Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (581)

Search Parameters:
Keywords = tropical tree species

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 871 KiB  
Article
Low-Cost Production of Brazilian Mahogany Clones Based on Indole-3-Butyric Acid Use, Clonal Mini-Hedge Nutrition and Vegetative Propagule Type
by Rafael Barbosa Diógenes Lienard, Annanda Souza de Campos, Lucas Graciolli Savian, Barbara Valentim de Oliveira, Felippe Coelho de Souza and Paulo André Trazzi
Forests 2025, 16(8), 1292; https://doi.org/10.3390/f16081292 (registering DOI) - 7 Aug 2025
Abstract
Swietenia macrophylla King, commonly known as Brazilian mahogany, is a high-value neotropical tree species currently threatened due to intensive logging in previous decades. Technologies aimed at clonal production are essential for this species’ conservation and sustainable use at times of climate change and [...] Read more.
Swietenia macrophylla King, commonly known as Brazilian mahogany, is a high-value neotropical tree species currently threatened due to intensive logging in previous decades. Technologies aimed at clonal production are essential for this species’ conservation and sustainable use at times of climate change and increasing demand for ecological restoration. The aim of the present study is to develop a low-cost protocol for mahogany clonal propagation through mini-cutting by assessing clonal mini-hedge nutrition, vegetative propagule type and indole-3-butyric acid (IBA) application effects on rooting and early clone growth. The experiment was conducted in nursery under controlled conditions based on using basal and apical mini-cuttings rooted in a low-cost mini-greenhouse subjected to three nutrient solution concentrations (50%, 100%, and 200%) and five IBA doses (0–8000 ppm). The mini-cutting technique proved efficient and led to over 90% survival after the hardening phase. The 200% nutrient solution concentration allowed balanced performance between cutting types and optimized clonal yield. IBA concentration at 4000 ppm accounted for higher root percentages at the bottom of the tube and the trend towards higher dry biomass production at 160 days. The results highlighted mini-cutting’s potential as a viable mahogany conservation and sustainable production technique. It also supported tropical forestry sector adaptation to challenges posed by climate change. Full article
19 pages, 4925 KiB  
Article
Environmental Heterogeneity Drives Diversity Across Forest Strata in Hopea hainanensis Communities
by Shaocui He, Donghai Li, Xiaobo Yang, Dongling Qi, Naiyan Shang, Caiqun Liang, Rentong Liu and Chunyan Du
Diversity 2025, 17(8), 556; https://doi.org/10.3390/d17080556 - 7 Aug 2025
Abstract
Species and phylogenetic diversity play vital roles in sustaining the structure, function, and resilience of plant communities, particularly in tropical rainforests. However, the mechanisms according to which environmental filtering and competitive exclusion influence diversity across forest layers remain insufficiently understood. In this study, [...] Read more.
Species and phylogenetic diversity play vital roles in sustaining the structure, function, and resilience of plant communities, particularly in tropical rainforests. However, the mechanisms according to which environmental filtering and competitive exclusion influence diversity across forest layers remain insufficiently understood. In this study, we investigated the species and phylogenetic diversity patterns in two representative tropical rainforest sites—Bawangling and Jianfengling—within Hainan Tropical Rainforest National Park, China, focusing on communities associated with the endangered species Hopea hainanensis. We employed a one-way ANOVA and Pearson’s correlation analyses to examine the distribution characteristics and interrelationships among diversity indices and used Mantel tests to assess the correlations with environmental variables. Our results revealed that the plant community in Jianfengling exhibited a significantly higher species richness at the family, genus, and species levels (a total of 288 plant species have been recorded, belonging to 82 families and 183 genera) compared to that in Bawangling (a total of 212 plant species, belonging to 75 families and 162 genera). H. hainanensis held the highest importance value in the middle tree layer across both sites (IV(BWL) = 12.44; IV(JFL) = 5.73), while dominant species varied notably among other forest layers, indicating strong habitat specificity. Diversity indices, including the Simpson index, the Shannon–Wiener index, and Pielou’s evenness, were significantly higher in the large shrub layer of Jianfengling, whereas Bawangling showed a relatively higher Shannon–Wiener index in the middle shrub layer. Phylogenetic diversity (PD) and the phylogenetic structure indices (NRI and NTI) displayed distinct vertical stratification patterns between sites. Furthermore, the PD in Bawangling’s large shrub layer was positively correlated with total phosphorus in the soil, while community evenness was influenced by soil organic carbon and total nitrogen. In Jianfengling, species richness was significantly associated with soil bulk density, altitude, and pH. These findings enhance our understanding of the ecological and evolutionary processes shaping biodiversity in tropical rainforests and highlight the importance of incorporating both species and phylogenetic metrics into the conservation strategies for endangered species such as Hopea hainanensis. Full article
(This article belongs to the Special Issue Biodiversity Conservation Planning and Assessment—2nd Edition)
Show Figures

