One-Pot Anodic Electrodeposition of Dual-Cation-Crosslinked Sodium Alginate/Carboxymethyl Chitosan Interpenetrating Hydrogel with Vessel-Mimetic Heterostructures
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of SA/CMC Composite Solution
2.3. Anodic Electrodeposition of SA/CMC-Ca/Cu Tubular Hydrogel
2.4. Antibacterial Properties
2.5. Characterizations
3. Results and Discussion
3.1. One-Pot Anodic Electrodeposition of a Dual-Cation Crosslinked SA/CMC Hydrogel
3.2. Hydrogel Growth and Surface Morphology
3.3. Metal–Polymer Coordination Interactions and Mechanical Properties
3.4. Creating Multilayer Structure in the Hydrogel by Using Pulsed Electrical Signals
3.5. Antibacterial Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, D.; Liu, J.; Wang, M.; Zhang, X.; Zhou, M. Epidemiology of cardiovascular disease in China: Current features and implications. Nat. Rev. Cardiol. 2019, 16, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Atlan, M.; Simon-Yarza, T.; Ino, J.M.; Hunsinger, V.; Corté, L.; Ou, P.; Aid-Launais, R.; Chaouat, M.; Letourneur, D. Design, characterization and in vivo performance of synthetic 2 mm-diameter vessel grafts made of PVA-gelatin blends. Sci. Rep. 2018, 8, 7417. [Google Scholar] [CrossRef]
- Hiob, M.A.; She, S.; Muiznieks, L.D.; Weiss, A.S. Biomaterials and Modifications in the Development of Small-Diameter Vascular Grafts. ACS Biomater. Sci. Eng. 2017, 3, 712–723. [Google Scholar] [CrossRef] [PubMed]
- Seifu, D.G.; Purnama, A.; Mequanint, K.; Mantovani, D. Small-diameter vascular tissue engineering. Nat. Rev. Cardiol. 2013, 10, 410–421. [Google Scholar] [CrossRef] [PubMed]
- Goins, A.; Webb, A.R.; Allen, J.B. Multi-layer approaches to scaffold-based small diameter vessel engineering: A review. Mater. Sci. Eng. C 2019, 97, 896–912. [Google Scholar] [CrossRef]
- Yuan, L.; Gao, Y.; Wang, Q.; Zhu, K.; Ren, L.; Yuan, X. Construction of small-diameter vascular grafts by electrospun zwitterionic diselenide-containing poly(ester urethane)urea with enhanced endothelialization. Acta Biomater. 2025, in press. [Google Scholar] [CrossRef]
- Adhami, M.; Picco, C.J.; Detamornrat, U.; Anjani, Q.K.; Cornelius, V.A.; Robles-Martinez, P.; Margariti, A.; Donnelly, R.F.; Domínguez-Robles, J.; Larrañeta, E. Clopidogrel-loaded vascular grafts prepared using digital light processing 3D printing. Drug Deliv. Transl. Res. 2024, 14, 1693–1707. [Google Scholar] [CrossRef]
- Ma, F.; Huang, X.; Wang, Y. Fabrication of a Triple-Layer Bionic Vascular Scaffold via Hybrid Electrospinning. J. Funct. Biomater. 2024, 15, 140. [Google Scholar] [CrossRef]
- Hernandez-Sanchez, D.; Comtois-Bona, M.; Muñoz, M.; Ruel, M.; Suuronen, E.J.; Alarcon, E.I. Manufacturing and validation of small-diameter vascular grafts: A mini review. iScience 2024, 27, 109845. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, D.; Wu, L.-P.; Zhao, M. Current Strategies for Engineered Vascular Grafts and Vascularized Tissue Engineering. Polymers 2023, 15, 2015. [Google Scholar] [CrossRef]
