Special Curves and Tubes in the BCV-Sasakian Manifold
Abstract
1. Introduction
2. Materials and Methods
2.1. The Sasakian Manifold
2.2. The BCV-Sasakian Space
2.3. The Curves and Surfaces
2.4. Taylor Matrix Collocation Method
3. Results
3.1. The Spherical Curves in the BCV-Sasakian Space
3.2. An Approximate Solution for the Spherical Curves in the BCV-Sasakian Space
3.3. Focal Curves in BVC-Sasakian Space
3.4. Tubular Surfaces in the BCV-Sasakian Space
3.5. The Curvatures of Tubular Surfaces Around a Focal Curve
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baikousis, C.; Blair, D.A. On Legendre curves in contact 3-manifolds. Geom. Dedicata 1994, 49, 135–142. [Google Scholar] [CrossRef]
- Camci, C.; Yayli, Y.; Hacisalihoglu, H.H. On the characterization of spherical curves in three-dimensional Sasakian spaces. J. Math. Anal. Appl. 2008, 342, 1151–1159. [Google Scholar] [CrossRef]
- Belkhelfa, M.; Hırıca, I.E.; Rosca, R.; Verstraelen, L. On Legendre curves in Riemannian and Lorentzian Sasaki spaces. Soochow J. Math. 2002, 28, 81–91. [Google Scholar]
- Yildirim, A.; Hacisalihoglu, H.H. On BCV-Sasakian Manifold. Int. Math. Forum 2011, 6, 1669–1684. [Google Scholar]
- Wong, Y.-C. A global formulation of the condition for a curve to lie in a sphere. Monatsh. Math. 1963, 67, 363–365. [Google Scholar] [CrossRef]
- Wong, Y.-C. On an explicit characterization of spherical curves. Proc. Am. Math. Soc. 1972, 34, 239–242. [Google Scholar] [CrossRef]
- Karamete, A.; Sezer, M. A Taylor collocation method for the solution of linear integro-differential equations. Int. J. Comput. Math. 2002, 79, 987–1000. [Google Scholar] [CrossRef]
- Xu, Z.; Feng, R.; Sun, J. Analytic and algebraic properties of canal surface. J. Comput. Appl. Math. 2006, 195, 220–228. [Google Scholar] [CrossRef]
- Es, H.; Karacan, M.K.; Yaylı, Y. Singular points of tubular surface. J. Xuzhou Norm. Univ. (Nat. Sci. Ed.) 2009, 27, 30–33. [Google Scholar]
- Dede, M.; Ekici, C.; Tozak, H. Directional tubular surfaces. Int. J. Algebra 2015, 9, 527–535. [Google Scholar] [CrossRef]
- Yaylı, Y.; Doğan, F. Tubes with Darboux Frame. Int. J. Contemp. Math. Sci. 2012, 7, 751–758. [Google Scholar]
- Inoguchi, J.I.; Kumamoto, T.; Ohsugi, N.; Suyama, Y. Differential geometry of curves and surfaces in three-dimensional homogeneous spaces 1. Fukuoka Univ. Sci. Rep. 1999, 29, 155–182. [Google Scholar]
- Bianchi, L. Lezioni di Geometrie Differenziale; Enrico Spoerri: Pisa, Italy, 1894; p. 552. [Google Scholar]
- Cartan, E. Leçons sur la Géométrie des Espaces de Riemann. In Lecons sur la Geometria des Espace de Riemann; G. Villars: Paris, France, 1894. [Google Scholar]
- Belkhelfa, M.; Dillen, F.; Inoguchi, J. Surfaces with parallel second fundamental form in Bianchi-Cartan-Vranceanu spaces. Banach Center Publ. 2002, 57, 67–87. [Google Scholar]
- Camcı, Ç. Extended cross product in a three-dimensional almost contact metric manifold with applications to curve theory. Turk. J. Math. 2012, 36, 305–318. [Google Scholar]
- Yildirim, A. Tubular surface around a Legendre curve in BCV spaces. NTMSCI 2016, 4, 61–71. [Google Scholar] [CrossRef]
- Doğan, F.; Yaylı, Y. On the curvatures of tubular surface with Bishop frame. Commun. Fac. Sci. Univ. Ank. Ser. A1 2011, 60, 59–69. [Google Scholar]
- Hacısalihoğlu, H.H. Diferansiyel Geometri-Cilt II. In Diferansiyel Geometri; University of Ankara Pub.: Ankara, Türkiye, 2000. [Google Scholar]
- Sezer, M. A method for the approximate solution of the second order linear differential equations in terms of Taylor Polynomials. Int. J. Math. Educ. Sci. Technol. 1996, 27, 821–834. [Google Scholar] [CrossRef]
- Agirman Aydin, T.; Sezer, M. Taylor-matrix collocation method to solution of differential equations characterizing spherical curves in Euclidean 4-Space. Celal Bayar Univ. J. Sci. 2019, 15, 1–7. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aydın, T.A.; Ağırman, E. Special Curves and Tubes in the BCV-Sasakian Manifold. Symmetry 2025, 17, 1215. https://doi.org/10.3390/sym17081215
Aydın TA, Ağırman E. Special Curves and Tubes in the BCV-Sasakian Manifold. Symmetry. 2025; 17(8):1215. https://doi.org/10.3390/sym17081215
Chicago/Turabian StyleAydın, Tuba Ağırman, and Ensar Ağırman. 2025. "Special Curves and Tubes in the BCV-Sasakian Manifold" Symmetry 17, no. 8: 1215. https://doi.org/10.3390/sym17081215
APA StyleAydın, T. A., & Ağırman, E. (2025). Special Curves and Tubes in the BCV-Sasakian Manifold. Symmetry, 17(8), 1215. https://doi.org/10.3390/sym17081215