Figure 1

21 pages, 9690 KiB  
Article
Comparative Transcriptomic Analysis for Identification of Environmental-Responsive Genes in Seven Species of Threadfin Breams (Nemipterus)
by Zhaoke Dang, Qiaer Wu, Yanbo Zhou, Liangming Wang, Yan Liu, Changping Yang, Manting Liu, Qijian Xie, Cheng Chen, Shengwei Ma and Binbin Shan
Int. J. Mol. Sci. 2025, 26(15), 7118; https://doi.org/10.3390/ijms26157118 - 23 Jul 2025
Viewed by 253
Abstract
Members of the genus Nemipterus are economically important fish species distributed in the tropical and subtropical Indo-West Pacific region. The majority of species in this genus inhabit waters with sandy–muddy substrates on the continental shelf, although different species are found at slightly varying [...] Read more.
Members of the genus Nemipterus are economically important fish species distributed in the tropical and subtropical Indo-West Pacific region. The majority of species in this genus inhabit waters with sandy–muddy substrates on the continental shelf, although different species are found at slightly varying water depths. In this study, we sequenced seven species within the genus Nemipterus after identifying the specimens using complementary morphological analysis and DNA barcoding. Each species yielded over 40,000,000 clean reads, totaling over 300,000,000 clean reads across the seven species. A total of 276,389 unigenes were obtained after de novo assembly and a total of 168,010 (60.79%) unigenes were annotated in the protein database. The comprehensive functional annotation based on the KOG, GO, and KEGG databases revealed that these unigenes are mainly associated with numerous physiological, metabolic, and molecular processes, and that the seven species exhibit similarity in these aspects. By constructing a phylogenetic tree and conducting divergence time analysis, we found that N. bathybius and N. virgatus diverged most recently, approximately during the Neogene Period (14.9 Mya). Compared with other species, N. bathybius and N. virgatus are distributed in deeper water layers. Therefore, we conducted selection pressure analysis using these two species as the foreground branches and identified several environmental-responsive genes. The results indicate that genes such as aqp1, arrdc3, ISP2, Hip, ndufa1, ndufa3, pcyt1a, ctsk, col6a2, casp2 exhibit faster evolutionary rates during long-term adaptation to deep-water environments. Specifically, these genes are considered to be associated with adaptation to aquatic osmoregulation, temperature fluctuations, and skeletal development. This comprehensive analysis provides valuable insights into the evolutionary biology and environmental adaptability of threadfin breams, contributing to the conservation and sustainable management of these species. Full article
Show Figures

