Future Expansion of Sterculia foetida L. (Malvaceae): Predicting Invasiveness in a Changing Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studied Species and Occurrence Data
2.2. Environmental Data
2.3. Modeling Construction
2.4. Ensemble Modeling
2.5. Model Evaluation
3. Results
3.1. Model Performance for Potential Distribution
3.2. Current and Future Potential Distribution of Sterculia foetida
3.3. Habitat Changes of Sterculia foetida Under Different Future Scenarios
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, L.; Li, H. Projecting the potential distribution and analyzing the bioclimatic factors of four Rhododendron subsect. Tsutsusi species under climate warming. J. For. Res. 2023, 34, 1707–1721. [Google Scholar]
- Bedair, H.; Alghariani, M.S.; Omar, E.; Anibaba, Q.A.; Remon, M.; Bornman, C.; Kiboi, S.K.; Rady, H.A.; Salifu, A.-M.A.; Ghosh, S.; et al. Global Warming Status in the African Continent: Sources, Challenges, Policies, and Future Direction. Int. J. Environ. Res. 2023, 17, 45. [Google Scholar] [CrossRef]
- Ricketts, T.H.; Dinerstein, E.; Boucher, T.; Brooks, T.M.; Butchart, S.H.M.; Hoffmann, M.; Lamoreux, J.F.; Morrison, J.; Parr, M.; Pilgrim, J.D.; et al. Pinpointing and preventing imminent extinctions. Proc. Natl. Acad. Sci. USA 2005, 102, 18497–18501. [Google Scholar] [CrossRef] [PubMed]
- Bargali, S.S.; Shahi, C.; Bargali, K.; Negi, B.; Khatri, K. Energy and monetary efficiencies at the different altitudinal agroecosystems in central Himalaya, India. Heliyon 2022, 8, e11500. [Google Scholar] [CrossRef]
- Arora, V.K.; Scinocca, J.F.; Boer, G.J.; Christian, J.R.; Denman, K.L.; Flato, G.M.; Kharin, V.V.; Lee, W.G.; Merryfield, W.J. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases: Allowable future carbon emissions. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Bozkurt, A.E.; Şahan, E.A.; Köse, N. Growth responses of Pinus sylvestris L. to climate from the southeastern limit of its natural distribution area, Turkey. Dendrochronologia 2021, 70, 125897. [Google Scholar] [CrossRef]
- Mo, L.; Liu, J.; Zhang, H.; Xie, Y. The predicted effects of climate change on local species distributions around Beijing, China. J. For. Res. 2020, 31, 1539–1550. [Google Scholar] [CrossRef]
- Dakhil, M.A.; Zhang, L.; El-Barougy, R.F.; Bedair, H.; Hao, Z.; Yuan, Z.; Feng, Y.; Halmy, M.W.A. Diversity pattern of Symplocos tree species in China under climate change scenarios: Toward conservation planning. Glob. Ecol. Conserv. 2024, 54, e03198. [Google Scholar] [CrossRef]
- Choat, B.; Jansen, S.; Brodribb, T.J.; Cochard, H.; Delzon, S.; Bhaskar, R.; Bucci, S.J.; Feild, T.S.; Gleason, S.M.; Hacke, U.G.; et al. Global convergence in the vulnerability of forests to drought. Nature 2012, 491, 752–755. [Google Scholar] [CrossRef]
- Bedair, H.; Badawy, N.K.; Morsy, A.; Rashad, H.; Dakhil, M.A. Impact of climate change on the spatial distribution of the endemic shrub Rubus asirensis in the Arabian Peninsula. Plant Ecol. 2024, 225, 441–450. [Google Scholar] [CrossRef]
- Liu, D.; Lei, X.; Gao, W.; Guo, H.; Xie, Y.; Fu, L.; Lei, Y.; Li, Y.; Zhang, Z.; Tang, S. Mapping the potential distribution suitability of 16 tree species under climate change in northeastern China using Maxent modelling. J. For. Res. 2022, 33, 1739–1750. [Google Scholar] [CrossRef]
- Jung, J.B.; Park, G.E.; Kim, H.J.; Huh, J.H.; Um, Y. Predicting the Habitat Suitability for Angelica gigas Medicinal Herb Using an Ensemble Species Distribution Model. Forests 2023, 14, 592. [Google Scholar] [CrossRef]
