Films)
Show Figures

Graphical abstract

40 pages, 10781 KiB  
Review
Recent Developments in Additively Manufactured Crash Boxes: Geometric Design Innovations, Material Behavior, and Manufacturing Techniques
by Ahmed Saber, A. M. Amer, A. I. Shehata, H. A. El-Gamal and A. Abd_Elsalam
Appl. Sci. 2025, 15(13), 7080; https://doi.org/10.3390/app15137080 - 24 Jun 2025
Cited by 2 | Viewed by 708
Abstract
Crash boxes play a vital role in improving vehicle safety by absorbing collision energy and reducing the forces transmitted to occupants. Additive manufacturing (AM) has become a powerful method for developing advanced crash boxes by enabling complex geometries. This review provides a comprehensive [...] Read more.
Crash boxes play a vital role in improving vehicle safety by absorbing collision energy and reducing the forces transmitted to occupants. Additive manufacturing (AM) has become a powerful method for developing advanced crash boxes by enabling complex geometries. This review provides a comprehensive examination of recent progress in AM crash boxes, with a focus on three key aspects: geometric design innovations, material behavior, and manufacturing techniques. The review investigates the influence of various AM-enabled structural configurations, including tubular, origami-inspired, lattice, and bio-inspired designs, on crashworthiness performance. Among these, bio-inspired structures exhibit superior energy absorption characteristics, achieving a mean specific energy absorption (SEA) of 21.51 J/g. Material selection is also explored, covering polymers, fiber-reinforced polymers, metals, and multi-material structures. Metallic AM crash boxes demonstrate the highest energy absorption capacity, with a mean SEA of 28.65 J/g. In addition, the performance of different AM technologies is evaluated, including Stereolithography (SLA), Material Jetting (MJT), Selective Laser Melting (SLM), Selective Laser Sintering (SLS), Fused Deposition Modeling (FDM), and hybrid manufacturing techniques. Among these, crash boxes produced by SLM show the most favorable energy absorption performance, with a mean SEA of 16.50 J/g. The findings presented in this review offer critical insights to guide future research and development in the design and manufacturing of next-generation AM crash boxes intended to enhance vehicle safety. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

Back to TopTop