Effects of Fertilizer Application on Growth and Stoichiometric Characteristics of Nitrogen, Phosphorus, and Potassium in Balsa Tree (Ochroma lagopus) Plantations at Different Slope Positions
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Materials and Experimental Design
2.3. Indicator Measurements
2.4. Statistical Analysis
3. Results
3.1. Effects of Fertilizer Application on Tree Height and Diameter at Breast Height of Ochroma lagopus Plantations on Different Slope Positions
3.2. Effect of Fertilization on Leaf Nitrogen, Phosphorus, and Potassium and Their Stoichiometric Characteristics of Ochroma lagopus at Different Slope Positions
3.3. Effect of Fertilization on Nitrogen, Phosphorus, and Potassium and Their Stoichiometric Characteristics of Ochroma lagopus Branches at Different Slope Positions
3.4. Effect of Fertilization on Nitrogen, Phosphorus, and Potassium and Their Stoichiometric Characteristics in Roots of Ochroma lagopus at Different Slope Positions
3.5. Correlation Analysis
3.6. Principal Component Analysis (PCA)
4. Discussion
4.1. Effects of Fertilizer Application on the Growth of Ochroma lagopus Plantations on Different Slope Positions
4.2. Effect of Fertilizer Application on N, P, and K Contents and Their Stoichiometric Characteristics of Various Organs of Ochroma lagopus at Different Slope Positions
4.3. Analysis of the Relationship Between Fertilization and the Growth of Ochroma lagopus and N, P, and K Contents of Various Organs and Their Stoichiometric Characteristics at Different Slope Positions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guang, M.; Liao, L.L. Application Effect of Amino Acid Water-soluble Fertilizer on Eggplant. Mod. Agric. Sci. Technol. 2023, 18, 67–70. [Google Scholar]
- Xu, X.; Zhao, C.; Qian, K.; Sun, M.; Hao, Y.; Han, L.; Wang, C.; Ma, C.; White, J.C.; Xing, B. Physiological responses of pumpkin to zinc oxide quantum dots and nanoparticles. Environ. Pollut. 2022, 296, 118723. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.F. Effect of Medium Element Water Soluble Fertilizer on the Growth and Yield of Solanum lycopersicum. Agric. Tech. Equip. 2025, 3, 172–174. [Google Scholar]
- BrubaKer, S.C.; Jones, A.J.; Lewis, D.T.; Frank, K. Soil properties associated with landscape position. Soil Sci. Soc. Am. J. 1993, 57, 235–239. [Google Scholar] [CrossRef]
- Hawthorne, S.; Miniat, C.F. Topography may mitigate drought effects on vegetation along a hillslope gradient. Ecohydrology 2017, 11, e1825. [Google Scholar] [CrossRef]
- Pang, H.D.; Li, L.; Cui, H.X.; Zeng, X.F.; Tang, W.P. Effects of Different Site Factors on the Growth and Soil Physical and Chemical Properties of Paulownia Plantation. J. Northeast For. Univ. 2021, 49, 28–32. [Google Scholar] [CrossRef]
- Xie, M.; Zhang, P.; He, Y.; Hong, D. Combined effects of rain-fall pattern and fertilization on subsurface nitrogen transport and loss from sloped soil: A laboratory experiment. Arab. J. Geosci. 2023, 16, 31. [Google Scholar] [CrossRef]
- Ganesh, K.P.; Pragasan, L.A. Effects of nitrogen addition on Eucalyptus globulus growth and carbon sequestration potential under various CO2 climatic conditions. Geol. Ecol. Landsc. 2024, 8, 185–193. [Google Scholar] [CrossRef]
- Wang, S.Q.; Yu, G.R. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecol. Sin. 2008, 28, 3937–3947. [Google Scholar] [CrossRef]