- Wudu, K.; Abegaz, A.; Ayele, L.; Ybabe, M. The impacts of climate change on biodiversity loss and its remedial measures using nature based conservation approach: A global perspective. Biodivers. Conserv. 2023, 32, 3681–3701. [Google Scholar] [CrossRef]
- Zeraatkar, A.; Khajoei Nasab, F. Mapping the habitat suitability of endemic and sub-endemic almond species in Iran under current and future climate conditions. Environ. Dev. Sustain. 2023, 26, 14859–14876. [Google Scholar] [CrossRef]
- Tikhonov, G.; Opedal, Ø.H.; Abrego, N.; Lehikoinen, A.; de Jonge, M.M.; Oksanen, J.; Ovaskainen, O. Joint species distribution modelling with the R-package Hmsc. Methods Ecol. Evol. 2020, 11, 442–447. [Google Scholar] [CrossRef]
- Sillero, N.; Arenas-Castro, S.; Enriquez-Urzelai, U.; Vale, C.G.; Sousa-Guedes, D.; Martínez-Freiría, F.; Real, R.; Barbosa, A. Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling. Ecol. Model. 2021, 456, 109671. [Google Scholar] [CrossRef]
- Amindin, A.; Pourghasemi, H.R.; Safaeian, R.; Rahmanian, S.; Tiefenbacher, J.P.; Naimi, B. Predicting Current and Future Habitat Suitability of an Endemic Species Using Data-Fusion Approach: Responses to Climate Change. Rangel. Ecol. Manag. 2024, 94, 149–162. [Google Scholar] [CrossRef]
- Bedair, H.; Shaltout, K.; Halmy, M.W.A. Stacked machine learning models for predicting species richness and endemism for Mediterranean endemic plants in the Mareotis subsector in Egypt. Plant Ecol. 2023, 224, 1113–1126. [Google Scholar] [CrossRef]
- El-Khalafy, M.M.; El-Kenany, E.T.; Al-Mokadem, A.Z.; Shaltout, S.K.; Mahmoud, A.R. Habitat suitability modeling to improve conservation strategy of two highly-grazed endemic plant species in saint Catherine Protectorate, Egypt. BMC Plant Biol. 2025, 25, 485. [Google Scholar] [CrossRef]
- Mahmoud, A.R.; Farahat, E.A.; Hassan, L.M.; Halmy, M.W.A. Remotely sensed data contribution in predicting the distribution of native Mediterranean species. Sci. Rep. 2025, 15, 12475. [Google Scholar] [CrossRef]
- Bazzichetto, M.; Malavasi, M.; Bartak, V.; Acosta, A.T.R.; Rocchini, D.; Carranza, M.L. Plant invasion risk: A quest for invasive species distribution modelling in managing protected areas. Ecol. Indic. 2018, 95, 311–319. [Google Scholar] [CrossRef]
- Bosso, L.; Luchi, N.; Maresi, G.; Cristinzio, G.; Smeraldo, S.; Russo, D. Predicting current and future disease outbreaks of Diplodia sapinea shoot blight in Italy: Species distribution models as a tool for forest management planning. For. Ecol. Manag. 2017, 400, 655–664. [Google Scholar] [CrossRef]
- Ikegami, M.; Jenkins, T.A.R. Estimate global risks of a forest disease under current and future climates using species distribution model and simple thermal model—Pine Wilt disease as a model case. For. Ecol. Manag. 2018, 409, 343–352. [Google Scholar] [CrossRef]
- Peng, L.-P.; Cheng, F.-Y.; Hu, X.-G.; Mao, J.-F.; Xu, X.-X.; Zhong, Y.; Li, S.-Y.; Xian, H.-L. Modelling environmentally suitable areas for the potential introduction and cultivation of the emerging oil crop Paeonia ostii in China. Sci. Rep. 2019, 9, 3213. [Google Scholar] [CrossRef] [PubMed]
- Sheidai, M.; Noormohammadi, Z.; Alishah, O. Future cultivation of cotton for industrial use: Landscape cytogenetics and species distribution modeling. Genet. Resour. Crop Evol. 2024, 71, 4429–4440. [Google Scholar] [CrossRef]