- Jiang, P.; Ji, Z.; Liu, D.; Ma, S.; Wang, X.; Zhou, F. Growing Hydrogel Organ Mannequins with Interconnected Cavity Structures. Adv. Funct. Mater. 2022, 32, 2108845. [Google Scholar] [CrossRef]
- Teng, Y.; Xu, Y.; Lv, P.; Song, L.; Yang, J.; Wang, X.; Guo, X.; Wang, S.; Hou, S.; Lv, Q.; et al. Therapeutic strategies for small-diameter vascular graft calcification. Chem. Eng. J. 2024, 487, 150549. [Google Scholar] [CrossRef]
- Xia, Y.; Zhou, H.; Ou, J.-S.; Liu, Y. The Potential of a New Natural Vessel Source: Decellularized Intercostal Arteries as Sufficiently Long Small-Diameter Vascular Grafts. Bioengineering 2024, 11, 700. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, C.; Cha, R.; Meng, Q.; Hu, Z.; Sun, Y.; Li, Z.; Xiao, M.; Zhang, Y.; Jiang, X. Rapid Preparation of Collagen/Red Blood Cell Membrane Tubes for Stenosis-Free Vascular Regeneration. ACS Nano 2025, 19, 3293–3311. [Google Scholar] [CrossRef]
- Shang, L.; Wang, S.; Mao, Y. Recent advances in plant-derived polysaccharide scaffolds in tissue engineering: A review. Int. J. Biol. Macromol. 2024, 277, 133830. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, K.; Yuan, Y.; Zhang, N.; Zou, Z.; Wang, Y.; Yan, S.; Li, X.; Zhao, P.; Li, Q. Nonlinear Elasticity of Blood Vessels and Vascular Grafts. ACS Biomater. Sci. Eng. 2024, 10, 3631–3654. [Google Scholar] [CrossRef]
- Cevik, M.; Dikici, S. Development of tissue-engineered vascular grafts from decellularized parsley stems. Soft Matter 2024, 20, 338–350. [Google Scholar] [CrossRef]
- Salehi, A.; Ernez, M.; Salido, G.L.; Cattaneo, G. Toward “Green” Vessels: Characterization of Microstructure, Mechanics, and Endothelial Cell Interaction on Three Macro-Tubular Plants for Vascular Tissue Engineering Applications. Adv. Mater. Technol. 2025, 10, 2401129. [Google Scholar] [CrossRef]
- Brites Helú, M.A.; Liu, L. Rational shaping of hydrogel by electrodeposition under fluid mechanics for electrochemical writing on complex shaped surfaces at microscale. Chem. Eng. J. 2021, 416, 129029. [Google Scholar] [CrossRef]
- Wang, M.; Yang, C.; Deng, H.; Du, Y.; Xiao, L.; Shi, X. Programmable Electrical Signals Induce Anisotropic Assembly of Multilayer Chitosan Hydrogels. Langmuir 2024, 40, 3360–3368. [Google Scholar] [CrossRef]
- Kawara, S.; Cunningham, B.; Bezer, J.; KC, N.; Zhu, J.; Tang, M.-X.; Ishihara, J.; Choi, J.J.; Au, S.H. Capillary-Scale Hydrogel Microchannel Networks by Wire Templating. Small 2023, 19, 2301163. [Google Scholar] [CrossRef]
- Weekes, A.; Bartnikowski, N.; Pinto, N.; Jenkins, J.; Meinert, C.; Klein, T.J. Biofabrication of small diameter tissue-engineered vascular grafts. Acta Biomater. 2022, 138, 92–111. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Kim, E.; Lei, M.; Wu, S.; Yan, K.; Shen, J.; Bentley, W.E.; Shi, X.; Qu, X.; Payne, G.F. Electro-Biofabrication. Coupling Electrochemical and Biomolecular Methods to Create Functional Bio-Based Hydrogels. Biomacromolecules 2023, 24, 2409–2432. [Google Scholar] [CrossRef]