Figure 1

17 pages, 2166 KiB  
Article
Effects of Fertilizer Application on Growth and Stoichiometric Characteristics of Nitrogen, Phosphorus, and Potassium in Balsa Tree (Ochroma lagopus) Plantations at Different Slope Positions
by Jialan Chen, Weisong Zhu, Yuanxi Liu, Gang Chen, Juncheng Han, Wenhao Zhang and Junwen Wu
Plants 2025, 14(14), 2221; https://doi.org/10.3390/plants14142221 - 18 Jul 2025
Viewed by 268
Abstract
Ochroma lagopus, a fast-growing tropical tree species, faces fertilization challenges due to slope heterogeneity in plantations. This study examined 3-year-old Ochroma lagopus at upper and lower slope positions under five treatments: CK (no fertilizer), F1 (600 g/plant), F2 (800 g/plant), F3 (1000 [...] Read more.
Ochroma lagopus, a fast-growing tropical tree species, faces fertilization challenges due to slope heterogeneity in plantations. This study examined 3-year-old Ochroma lagopus at upper and lower slope positions under five treatments: CK (no fertilizer), F1 (600 g/plant), F2 (800 g/plant), F3 (1000 g/plant), and F4 (1200 g/plant) of secondary macronutrient water-soluble fertilizer. Growth parameters and N-P-K stoichiometry were analyzed. Key results: (1) Height increased continuously with fertilizer dosage at both slopes, while DBH peaked and then declined. (2) At upper slopes (nutrient-poor soil), fertilization elevated leaf P but reduced branch N/K and increased root P/K. At lower slopes (nutrient-rich soil), late-stage leaf N increased significantly, with roots accumulating P/K via a “storage strategy”. Stoichiometric thresholds indicated N-K co-limitation (early-mid stage) shifting to P limitation (late stage) on upper slopes and persistent N-K co-limitation on lower slopes. (3) PCA identified F4 (1200 g/plant) and F1 (600 g/plant) as optimal for upper and lower slopes, respectively. This research provides a theoretical basis for precision fertilization in Ochroma lagopus plantations, emphasizing slope-specific nutrient status and element interactions for dosage optimization. Full article
Show Figures

Figure 1

12 pages, 1899 KiB  
Article
Climatic Factors in Beechnut Regeneration: From Seed Quality to Germination
by Ernesto C. Rodríguez-Ramírez and Beatriz Argüelles-Marrón
Stresses 2025, 5(3), 44; https://doi.org/10.3390/stresses5030044 - 16 Jul 2025
Viewed by 188
Abstract
Masting, or the synchronous and intermittent production of seeds, can have profound consequences for Tropical Montane Cloud Forest (TMCF) tree populations and the trophic webs that depend on their mass flowering and seeds. Over the past 80 years, the importance of Fagus mexicana [...] Read more.
Masting, or the synchronous and intermittent production of seeds, can have profound consequences for Tropical Montane Cloud Forest (TMCF) tree populations and the trophic webs that depend on their mass flowering and seeds. Over the past 80 years, the importance of Fagus mexicana Martínez (Mexican beech) masting has become apparent in terms of conservation and management, promoting regeneration, and conserving endangered tree species, as well as the conscientious development of edible beechnuts as a non-timber forest product. The establishment of the relict-endemic Mexican beech is unknown, and several microenvironmental factors could influence natural regeneration. Thus, this study was conducted in two well-preserved Mexican beech forests to assess the influence of light incidence and soil moisture on the natural germination and seedling establishment of beeches. During two masting years (2017 and 2024), we assessed in situ beechnut germination and establishment. We tested the effect of the microenvironment of the oldest beeches on beechnut germination and seedling establishment. Our study highlights the complexity of the microenvironment of old beeches influencing the early stages of establishment and provides insights into possible conservation actions aimed at mitigating the impact of environmental change and humans. Full article
Show Figures

Figure 1

20 pages, 3788 KiB  
Article
Assessing Forest Succession Along Environment, Trait, and Composition Gradients in the Brazilian Atlantic Forest
by Carem Valente, Renan Hollunder, Cristiane Moura, Geovane Siqueira, Henrique Dias and Gilson da Silva
Forests 2025, 16(7), 1169; https://doi.org/10.3390/f16071169 - 16 Jul 2025
Viewed by 401
Abstract
Tropical forests face increasing threats and are often replaced by secondary forests that regenerate after disturbances. In the Atlantic Forest, this creates fragments of different successional stages. The aim of this study is to understand how soil nutrients and light availability gradients influence [...] Read more.
Tropical forests face increasing threats and are often replaced by secondary forests that regenerate after disturbances. In the Atlantic Forest, this creates fragments of different successional stages. The aim of this study is to understand how soil nutrients and light availability gradients influence the species composition and structure of trees and regenerating strata in remnants of lowland rainforest. We sampled 15 plots for the tree stratum (DBH ≥ 5 cm) and 45 units for the regenerating stratum (height ≥ 50 cm, DBH < 5 cm), obtaining phytosociological, entropy and equitability data for both strata. Canopy openness was assessed with hemispherical photos and soil samples were homogenized. To analyze the interactions between the vegetation of the tree layer and the environmental variables, we carried out three principal component analyses and two redundancy analyses and applied a linear model. The young fragments showed good recovery, significant species diversity, and positive successional changes, while the older ones had higher species richness and were in an advanced stage of succession. In addition, younger forests are associated with sandy, nutrient-poor soils and greater exposure to light, while mature forests have more fertile soils, display a greater diversity of dispersal strategies, are rich in soil clay, and have less light availability. Mature forests support biodiversity and regeneration better than secondary forests, highlighting the importance of preserving mature fragments and monitoring secondary ones to sustain tropical biodiversity. Full article
Show Figures