- Yang, J.; Wu, Q.; Dakhil, M.A.; Halmy, M.W.A.; Bedair, H.; Fouad, M.S. Towards Forest Conservation Planning: How Temperature Fluctuations Determine the Potential Distribution and Extinction Risk of Cupressus funebris Conifer Trees in China. Forests 2023, 14, 2234. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Guisan, A.; Edwards, T.C.; Hastie, T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecol. Model. 2002, 157, 89–100. [Google Scholar] [CrossRef]
- Stockwell, D. The GARP modelling system: Problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 1999, 13, 143–158. [Google Scholar] [CrossRef]
- Palermino, A.; De Felice, A.; Canduci, G.; Biagiotti, I.; Costantini, I.; Centurelli, M.; Menicucci, S.; Gašparević, D.; Tičina, V.; Leonori, I. Modeling of the habitat suitability of European sprat (Sprattus sprattus, L.) in the Adriatic Sea under several climate change scenarios. Front. Mar. Sci. 2024, 11, 1383063. [Google Scholar] [CrossRef]
- Akhtar, M.T.; Ahmad, M.; Shaheen, A.; Zafar, M.; Ullah, R.; Asma, M.; Sultana, S.; Munir, M.; Rashid, N.; Malik, K.; et al. Comparative Study of Liquid Biodiesel from Sterculia foetida (Bottle Tree) Using CuO-CeO2 and Fe2O3 Nano Catalysts. Front. Energy Res. 2019, 17, 4. [Google Scholar] [CrossRef]
- Jafri, A.; Bano, S.; Rais, J.; Khan, F.; Shivnath, N.; Sharma, A.K.; Arshad, M. Phytochemical screening of Sterculia foetida seed extract for anti-oxidant, anti-microbial activity, and detection of apoptosis through reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP) decrease, and nuclear fragmentation in human osteosarcoma cells. J. Histotechnol. 2019, 42, 68–79. [Google Scholar]
- Alam, N.; Banu, N.; Aziz, M.A.I.; Barua, N.; Ruman, U.; Jahan, I.; Chy, F.J.; Denath, S.; Paul, A.; Chy, M.N.U.; et al. Chemical Profiling, Pharmacological Insights and In Silico Studies of Methanol Seed Extract of Sterculia foetida. Plants 2021, 10, 1135. [Google Scholar] [CrossRef] [PubMed]
- Buist, P.H. 1.02 Unsaturated Fatty Acids. Chem. Biol. 2010, 1, 5–33. [Google Scholar]
- Swarnalatha, K.; Kishore Babu, C.V.; Hari Babu, B. Phytochemical screening, anti-diabetic and antioxidant activities of Kigelia africana (LAM.) and Sterculia foetida L. Rasayan J. Chem. 2019, 12, 907–914. [Google Scholar] [CrossRef]
- Amuthavalli, A.; Ramesh, T. Phytochemical, Fluorescence and GC-MS Analysis of Methanolic Extract of Sterculia foetida L. Seeds. Int. J. Environ. Agric. Biotechnol. 2021, 6, 046–053. [Google Scholar] [CrossRef]
- Kavitha, M.; Vadivu, R.; Radha, R. A Review on Sterculia foetida Linn. Res. J. Pharmacogn. Phytochem. 2015, 7, 239. [Google Scholar]
- Aued-Pimentel, S.; Lago, J.H.G.; Chaves, M.H.; Kumagai, E.E. Evaluation of a methylation procedure to determine cyclopropenoids fatty acids from Sterculia striata St. Hil. Et Nauds seed oil. J. Chromatogr. A 2004, 1054, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Bindhu, C.H.; Reddy, J.R.C.; Rao, B.V.S.K.; Ravinder, T.; Chakrabarti, P.P.; Karuna, M.S.L.; Prasad, R.B.N. Preparation and Evaluation of Biodiesel from Sterculia foetida Seed Oil. J. Am. Oil Chem. Soc. 2012, 89, 891–896. [Google Scholar] [CrossRef]
- Silitonga, A.S.; Ong, H.C.; Masjuki, H.H.; Mahlia, T.M.I.; Chong, W.T.; Yusaf, T.F. Production of biodiesel from Sterculia foetida and its process optimization. Fuel 2013, 111, 478–484. [Google Scholar] [CrossRef]
- Bhakshu, L.M.; Ratnam, K.V. Gum Karaya—Threats and Conservation. In Gum Karaya, 1st ed.; CRC Press: Boca Raton, FL, USA, 2024; pp. 156–166. Available online: https://www.taylorfrancis.com/books/9781003438960/chapters/10.1201/9781003438960-11 (accessed on 19 April 2025).