- Baretta, R.; Gabrielli, V.; Missale, E.; Badocco, D.; Speranza, G.; Pantano, M.F.; Ferrarini, A.; Frasconi, M. Mechanically Adaptive Metal-Coordinated Electrogel Membranes. ACS Appl. Mater. Interfaces 2024, 16, 48280–48292. [Google Scholar] [CrossRef] [PubMed]
- Nordin, N.; Ambia, N.F.A.Z.; Majid, S.R.; Bakar, N.A. Efficient encapsulation of a model drug in chitosan cathodic electrodeposition: Preliminary analysis using FTIR, UV–vis, and NMR spectroscopy. Carbohydr. Polym. 2025, 348, 122830. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Huang, W.; Tong, J.; Chen, L.; Shi, X. One-step programmable electrofabrication of chitosan asymmetric hydrogels with 3D shape deformation. Carbohydr. Polym. 2022, 277, 118888. [Google Scholar] [CrossRef]
- Kumar, N.; Ghosh, B.; Kumar, A.; Koley, R.; Dhara, S.; Chattopadhyay, S. Multilayered “SMART” hydrogel systems for on-site drug delivery applications. J. Drug Deliv. Sci. Technol. 2023, 80, 104111. [Google Scholar] [CrossRef]
- Xu, R.; Hua, M.; Wu, S.; Ma, S.; Zhang, Y.; Zhang, L.; Yu, B.; Cai, M.; He, X.; Zhou, F. Continuously growing multi-layered hydrogel structures with seamless interlocked interface. Matter 2022, 5, 634–653. [Google Scholar] [CrossRef]
- Chen, J.; Zong, C.-M.; Liu, E.-J.; Shuang, F.-F.; Yang, Z.-C.; Zhang, D.-Y.; Chen, T.; Zhao, W.-G.; Yao, X.-H. Multilayered, fabric network structured, nacre-like silk-nanocomposite hydrogel exhibiting high strength and super toughness. Mater. Today Commun. 2025, 45, 112345. [Google Scholar] [CrossRef]
- Yan, K.; Yang, C.; Zhong, W.; Lu, Z.; Li, X.; Shi, X.; Wang, D. Wire templated electrodeposition of vessel-like structured chitosan hydrogel by using a pulsed electrical signal. Soft Matter 2020, 16, 9471–9478. [Google Scholar] [CrossRef]
- Tu, H.; Wu, G.; Yi, Y.; Huang, M.; Liu, R.; Shi, X.; Deng, H. Layer-by-layer immobilization of amphoteric carboxymethyl chitosan onto biocompatible silk fibroin nanofibrous mats. Carbohydr. Polym. 2019, 210, 9–16. [Google Scholar] [CrossRef]
- Yan, K.; Wan, Y.; Xu, F.; Lu, J.; Yang, C.; Li, X.; Lu, Z.; Wang, X.; Wang, D. Ionic crosslinking of alginate/carboxymethyl chitosan fluorescent hydrogel for bacterial detection and sterilization. Carbohydr. Polym. 2023, 302, 120427. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Chen, D.; Guo, X.; Wan, Y.; Yang, C.; Wang, W.; Li, X.; Lu, Z.; Wang, D. Electric-field assisted cascade reactions to create alginate/carboxymethyl chitosan composite hydrogels with gradient architecture and reconfigurable mechanical properties. Carbohydr. Polym. 2024, 346, 122609. [Google Scholar] [CrossRef] [PubMed]
- Geng, Z.; Wang, X.; Guo, X.; Zhang, Z.; Chen, Y.; Wang, Y. Electrodeposition of chitosan based on coordination with metal ions in situ-generated by electrochemical oxidation. J. Mater. Chem. B 2016, 4, 3331–3338. [Google Scholar] [CrossRef] [PubMed]
- Gargava, A.; Ahn, S.; Bentley, W.E.; Raghavan, S.R. Rapid Electroformation of Biopolymer Gels in Prescribed Shapes and Patterns: A Simpler Alternative to 3-D Printing. ACS Appl. Mater. Interfaces 2019, 11, 37103–37111. [Google Scholar] [CrossRef]