Graphical abstract

21 pages, 3178 KiB  
Article
Using DAP-RPA Point Cloud-Derived Metrics to Monitor Restored Tropical Forests in Brazil
by Milton Marques Fernandes, Milena Viviane Vieira de Almeida, Marcelo Brandão José, Italo Costa Costa, Diego Campana Loureiro, Márcia Rodrigues de Moura Fernandes, Gilson Fernandes da Silva, Lucas Berenger Santana and André Quintão de Almeida
Forests 2025, 16(7), 1092; https://doi.org/10.3390/f16071092 - 1 Jul 2025
Viewed by 331
Abstract
Monitoring forest structure, diversity, and biomass in restoration areas is both expensive and time-consuming. Metrics derived from digital aerial photogrammetry (DAP) may offer a cost-effective and efficient alternative for monitoring forest restoration. The main objective of this study was to use metrics derived [...] Read more.
Monitoring forest structure, diversity, and biomass in restoration areas is both expensive and time-consuming. Metrics derived from digital aerial photogrammetry (DAP) may offer a cost-effective and efficient alternative for monitoring forest restoration. The main objective of this study was to use metrics derived from digital aerial photogrammetry (DAP) point clouds obtained by remotely piloted aircraft (RPA) to estimate aboveground biomass (AGB), species diversity, and structural variables for monitoring restored secondary tropical forest areas. The study was conducted in three active and one passive forest restoration systems located in a secondary forest in Sergipe state, Brazil. A total of 2507 tree individuals from 36 plots (0.0625 ha each) were identified, and their total height (ht) and diameter at breast height (dbh) were measured in the field. Concomitantly with the field inventory, the plots were mapped using an RPA, and traditional height-based point cloud metrics and Fourier transform-derived metrics were extracted for each plot. Regression models were developed to calculate AGB, Shannon diversity index (H′), ht, dbh, and basal area (ba). Furthermore, multivariate statistical analyses were used to characterize AGB and H′ in the different restoration systems. All fitted models selected Fourier transform-based metrics. The AGB estimates showed satisfactory accuracy (R2 = 0.88; RMSE = 31.2%). The models for H′ and ba also performed well, with R2 values of 0.90 and 0.67 and RMSEs of 24.8% and 20.1%, respectively. Estimates of structural variables (dbh and ht) showed high accuracy, with RMSE values close to 10%. Metrics derived from the Fourier transform were essential for estimating AGB, species diversity, and forest structure. The DAP-RPA-derived metrics used in this study demonstrate potential for monitoring and characterizing AGB and species richness in restored tropical forest systems. Full article
Show Figures

Figure 1

15 pages, 2390 KiB  
Article
Impact of Ants on the Order Composition of Canopy Arthropod Communities in Temperate and Tropical Forests
by Andreas Floren and Tobias Müller
Animals 2025, 15(13), 1914; https://doi.org/10.3390/ani15131914 - 28 Jun 2025
Viewed by 343
Abstract
Ants are key drivers of biodiversity in both tropical and temperate forests, though the underlying mechanisms of this remain debated. In tropical lowland rainforests, ants dominate the canopy as opportunistic predators, shaping arthropod abundance and community structure. By contrast, few arboreal ant species [...] Read more.
Ants are key drivers of biodiversity in both tropical and temperate forests, though the underlying mechanisms of this remain debated. In tropical lowland rainforests, ants dominate the canopy as opportunistic predators, shaping arthropod abundance and community structure. By contrast, few arboreal ant species exist in temperate forests due to climatic constraints, and predation pressure is generally low. This changes when ground-nesting Formica species enter the canopy to forage. Using insecticidal knockdown, we collected arthropod communities from trees with high and low ant abundance in both tropical and temperate forests and in different seasons. We found consistently higher arthropod abundances on trees with strong ant dominance, including preferred prey taxa such as Diptera, Psocoptera, and Lepidoptera. In temperate forests, high arthropod densities may be driven by aphid-produced honeydew, whereas in tropical rainforests, the absence of large hemipteran aggregations suggests that other mechanisms are involved. Consequently, this mechanism fails to explain high arthropod abundance in tropical primary forests. In contrast, secondary tropical forests host structurally and compositionally altered ant communities, resulting in reduced predation pressure and a marked increase in the abundance of individual species, including potential pest species. These findings suggest that biodiversity maintenance in the canopy depends on intact, diverse ant communities. Recolonization from nearby primary forests is essential for recovery, yet even after five decades, secondary forests remain ecologically distinct, rendering full restoration to primary forest conditions unlikely within a management-relevant timeframe. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