- de Kok, R.; IUCN. Sterculia foetida: The IUCN Red List of Threatened Species in 2023. 2024. e.T198991191A203234841. Available online: https://www.iucnredlist.org/species/198991191/203234841 (accessed on 19 April 2025).
- Vélez-Gavilán, J. Sterculia foetida (Java olive). CABI Compend. 2023, 51446. Available online: http://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.51446 (accessed on 19 April 2025).
- POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. 2025. Available online: https://powo.science.kew.org/ (accessed on 20 January 2025).
- Acevedo-Rodríguez, P.; Strong, M.T. Catalogue of Seed Plants of the West Indies. Smithson. Contrib. Bot. 2012, 98, 1–1192. [Google Scholar] [CrossRef]
- GBIF. Annonaceae in GBIF Secretariat. 2021. GBIF Backbone Taxonomy. Checklist Dataset. Available online: https://doi.org/10.15468/39omei (accessed on 15 September 2021).
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Heikkinen, R.K.; Luoto, M.; Araújo, M.B.; Virkkala, R.; Thuiller, W.; Sykes, M.T. Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog. Phys. Geogr. Earth Environ. 2006, 30, 751–777. [Google Scholar] [CrossRef]
- Naimi, B.; Araújo, M.B. SDM: A reproducible and extensible R platform for species distribution modelling. Ecography 2016, 39, 368–375. [Google Scholar] [CrossRef]
- Naimi, B. Usdm: Uncertainty Analysis for Species Distribution Models. R package version 1.1–15. R Documentation. 2025. Available online: https://cran.r-project.org/web/packages/usdm/usdm.pdf (accessed on 25 March 2025).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 1 February 2025).
- Andrews, M.B.; Ridley, J.K.; Wood, R.A.; Andrews, T.; Blockley, E.W.; Booth, B.; Burke, E.; Dittus, A.J.; Florek, P.; Gray, L.J.; et al. Historical Simulations with HadGEM3-GC3.1 for CMIP6. J. Adv. Model Earth Syst. 2020, 12, e2019MS001995. [Google Scholar] [CrossRef]
- Nooni, I.K.; Ogou, F.K.; Chaibou, A.A.S.; Nakoty, F.M.; Gnitou, G.T.; Lu, J. Evaluating CMIP6 Historical Mean Precipitation over Africa and the Arabian Peninsula against Satellite-Based Observation. Atmosphere 2023, 14, 607. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Change 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W.; Zimmermann, N.E. Habitat Suitability and Distribution Models: With Applications in R, 1st ed.; Cambridge University Press: Cambridge, UK, 2017; Available online: https://www.cambridge.org/core/product/identifier/9781139028271/type/book (accessed on 6 December 2024).
- Turner, J.A.; Babcock, R.C.; Kendrick, G.A.; Hovey, R.K. How does spatial resolution affect model performance? A case for ensemble approaches for marine benthic mesophotic communities. J. Biogeogr. 2019, 46, 1249–1259. [Google Scholar] [CrossRef]
- Thuiller, W.; Guéguen, M.; Renaud, J.; Karger, D.N.; Zimmermann, N.E. Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 2019, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Annual Statistics. 1 October 2001. Available online: https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-5/Greedy-function-approximation-A-gradient-boosting-machine/10.1214/aos/1013203451.full (accessed on 19 April 2025).
- McCullagh, P.; Nelder, J.A. Generalized Linear Models, 2nd ed.; Routledge: London, UK, 2019; Available online: https://www.taylorfrancis.com/books/9781351445856 (accessed on 19 April 2025).