- Sterner, R.W.; Elser, J.J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere; Princeton University Press: Princeton, NJ, USA, 2003. [Google Scholar] [CrossRef]
- Reich, P.B.; Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci. USA 2004, 101, 11001–11006. [Google Scholar] [CrossRef] [PubMed]
- Steer, M.W.; Steer, J.M. Pollen tube tip growth. New Phytol. 1989, 111, 323–358. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Flottmann, S. Source-sink manipulations indicate seed yield in canola is limited by source availability. Eur. J. Agron. 2018, 96, 70–76. [Google Scholar] [CrossRef]
- Farhat, N.; Elkhouni, A.; Zorrig, W.; Smaoui, A.; Abdelly, C.; Rabhi, M. Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning. Acta Physiol. Plant. 2016, 38, 145. [Google Scholar] [CrossRef]
- Tao, Z.Q.; Chang, X.H.; Wang, D.M.; Wang, Y.J.; Ma, S.K. Effects of sulfur fertilization and short-term high temperature on wheat grain production and wheat flour proteins. Crop. J. 2018, 6, 413–425. [Google Scholar] [CrossRef]
- Venterink, H.O.; Wassen, J.M.; Verkroost, W.M.A.; Ruiter, C.P. Species richness-productivity patterns differ between N-, P-, and K-limited wetlands. Ecology 2003, 84, 2191–2199. [Google Scholar] [CrossRef]
- Borrega, M.; Gibson, L.J. Mechanics of balsa (Ochroma pyramidale) wood. Mech. Mater. 2015, 84, 75–90. [Google Scholar] [CrossRef]
- Borrega, M.; Ahvenainen, P.; Serimaa, R.; Gibson, L. Composition and structure of balsa (Ochroma pyramidale) wood. Wood Sci. Technol. 2015, 49, 403–420. [Google Scholar] [CrossRef]
- Kotlarewski, N.J.; Derikvand, M.; Lee, M.; Nolan, G.; Hague, J.R. Bifenthrin treatment for balsa: Susceptibility of Papua New Guinea-grown Ochroma pyramidale to attack by Coptotermes acinaciformis (Blattodea: Rhinotermitidae) in an Australian context. Int. Biodeter. Biodegr. 2019, 137, 153–157. [Google Scholar] [CrossRef]
- Levy-Tacher, S.I.; Morón-Ríos, A. Differences in growth and survival of two varieties of Ochroma pyramidale in rustic plantations in southern Mexico. Trees For. People 2024, 17, 100652. [Google Scholar] [CrossRef]
- Vahedi, N.; Tiago, C.; Vassilopoulos, A.P.; Correia, J.R.; Keller, T. Thermophysical properties of balsa wood used as core of sandwich composite bridge decks exposed to external fire. Constr. Build. Mater. 2022, 329, 127–164. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, J.; Dai, C.; Du, G.; Shi, R.; Wu, J. Physiological and Biochemical Adaptations to Repeated Drought–Rehydration Cycles in Ochroma lagopus Swartz: Implications for Growth and Stress Resilience. Plants 2025, 14, 1636. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Duan, H.; Wu, J.; Zhao, Z.; Liu, Y.; Chen, G.; Duan, G.; Li, Z.; Du, G. Response of Ochroma lagopus Swartz Growth and Nutrient Uptake to Urea and Slow-Release Fertilizer Addition. Forests 2025, 16, 278. [Google Scholar] [CrossRef]
- Chen, G.; Zhao, Z.; Li, Z.; Duan, G.; Wen, C.; Du, G.; Wu, J. Response of Non-Structural Carbohydrates and Carbon, Nitrogen and Phosphorus Stoichiometric Characteristics of Ochroma lagopus Leaves to Nitrogen Addition. Forests 2025, 16, 117. [Google Scholar] [CrossRef]
- Wen, C.J.; Wu, J.W.; Zhao, Z.J.; Chen, G.; Li, Z.Q.; Duan, G.H.; Du, G.B.; Liang, W. Response of growth and organ carbon, nitrogen and phosphorus stoichiometry to nitrogen addition in a Ochroma lagopus plantation forest. J. Plant Nutr. Fertil. 2025, 31, 188–200. [Google Scholar] [CrossRef]