18 pages, 3621 KiB  
Review
‘Land Maxing’: Regenerative, Remunerative, Productive and Transformative Agriculture to Harness the Six Capitals of Sustainable Development
by Roger R. B. Leakey and Paul E. Harding
Sustainability 2025, 17(13), 5876; https://doi.org/10.3390/su17135876 - 26 Jun 2025
Cited by 1 | Viewed by 574
Abstract
After decades of calls for more sustainable land use systems, there is still a lack of consensus on an appropriate way forward, especially for tropical and subtropical agroecosystems. Land Maxing utilises appropriate, community-based interventions to fortify and maximise the multiple, long-term benefits and [...] Read more.
After decades of calls for more sustainable land use systems, there is still a lack of consensus on an appropriate way forward, especially for tropical and subtropical agroecosystems. Land Maxing utilises appropriate, community-based interventions to fortify and maximise the multiple, long-term benefits and interest flows from investments that rebuild all six essential capitals of sustainable development (natural, social, human, physical, financial and political/corporate will) for resource-poor smallholder communities in tropical and subtropical countries. Land Maxing adds domestication of overlooked indigenous food tree species, and the commercialization of their marketable products, to existing land restoration efforts while empowering local communities, enhancing food sovereignty, and boosting the local economy and overall production. These agroecological and socio-economic interventions sustainably restore and intensify subsistence agriculture replacing conventional negative trade-offs with fortifying ‘trade-ons’. Land Maxing is therefore productive, regenerative, remunerative and transformative for farming communities in the tropics and sub-tropics. Through the development of resilience at all levels, Land Maxing uniquely addresses the big global issues of environmental degradation, hunger, malnutrition, poverty and social injustice, while mitigating climate change and restoring wildlife habitats. This buffers subsistence farming from population growth and poor international governance. The Tropical Agricultural Association International is currently planning a programme to up-scale and out-scale Land Maxing in Africa. Full article
Show Figures

Figure 1

11 pages, 1150 KiB  
Communication
Exploring Variations in Physical and Chemical Characteristics of Barringtonia Nuts: A Novel Forest Food
by Shahla Hosseini Bai, Bruce Randall, Repson Gama, Basil Gua, Doni Keli, Peter Brooks, Brittany Elliott and Helen M. Wallace
Foods 2025, 14(12), 2147; https://doi.org/10.3390/foods14122147 - 19 Jun 2025
Viewed by 350
Abstract
Food security remains one of the most critical global challenges of the 21st century. Traditional tree crops domesticated by indigenous people have the potential to increase food security and improve the livelihoods of smallholders in developing countries. However, the nut characteristics of many [...] Read more.
Food security remains one of the most critical global challenges of the 21st century. Traditional tree crops domesticated by indigenous people have the potential to increase food security and improve the livelihoods of smallholders in developing countries. However, the nut characteristics of many traditional tree crop species in the tropics are poorly understood. In particular, physical and chemical characteristics are important to explore when selecting trees to commercialise. Three species, Barringtonia procera, B. edulis, and B. nova-hiberniae, have a long history of traditional use and domestication in Pacific Island countries. The aim of this study was to explore the physical and chemical characteristics of Barringtonia spp. in three Pacific countries: Solomon Islands, Vanuatu, and Fiji. There were significant differences in kernel weight, oil concentration, and fatty acid concentration among the countries. The kernel weight was significantly higher in Solomon Islands compared with those in Vanuatu and Fiji (9.65 g, 7.61 g, and 5.64 g, respectively). Average kernel weight in Fiji was well above 3 g, which indicated that processing could be commercially viable. The total oil concentration was significantly higher in Vanuatu and Solomon Islands than Fiji, with average concentrations of 38.96% in Solomon Islands, 47.11% in Vanuatu, and 26.20% in Fiji. Barringtonia spp. exhibited high concentrations of unsaturated fatty acids, similar to other tropical nuts, which suggests that it may be a potential healthy oil for human consumption. Notably, kernel size, oil concentration, and fatty acid composition varied geographically, potentially due to climatic differences and historical seed transfer. Our study demonstrated the potential of Barringtonia to be commercialised to enhance food and nutrition security and provide a guide for cultivar selection. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