- Cutler, D.R.; Edwards, T.C., Jr.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random Forests FOR Classification in Ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef] [PubMed]
- Mateo, R.G.; Gastón, A.; Aroca-Fernández, M.J.; Broennimann, O.; Guisan, A.; Saura, S.; García-Viñas, J.I. Hierarchical species distribution models in support of vegetation conservation at the landscape scale. J. Veg. Sci. 2019, 30, 386–396. [Google Scholar] [CrossRef]
- Hao, T.; Elith, J.; Guillera-Arroita, G.; Lahoz-Monfort, J.J. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib. 2019, 25, 839–852. [Google Scholar] [CrossRef]
- Hao, T.; Elith, J.; Lahoz-Monfort, J.J.; Guillera-Arroita, G. Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography 2020, 43, 549–558. [Google Scholar] [CrossRef]
- Liu, C.; Newell, G.; White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 2015, 6, 337–348. [Google Scholar] [CrossRef]
- Fielding, A.H.; Bell, J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the Accuracy of Diagnostic Systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef]
- Anderson, R.P.; Martínez-Meyer, E.; Nakamura, M.; Araújo, M.B.; Peterson, A.T.; Soberón, J.; Pearson, R.G. Ecological Niches and Geographic Distributions (MPB-49); Princeton University Press: Princeton, NJ, USA, 2011; Available online: https://www.degruyter.com/document/doi/10.1515/9781400840670/html (accessed on 19 April 2025).
- Thampan, J.; Srivastava, J.; Saraf, P.N.; Samal, P. Habitat distribution modelling to identify areas of high conservation value under climate change for an endangered arid land tree Tecomella undulata. J. Arid. Environ. 2025, 227, 105317. [Google Scholar] [CrossRef]
- Wairokpam, B.; Wagh, V.V.; Singh, H.C.; Maurya, A.; Singh, L.A.; Rana, T.S. Integrating ecological niche modeling and natural regeneration assessment to identify conservation priorities for Garcinia pedunculata in India. Environ. Monit. Assess. 2025, 197, 476. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.C.; Maurya, A.; Wairokpam, B.; Tiwari, V.; Tiwari, A.; Rana, T.S. Predicting current and future suitable habitats for Bergenia ciliata in Indian Himalayan region. Landsc. Ecol. Eng. 2025, 21, 1–14. [Google Scholar] [CrossRef]
- Bedair, H.; Hazzazi, Y.; Hatab, A.A.; Halmy, M.W.A.; Dakhil, M.A.; Alghariani, M.S.; Sumayli, M.; El-Shabasy, A.; El-Khalafy, M.M. Predicting climate-driven shift of the East Mediterranean endemic Cynara cornigera Lindl. Front. Plant Sci. 2025, 16, 1461639. [Google Scholar] [CrossRef]
- Qin, F.; Han, B.; Bussmann, R.W.; Xue, T.; Liang, Y.; Zhang, W.; Liu, Q.; Chen, T.; Yu, S. Present status, future trends, and control strategies of invasive alien plants in China affected by human activities and climate change. Ecography 2023, 2024, 06919. [Google Scholar] [CrossRef]
- Nguru, W.; Mwongera, C. Predicting the future climate-related prevalence and distribution of crop pests and diseases affecting major food crops in Zambia. PLoS Clim. 2023, 2, e0000064. [Google Scholar] [CrossRef]
- Ahmed, N.; Atzberger, C.; Zewdie, W. Species Distribution Modelling performance and its implication for Sentinel-2-based prediction of invasive Prosopis juliflora in lower Awash River basin, Ethiopia. Ecol. Process. 2021, 10, 18. [Google Scholar] [CrossRef]