- Duan, G.H.; Wu, J.W.; Zhao, Z.J.; Li, Z.Q.; Chen, G.; Wen, C.J.; Du, G.B. Effect of fertilizer application on growth and non-structural carbohydrates of Ochroma pyramidale. Northwest For. Univ. 2025, 1–13. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014 Update 2015 International Soil Classification System For Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Zhang, K.; Zheng, H.; Ouyang, Z.Y.; Li, R.D.; Yang, M.; Lan, J.; Xiang, X.W. Effects of nitrogen fertilization on greenhouse gas fluxes of soil-atmosphere interface in growing and non-growing season in Eucalyptus plantations in southern China. Chin. J. Ecol. 2015, 34, 1779–1784. [Google Scholar] [CrossRef]
- Quirino, D.F.; Lima, N.S.A.; Palma, M.N.N.; de Oliveira Franco, M.; Detmann, E. Variations of the Kjeldahl method for assessing nitrogen concentration in tropical forages. Grass Forage Sci. 2023, 78, 648–654. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agrochemical Analysis, 3rd ed.; China Agricultural Press: Beijing, China, 2000. [Google Scholar]
- Li, X.; Bo, H.; Zhu, J.; Zhang, J.; Hu, J.; Mu, F.; Nie, L. Reducing nutrient loss caused by thinning: Effects of four composts of forest thinning shreds on soil nutrients and tree growth in semimature Pinus tabuliformis, Beijing, China. Forests 2022, 13, 702. [Google Scholar] [CrossRef]
- Fan, X.M.; Li, J.H. Field experiment on fertilizer effect of medium element water-soluble fertilizer on tomato. Northwest Hort. 2021, 1, 48–51. [Google Scholar]
- Kulmann, M.S.D.S.; Deliberali, I.; Schumacher, M.V.; Stahl, J.; Figura, M.A.; Ludvichak, A.A.; Stape, J.L. Can fertilization and stand uniformity affect the growth and biomass production in a Pinus taeda plantation in southern Brazil. For. Ecol. Manag. 2023, 541, 121075. [Google Scholar] [CrossRef]
- Lenin, S.C.; José, L.B.; Alejandra, C.L.; Alfredo, C.R.; Fernanda, N.J.; Dubrovsky, J.G.; Luis, H.E. Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant Cell Physiol. 2005, 46, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Ou, J.D.; Kang, Y.W. The Annual Growth Dynamics and Growth Rhythm of Manglietia yuyuanensis Saplings at Different Slope Positions. J. Northeast For. Univ. 2024, 52, 8–12+18. [Google Scholar] [CrossRef]
- Richards, A.R. Selectable traits to increase crop photosynthesis and yield of grain crops. J. Exp. Bot. 2000, 51, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Hammond, J.P.; White, P.J. Sucrose transport in the phloem: Integrating root responses to phosphorus starvation. J. Exp. Bot. 2008, 59, 93–109. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, W.M. Correlation between changes in photosynthetic activity and changes in total protoplast volume in leaf tissue from hygro-, meso- and xerophytes under osmotic tress. Plants 1982, 154, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.P.; Wei, C.B.; Zhang, S.R.; Wang, Y.D.; Kuzyakov, Y.; Ding, X.D. MgO-modified biochar increases phosphate retention and rice yields in saline-alkaline soil. J. Clean. Prod. 2019, 235, 901–909. [Google Scholar] [CrossRef]
- Bordin, K.M.; Müller, S.C. Drivers of subtropical forest dynamics: The role of functional traits, forest structure and soil variables. J. Veg. Sci. 2019, 30, 1164–1174. [Google Scholar] [CrossRef]
- Wu, G.; Wang, S. Calcium regulates K+/Na+ homeostasis in rice (Oryza sativa L.) under saline conditions. Plant Soil Environ. 2012, 58, 121–127. [Google Scholar] [CrossRef]