- Zeng, L.; Yuan, W.; Ma, X.; He, Q.; Zhang, L.; Wang, J.; Wei, Z. Dual-Cation Interpenetrating Polymer Network Anion Exchange Membrane for Fuel Cells and Water Electrolyzers. Macromolecules 2022, 55, 4647–4655. [Google Scholar] [CrossRef]
- Gilli, E.; Horvath, A.E.; Horvath, A.T.; Hirn, U.; Schennach, R. Analysis of CMC attachment onto cellulosic fibers by infrared spectroscopy. Cellulose 2009, 16, 825–832. [Google Scholar] [CrossRef]
- Fockaert, L.-L.I.; Ganzinga-Jurg, D.; Versluis, J.; Boelen, B.; Bakker, H.J.; Terryn, H.; Mol, J.M.C. Studying Chemisorption at Metal–Polymer Interfaces by Complementary Use of Attenuated Total Reflection–Fourier Transform Infrared Spectroscopy (ATR-FTIR) in the Kretschmann Geometry and Visible–Infrared Sum-Frequency Generation Spectroscopy (SFG). J. Phys. Chem. C 2020, 124, 7127–7138. [Google Scholar] [CrossRef]
- Zaldivar, G.; Feng, J.; Lizarraga, L.; Yu, Y.; de Campos, L.; de Oliveira, K.M.P.; Piepenbrink, K.H.; Conda-Sheridan, M.; Tagliazucchi, M. Conformal Electrodeposition of Antimicrobial Hydrogels Formed by Self-Assembled Peptide Amphiphiles. Adv. Mater. Interfaces 2023, 10, 2300046. [Google Scholar] [CrossRef]
- Lei, M.; Liao, H.; Wang, S.; Zhou, H.; Zhao, Z.; Payne, G.F.; Qu, X.; Liu, C. Single Step Assembly of Janus Porous Biomaterial by Sub-Ambient Temperature Electrodeposition. Small 2022, 18, 2204837. [Google Scholar] [CrossRef]
- Chowdhury, I.F.; Shawon, M.T.A.; Alam, M.A.; Fatima, S.; Khan, A.A.; Yang, J.; Tang, Z.; Mondal, A.K. Ni2+-Rich Collagen/Lignin Composite Hydrogel: Transforming Industrial Waste Materials into Flexible Electronics. ACS Appl. Polym. Mater. 2024, 6, 15094–15104. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Qu, Y.; Zhang, Y.; Chen, P.; Ding, S.; Nie, M.; Yan, K.; Li, S. One-Pot Anodic Electrodeposition of Dual-Cation-Crosslinked Sodium Alginate/Carboxymethyl Chitosan Interpenetrating Hydrogel with Vessel-Mimetic Heterostructures. J. Funct. Biomater. 2025, 16, 235. https://doi.org/10.3390/jfb16070235
Li X, Qu Y, Zhang Y, Chen P, Ding S, Nie M, Yan K, Li S. One-Pot Anodic Electrodeposition of Dual-Cation-Crosslinked Sodium Alginate/Carboxymethyl Chitosan Interpenetrating Hydrogel with Vessel-Mimetic Heterostructures. Journal of Functional Biomaterials. 2025; 16(7):235. https://doi.org/10.3390/jfb16070235
Chicago/Turabian StyleLi, Xuli, Yuqing Qu, Yong Zhang, Pei Chen, Siyu Ding, Miaomiao Nie, Kun Yan, and Shefeng Li. 2025. "One-Pot Anodic Electrodeposition of Dual-Cation-Crosslinked Sodium Alginate/Carboxymethyl Chitosan Interpenetrating Hydrogel with Vessel-Mimetic Heterostructures" Journal of Functional Biomaterials 16, no. 7: 235. https://doi.org/10.3390/jfb16070235
APA StyleLi, X., Qu, Y., Zhang, Y., Chen, P., Ding, S., Nie, M., Yan, K., & Li, S. (2025). One-Pot Anodic Electrodeposition of Dual-Cation-Crosslinked Sodium Alginate/Carboxymethyl Chitosan Interpenetrating Hydrogel with Vessel-Mimetic Heterostructures. Journal of Functional Biomaterials, 16(7), 235. https://doi.org/10.3390/jfb16070235