- Brunton, A.J.; Conroy, G.C.; Schoeman, D.S.; Rossetto, M.; Ogbourne, S.M. Seeing the forest through the trees: Applications of species distribution models across an Australian biodiversity hotspot for threatened rainforest species of Fontainea. Glob. Ecol. Conserv. 2023, 42, e02376. [Google Scholar] [CrossRef]
- Daï, E.H.; Houndonougbo, J.S.H.; Idohou, R.; Ouédraogo, A.; Kakaï, R.G.; Hotes, S.; Assogbadjo, A.E. Modeling current and future distribution patterns of Uvaria chamae in Benin (West Africa): Challenges and opportunities for its sustainable management. Heliyon 2023, 9, e13658. [Google Scholar] [CrossRef]
- Djaboutou, R.F.; Biaou, S.; Gouwakinnou, G.N.; Ouinsavi, C.A.I.N. Climate change impact on the distribution and priority areas for conservation of Sterculia setigera Delile in Benin, West Africa. Trees People 2025, 20, 100840. [Google Scholar] [CrossRef]
- Oliveira, M.R.; Tomas, W.M.; Guedes, N.M.R.; Peterson, A.; Szabo, J.K.; Júnior, A.S.; Camilo, A.R.; Padovani, C.R.; Garcia, L.C. The relationship between scale and predictor variables in species distribution models applied to conservation. Biodivers. Conserv. 2021, 30, 1971–1990. [Google Scholar] [CrossRef]
- Beck, H.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Lutsko, N.J.; Dufour, A.; Zeng, Z.; Jiang, X.; van Dijk, A.I.J.M.; Miralles, D.G. High-resolution (1 km) Köppen-Geiger maps for 1901–2099 based on constrained CMIP6 projections. Sci. Data 2023, 10, 724. [Google Scholar] [CrossRef] [PubMed]
- Huang, E.; Chen, Y.; Fang, M.; Zheng, Y.; Yu, S. Environmental drivers of plant distributions at global and regional scales. Glob. Ecol. Biogeogr. 2021, 30, 697–709. [Google Scholar] [CrossRef]
- Groner, V.P.; Nicholas, O.; Mabhaudhi, T.; Slotow, R.; Akçakaya, H.R.; Mace, G.M.; Pearson, R.G. Climate change, land cover change, and overharvesting threaten a widely used medicinal plant in South Africa. Ecol. Appl. 2022, 32, e2545. [Google Scholar] [CrossRef] [PubMed]
- Ray, D.; Saini, M.K. Impending threats to the plants with medicinal value in the Eastern Himalayas Region: An analysis on the alternatives to its non-availability. Phytomedicine Plus 2022, 2, 100151. [Google Scholar] [CrossRef]
- Gebrewahid, Y.; Abrehe, S.; Meresa, E.; Eyasu, G.; Abay, K.; Gebreab, G.; Kidanemariam, K.; Adissu, G.; Abreha, G.; Darcha, G. Current and future predicting potential areas of Oxytenanthera abyssinica (A. Richard) using MaxEnt model under climate change in Northern Ethiopia. Ecol. Process. 2020, 9, 6. [Google Scholar] [CrossRef]
- Dogbo, S.F.; Salako, K.V.; Agoundé, G.; Dimobe, K.; Adiko, A.E.G.; Gebauer, J.; Yao, C.Y.A.; Kakaï, R.G. Potential impacts of future climate on twelve key multipurpose tree species in Benin: Insights from species distribution modeling for biodiversity conservation. Trees People 2024, 19, 100744. [Google Scholar] [CrossRef]
- Garcia, K.; Lasco, R.; Ines, A.; Lyon, B.; Pulhin, F. Predicting geographic distribution and habitat suitability due to climate change of selected threatened forest tree species in the Philippines. Appl. Geogr. 2013, 44, 12–22. [Google Scholar] [CrossRef]
Abbreviation | Variables | Units |
---|---|---|
bio1 | Annual mean temperature | °C |
bio2 | Mean diurnal range (mean of monthly (max temp − min temp)) | °C |
bio3 | Isothermality (P2/P7) × 100 | |
bio4 | Temperature seasonality (standard deviation × 100) | |
bio5 | Max temperature of warmest month | °C |
bio6 | Min temperature of coldest month | °C |