15 pages, 2684 KiB  
Article
Seasonal Variation in Transpiration and Stomatal Conductance of Three Savanna Tree Species in Ruma National Park, Kenya
by John Maina Nyongesa, Wycliff Oronyi, Oyoo Lawrence, Ernest Kiplangat Ronoh, Lindsay Sikuku Mwalati, Vincent Suba, Leopody Gayo, Jacques Nkengurutse, Denis Ochuodho Otieno and Yuelin Li
Forests 2025, 16(6), 999; https://doi.org/10.3390/f16060999 - 13 Jun 2025
Cited by 1 | Viewed by 599
Abstract
Understanding the seasonal regulation of transpiration and stomatal conductance is critical for evaluating plant water-use strategies in response to environmental variability. This study assessed these physiological traits in three dominant savanna tree species (Piliostigma thonningii (Schumach.) Milne-Redh., Combretum molle R.Br. ex G.Don, [...] Read more.
Understanding the seasonal regulation of transpiration and stomatal conductance is critical for evaluating plant water-use strategies in response to environmental variability. This study assessed these physiological traits in three dominant savanna tree species (Piliostigma thonningii (Schumach.) Milne-Redh., Combretum molle R.Br. ex G.Don, and Balanites aegyptiaca (L.) Delile) in Ruma National Park, Kenya. Measurements were taken during wet and dry seasons under varying canopy light conditions (light-exposed vs. shaded leaves) and soil moisture regimes. A randomized design with four treatments and three replicates was employed. Results showed significantly higher transpiration and stomatal conductance during wet seasons, especially in sunlit leaves (p < 0.05). P. thonningii exhibited the highest rates of transpiration (9 mmol m−2 s−1) and stomatal conductance (~2.2 mmol m−2 s−1) in light conditions, while B. aegyptiaca maintained consistently low values, reflecting a drought-tolerant strategy. C. molle demonstrated intermediate responses, suggesting a balance between water conservation and resource use. Despite seasonal trends, low R2 values indicated that internal physiological regulation outweighed the influence of external climatic drivers. These findings reveal species-specific water-use strategies and highlight the ecological significance of leaf-level responses to light and moisture availability in tropical savannas. The study provides valuable insights for forest management and climate-resilient restoration planning in water-limited ecosystems. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