- Yan, Z.B.; Tian, D.; Han, W.X.; Tang, Z.Y.; Fang, J.Y. An assessment on the uncertainty of the nitrogen to phosphorus ratio as a threshold for nutrient limitation in plants. Ann. Bot. 2017, 6, 937–942. [Google Scholar] [CrossRef] [PubMed]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Han, W.X.; Fang, J.Y.; Guo, D.L.; Zhang, Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol. 2005, 168, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q. Research Advances on Sulfur Nutrition of Soil and Plant. Agric. Technol. Serv. 2011, 28, 165–167. [Google Scholar]
Slope Position | Fertilization | Y1 | Y2 | Y (Composite Scores (Y)) | Ranking |
---|---|---|---|---|---|
Upper slope position | CK | 0.040 | −1.614 | −0.332 | 5 |
F1 | 0.999 | −0.329 | 0.184 | 2 | |
F2 | −1.225 | 0.720 | −0.158 | 3 | |
F3 | −1.018 | 0.044 | −0.249 | 4 | |
F4 | 1.204 | 1.179 | 0.556 | 1 | |
Lower slope position | CK | −0.287 | −1.475 | −0.345 | 5 |
F1 | 0.974 | 1.072 | 0.454 | 1 | |
F2 | −0.542 | 0.313 | −0.087 | 3 | |
F3 | 1.073 | −0.504 | 0.193 | 2 | |
F4 | −1.218 | 0.595 | −0.216 | 4 |
Index | Upper Slope Position | Lower Slope Position | ||
---|---|---|---|---|
Y1 | Y2 | Y1 | Y2 | |
Height of tree | −0.050 | 0.226 | −0.023 | 0.009 |
DBH | −0.044 | 0.063 | −0.091 | −0.134 |
Leaf N | 0.049 | 0.028 | 0.170 | 0.145 |
Leaf P | −0.102 | 0.073 | 0.037 | −0.034 |
Leaf K | 0.245 | 0.019 | 0.187 | −0.364 |
Leaf N/P | 0.084 | −0.009 | 0.152 | 0.180 |
Leaf N/K | −0.104 | 0.009 | 0.056 | 0.303 |
Leaf K/P | 0.280 | −0.012 | 0.137 | −0.284 |
Branch N | 0.084 | −0.168 | 0.301 | −0.099 |
Branch P | 0.093 | 0.051 | −0.103 | −0.128 |
Branch K | 0.125 | 0.285 | −0.042 | −0.022 |
Branch N/P | 0.016 | −0.167 | 0.321 | −0.055 |
Branch N/K | −0.006 | −0.303 | 0.263 | −0.048 |
Branch K/P | 0.044 | 0.211 | 0.001 | 0.021 |
Root N | 0.110 | 0.058 | −0.051 | 0.066 |
Root P | 0.011 | −0.051 | −0.043 | 0.067 |
Root K | −0.113 | 0.090 | 0.020 | 0.016 |
Root N/P | 0.067 | 0.036 | −0.014 | 0.018 |
Root N/K | 0.227 | −0.028 | −0.050 | 0.051 |
Root K/P | −0.092 | 0.078 | 0.035 | −0.046 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Zhu, W.; Liu, Y.; Chen, G.; Han, J.; Zhang, W.; Wu, J. Effects of Fertilizer Application on Growth and Stoichiometric Characteristics of Nitrogen, Phosphorus, and Potassium in Balsa Tree (Ochroma lagopus) Plantations at Different Slope Positions. Plants 2025, 14, 2221. https://doi.org/10.3390/plants14142221
Chen J, Zhu W, Liu Y, Chen G, Han J, Zhang W, Wu J. Effects of Fertilizer Application on Growth and Stoichiometric Characteristics of Nitrogen, Phosphorus, and Potassium in Balsa Tree (Ochroma lagopus) Plantations at Different Slope Positions. Plants. 2025; 14(14):2221. https://doi.org/10.3390/plants14142221
Chicago/Turabian StyleChen, Jialan, Weisong Zhu, Yuanxi Liu, Gang Chen, Juncheng Han, Wenhao Zhang, and Junwen Wu. 2025. "Effects of Fertilizer Application on Growth and Stoichiometric Characteristics of Nitrogen, Phosphorus, and Potassium in Balsa Tree (Ochroma lagopus) Plantations at Different Slope Positions" Plants 14, no. 14: 2221. https://doi.org/10.3390/plants14142221
APA StyleChen, J., Zhu, W., Liu, Y., Chen, G., Han, J., Zhang, W., & Wu, J. (2025). Effects of Fertilizer Application on Growth and Stoichiometric Characteristics of Nitrogen, Phosphorus, and Potassium in Balsa Tree (Ochroma lagopus) Plantations at Different Slope Positions. Plants, 14(14), 2221. https://doi.org/10.3390/plants14142221