bio7 | Temperature annual range (P5–P6) | °C |
bio8 | Mean temperature of wettest quarter | °C |
bio9 | Mean temperature of driest quarter | °C |
bio10 | Mean temperature of warmest quarter | °C |
bio11 | Mean temperature of coldest quarter | °C |
bio12 | Annual precipitation | mm |
bio13 | Precipitation of wettest month | mm |
bio14 | Precipitation of driest month | mm |
bio15 | Precipitation of seasonality (Coefficient of Variation) | |
bio16 | Precipitation of wettest quarter | mm |
bio17 | Precipitation of driest quarter | mm |
bio18 | Precipitation of warmest quarter | mm |
bio19 | Precipitation of coldest quarter | mm |
Variables | Code/Unit | Source | VIF |
---|---|---|---|
Mean diurnal range (Mean of monthly (max temp–min temp)) | bio2 | WorldClim | 3.78 |
Temperature seasonality (standard deviation × 100) | bio4 | WorldClim | 1.47 |
Max temperature of warmest month | bio5 | WorldClim | 3.38 |
Mean temperature of wettest quarter | bio8 | WorldClim | 1.86 |
Precipitation of wettest month | bio13 | WorldClim | 1.52 |
Precipitation of driest month | bio14 | WorldClim | 1.81 |
Precipitation of coldest quarter | bio19 | WorldClim | 2.08 |
Suitability Class | Current | Future | ||||
---|---|---|---|---|---|---|
SSP1-2.6 (2041–2060) | SSP5-8.5 (2041–2060) | SSP1-2.6 (2061–2080) | SSP5-8.5 (2061–2080) | |||
Unsuitable | km2 | 7,787,959 | 7,359,229 | 7,259,669 | 7,099,970 | 5,982,152 |
% | 62.14 | 58.72 | 57.93 | 56.65 | 47.73 | |
Low | km2 | 1,769,711 | 2,077,581 | 2,157,453 | 2,278,046 | 3,140,328 |
% | 14.12 | 16.58 | 17.21 | 18.18 | 25.06 | |
Moderate | km2 | 1,092,161 | 1,023,116 | 1,026,647 | 1,030,293 | 1,069,011 |
% | 8.71 | 8.16 | 8.19 | 8.22 | 8.53 | |
High | km2 | 1,882,781 | 2,072,686 | 2,088,843 | 2,124,303 | 2,341,121 |
% | 15.02 | 16.54 | 16.67 | 16.95 | 18.68 |
Habitat Change | Future | ||||
---|---|---|---|---|---|
SSP1-2.6 (Current-(2041–2060) | SSP5-8.5 (Current-(2041–2060) | SSP1-2.6 (Current-(2061–2080) | SSP5-8.5 (Current-(2061–2080) | ||
Contraction | km2 | 29,494 | 31,196 | 35,730 | 75,364 |
% | 0.24 | 0.25 | 0.29 | 0.60 | |
No change | km2 | 11,599,201 | 11,582,580 | 11,531,424 | 11,372,416 |
% | 92.55 | 92.42 | 92.01 | 90.74 | |
Stable | km2 | 655,278 | 653,576 | 649,042 | 609,408 |
% | 5.23 | 5.22 | 5.18 | 4.86 | |
Expansion | km2 | 248,639 | 265,260 | 316,416 | 475,424 |
% | 1.98 | 2.12 | 2.52 | 3.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bedair, H.; Singh, H.C.; Mahmoud, A.R.; El-Khalafy, M.M. Future Expansion of Sterculia foetida L. (Malvaceae): Predicting Invasiveness in a Changing Climate. Forests 2025, 16, 912. https://doi.org/10.3390/f16060912
Bedair H, Singh HC, Mahmoud AR, El-Khalafy MM. Future Expansion of Sterculia foetida L. (Malvaceae): Predicting Invasiveness in a Changing Climate. Forests. 2025; 16(6):912. https://doi.org/10.3390/f16060912
Chicago/Turabian StyleBedair, Heba, Harish Chandra Singh, Ahmed R. Mahmoud, and Mohamed M. El-Khalafy. 2025. "Future Expansion of Sterculia foetida L. (Malvaceae): Predicting Invasiveness in a Changing Climate" Forests 16, no. 6: 912. https://doi.org/10.3390/f16060912
APA StyleBedair, H., Singh, H. C., Mahmoud, A. R., & El-Khalafy, M. M. (2025). Future Expansion of Sterculia foetida L. (Malvaceae): Predicting Invasiveness in a Changing Climate. Forests, 16(6), 912. https://doi.org/10.3390/f16060912