16 pages, 3004 KiB  
Article
Unveiling Species Diversity Within Early-Diverging Fungi from China VI: Four Absidia sp. nov. (Mucorales) in Guizhou and Hainan
by Yi-Xin Wang, Zi-Ying Ding, Xin-Yu Ji, Zhe Meng and Xiao-Yong Liu
Microorganisms 2025, 13(6), 1315; https://doi.org/10.3390/microorganisms13061315 - 5 Jun 2025
Cited by 1 | Viewed by 479
Abstract
Absidia is the most species-rich genus within the family Cunninghamellaceae, with its members commonly isolated from diverse substrates, particularly rhizosphere soil. In this study, four novel Absidia species, A. irregularis sp. nov., A. multiformis sp. nov., A. ovoidospora sp. nov., and A. verticilliformis [...] Read more.
Absidia is the most species-rich genus within the family Cunninghamellaceae, with its members commonly isolated from diverse substrates, particularly rhizosphere soil. In this study, four novel Absidia species, A. irregularis sp. nov., A. multiformis sp. nov., A. ovoidospora sp. nov., and A. verticilliformis sp. nov., were discovered from soil samples collected in southern and southwestern China, using integrated morphological and molecular analyses. Phylogenetic analyses based on concatenated ITS, SSU, LSU, Act, and TEF1α sequence data reconstructed trees that strongly supported the monophyly of each of these four new taxa. Key diagnostic features include A. irregularis (closely related to A. oblongispora) exhibiting irregular colony morphology, A. multiformis (sister to A. heterospora) demonstrating polymorphic sporangiospores, A. ovoidospora (forming a clade with A. panacisoli and A. abundans) producing distinctive ovoid sporangiospores, and A. verticilliformis (next to A. edaphica) displaying verticillately branched sporangiophores. Each novel species is formally described with comprehensive documentation, including morphological descriptions, illustrations, Fungal Names registration identifiers, designated type specimens, etymological explanations, maximum growth temperatures, and taxonomic comparisons. This work constitutes the sixth instalment in a series investigating early-diverging fungal diversity in China aiming to enhance our understanding of the diversity of fungi in tropical and subtropical ecosystems in Asia. In this paper, the known species of Absidia are expanded to 71. Full article
Show Figures

Figure 1

26 pages, 3355 KiB  
Article
Dendrochronology and Isotope Chronology of Juglans neotropica and Its Response to El Niño-Related Rainfall Events in Tropical Highlands of Piura, Northern Peru
by Tone Marie Ektvedt, Michael N. Evans, Donald A. Falk and Paul R. Sheppard
Plants 2025, 14(11), 1704; https://doi.org/10.3390/plants14111704 - 3 Jun 2025
Cited by 1 | Viewed by 884
Abstract
Tropical trees represent an important potential archive of climate and ecological information, but their dendrochronology based on conventional techniques has been challenging. We conducted a pilot study of the wood anatomy and dendroclimatological potential of Juglans neotropica Diels (Juglandaceae), an IUCN Red List [...] Read more.
Tropical trees represent an important potential archive of climate and ecological information, but their dendrochronology based on conventional techniques has been challenging. We conducted a pilot study of the wood anatomy and dendroclimatological potential of Juglans neotropica Diels (Juglandaceae), an IUCN Red List species, using 225 radii sampled from 57 trees in Piura (4°55′ S, 79° 56′ W), northern Peru. A total of 112 radii from 40 trees passed quality control and are included in the tree-ring width chronology for this species. J. neotropica has demonstrably annual rings, and results are consistent with reports that the species has a dormant period during the dry season, which locally is approximately June–November. Local precipitation is correlated (p = 0.10, 1-tailed test) with tree-ring growth, lagged by one year, consistent with other studies of tropical tree species. The age distribution of the sample collection of J. neotropica is young and invariant, probably because of selective cutting by local villagers. To supplement ring-width analysis, we conducted the first oxygen isotopic (δ18O) and radiocarbon (∆14C) analysis for this species on radii from two individuals; results are preliminary given sample size limitations, but consistent with dendrochronological dating, within uncertainties, in all three chronometric analyses. A two-sample composite annually-averaged δ18O anomaly data series is correlated significantly with gridded regional growing season (December–May) precipitation (1973/74–2005/06). Qualitatively consistent with simulation of ring width and δ18O, responses to El Niño events are manifested in positive ring-growth anomalies and negative isotopic anomalies following known event years. The combination of tree-ring, radiocarbon, stable isotopic analyses, and the application of sensor and chronological modeling provides a degree of confidence in the results that would not have been possible by relying on any single approach and indicates the potential for further investigation of this and other tropical tree species with uncertain ring boundaries. Full article
(This article belongs to the Special Issue New Perspectives on New World Tropical Forests)
Show Figures

Figure 1

19 pages, 4285 KiB  
Article
Future Expansion of Sterculia foetida L. (Malvaceae): Predicting Invasiveness in a Changing Climate
by Heba Bedair, Harish Chandra Singh, Ahmed R. Mahmoud and Mohamed M. El-Khalafy
Forests 2025, 16(6), 912; https://doi.org/10.3390/f16060912 - 29 May 2025
Cited by 1 | Viewed by 701
Abstract
Sterculia foetida L., commonly known as the Java olive, is a tropical tree species native to regions of East Africa, tropical Asia, and northern Australia. This study employs species distribution modeling (SDM) to predict the potential geographic distribution of S. foetida under current [...] Read more.
Sterculia foetida L., commonly known as the Java olive, is a tropical tree species native to regions of East Africa, tropical Asia, and northern Australia. This study employs species distribution modeling (SDM) to predict the potential geographic distribution of S. foetida under current and future climate scenarios. Using 1425 occurrence data and 19 environmental variables, we applied an ensemble modelling approach of three algorithms: Boosting Regression Trees (BRT), Generalized Linear Model (GLM), and Random Forests (RF), to generate distribution maps. Our models showed high accuracy (mean AUC = 0.98) to indicate that S. foetida has a broad ecological niche, with high suitability in tropical and subtropical regions of north Australia (New Guinea and Papua), Southeast Asia (India, Thailand, Myanmar, Taiwan, Philippines, Malaysia, Sri Lanka), Oman and Yemen in the southwest of Asia, Central Africa (Guinea, Ghana, Nigeria, Congo, Kenya and Tanzania), the Greater and Lesser Antilles, Mesoamerica, and the north of South America (Colombia, Panama, Venezuela, Ecuador and Brazil). Indeed, the probability of occurrence of S. foetida positively correlates with the Maximum temperature of warmest month (bio5), Mean temperature of wettest quarter (bio8) and Precipitation of wettest month (bio13). The model results showed a suitability area of 4,744,653 km2, representing 37.86% of the total study area, classified into Low (14.12%), Moderate (8.71%), and High suitability (15.02%). Furthermore, the study found that habitat suitability for S. foetida showed similar trends under both near future climate scenarios (SSP1-2.6 and SSP5-8.5 for 2041–2060), with a slight loss in potential distribution (0.24% and 0.25%, respectively) and moderate gains (1.98% and 2.12%). In the far future (2061–2080), the low scenario (SSP1-2.6) indicated a 0.29% loss and a 2.52% gain, while the high scenario (SSP5-8.5) showed a more dramatic increase in both loss (0.6%) and gain areas (3.79%). These findings are crucial for conservation planning and management, particularly in regions where S. foetida is considered invasive and could become problematic. The study underscores the importance of incorporating climate change projections in SDM to better understand species invasiveness dynamics and inform biodiversity conservation strategies. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

14 pages, 1238 KiB  
Article
Effects of Urbanization on Flowering Phenology, Pollination, and Reproductive Success in the Chiropterophilous Tropical Tree Ceiba pentandra
by Henry F. Dzul-Cauich and Miguel A. Munguía-Rosas
Plants 2025, 14(11), 1575; https://doi.org/10.3390/plants14111575 - 22 May 2025
Viewed by 1762
Abstract
Urbanization often negatively impacts pollinator abundance and richness; however, its effects on different pollination components and plant reproductive success are highly variable. Previous research efforts have also shown geographic and taxonomical bias, with non-insect-pollinated plant species in tropical cities underrepresented in the literature. [...] Read more.
Urbanization often negatively impacts pollinator abundance and richness; however, its effects on different pollination components and plant reproductive success are highly variable. Previous research efforts have also shown geographic and taxonomical bias, with non-insect-pollinated plant species in tropical cities underrepresented in the literature. Although bats represent the most persistent mammal group in urban ecosystems, studies addressing the effect of urbanization on chiropterophilous plants are scarce. Here, we addressed the impacts of urbanization on flowering phenology, pollination, and reproductive success in the chiropterophilous tree Ceiba pentandra (L.) Gaertn. (Malvaceae) in two major tropical cities of the Yucatan Peninsula. We found that urbanization has led to an earlier flowering phenology; however, no effect of urbanization was detected in the two pollination components evaluated: pollinator visitation rate and pollen deposition. Finally, the effects of urbanization on the reproductive success of C. pentandra were mixed. While marginally negative effects of urbanization were found in fruit set, positive effects were found in seed germination. These findings suggest that urban pollinators can provide similar levels of pollination services and thus lead to comparable reproductive success for C. pentandra in forests and cities. Full article
(This article belongs to the Special Issue Plants and Their Floral Visitors in the Face of Global Change)
Show Figures

Figure 1

Back to TopTop