Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = tropane alkaloid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5079 KiB  
Review
Genus Datura: An Exploration of Genetic Alterations, Bioactive Compounds, and Pharmacological Activity
by Khoirunnisa Assidqi, Nesti Fronika Sianipar, Dave Mangindaan and Chukwunwike Uchenna Enyi
Plants 2025, 14(14), 2244; https://doi.org/10.3390/plants14142244 - 21 Jul 2025
Viewed by 706
Abstract
The genus Datura L. has pharmacological activities due to its source of bioactive compounds. The effects of bioactive compounds can vary depending on species, geographical location, and environmental conditions. The purpose of this review is to summarize the most recent progress and to [...] Read more.
The genus Datura L. has pharmacological activities due to its source of bioactive compounds. The effects of bioactive compounds can vary depending on species, geographical location, and environmental conditions. The purpose of this review is to summarize the most recent progress and to provide a comprehensive overview of studies concerning genetic alteration and bioactive compounds in the genus Datura, based on Scopus publications between 2015 and 2025. Throughout history, the genus Datura (Solanaceae) contains nine species of medicinal plants. A key component of elucidating the diversification process of congeneric species is identifying the factors that encourage species variation. A comparative gene family analysis provides an understanding of the evolutionary history of species by identifying common genetic/genomic mechanisms that are responsible for species responses to biotic and abiotic environments. The diverse range of bioactive compounds it contains contributes to its unique bioactivity. Datura contains tropane alkaloids (such as hyoscyamine and scopolamine), datumetine, withametelin, daturaolone, and atropine. Several compounds have been isolated and refined for use in treating various conditions as a result of recent progress in therapeutic development. Daturaolone, for example, is used to treat certain neurological disorders. In addition to providing renewed opportunities for the discovery of new compounds, these advancements also provide insights into the genetic basis for their biosynthesis. Our discussion also includes pitfalls as well as relevant publications regarding natural products and their pharmacological properties. The pace of discovery of bioactive compounds is set to accelerate dramatically shortly, owing to both careful perspectives and new developments. Full article
Show Figures

Figure 1

24 pages, 1240 KiB  
Review
Toxic and Hallucinogenic Plants of Southern Chile of Forensic Interest: A Review
by Ramiro Díaz, Mauricio Yáñez-Sánchez, Francisco de la Fuente, Andrea Ortega, Alejandra Figueroa-Carvajal, David Gangitano and Oscar Scholz-Wagenknecht
Plants 2025, 14(14), 2196; https://doi.org/10.3390/plants14142196 - 16 Jul 2025
Viewed by 503
Abstract
Several plants produce toxic and hallucinogenic metabolites, posing risks when misused due to a lack of botanical knowledge. Improper or accidental use of these plants poses a public health risk and has been associated with forensic cases involving poisoning, suicide, or drug-facilitated crimes. [...] Read more.
Several plants produce toxic and hallucinogenic metabolites, posing risks when misused due to a lack of botanical knowledge. Improper or accidental use of these plants poses a public health risk and has been associated with forensic cases involving poisoning, suicide, or drug-facilitated crimes. This review identified eight species of forensic interest that grow in southern Chile and analyzed their active compounds, mechanisms of toxicity, and documented clinical and legal cases. These selected species included both native and introduced taxa, whose main toxic agents are tropane alkaloids (atropine, scopolamine), piperidine (coniine), taxane pseudoalkaloids, and natural opiates (morphine, codeine). Most reported cases involved unintentional poisoning, mainly in children, highlighting the lack of regulation and awareness. This review revealed the need for improved forensic and clinical documentation of plant-based intoxications in Chile and greater public education regarding the toxicological risks posed by these botanical species. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

16 pages, 5881 KiB  
Article
Biochemical Characterization of Ornithine Decarboxylases from Solanaceae Plants Producing Tropane Alkaloids
by Lingjiang Zeng, Tengfei Zhao, Mengxue Wang, Yifan Sun, Chengcun Liu, Xiaozhong Lan, Peng Song and Zhihua Liao
Horticulturae 2025, 11(7), 748; https://doi.org/10.3390/horticulturae11070748 - 30 Jun 2025
Viewed by 348
Abstract
Ornithine decarboxylase (ODC) is the rate-limiting enzyme in the biosynthesis of polyamines and plant alkaloids, including medicinal tropane alkaloids (TAs). Due to its key role, ODC has been utilized as an effective molecular tool in metabolic engineering. However, to date, only a limited [...] Read more.
Ornithine decarboxylase (ODC) is the rate-limiting enzyme in the biosynthesis of polyamines and plant alkaloids, including medicinal tropane alkaloids (TAs). Due to its key role, ODC has been utilized as an effective molecular tool in metabolic engineering. However, to date, only a limited number of plant ODCs have been characterized. Among the reported ODCs, Erythroxylum coca ODC (EcODC) exclusively has ODC activity, while Nicotiana glutinosa ODC (NgODC) exhibits dual ODC and lysine decarboxylase (LDC) activities. The potential LDC activity of ODCs from TA-producing plants remains unknown. Here, we characterized AlODC and DsODC from Anisodus luridus and Datura stramonium, along with two previously reported ODCs from Atropa belladonna (AbODC) and Hyoscyamus niger (HnODC), in Escherichia coli to investigate their enzyme kinetics and substrate specificity. Enzymatic assays revealed that both AlODC and DsODC catalyzed the conversion of ornithine to putrescine, confirming their ODC activity, with AlODC exhibiting a higher catalytic efficiency, comparable to established ODCs. Furthermore, all four ODCs also displayed LDC activity, albeit at significantly lower efficiency (<1% of ODC activity). This study provides a comprehensive analysis of the enzyme kinetics of ODCs from TA-producing plants, identifying promising candidate genes for metabolic engineering for the biomanufacturing of putrescine-derived alkaloids. Moreover, this is the first report of LDC activity in ODCs from Solanaceae TA-producing plants, shedding light on the evolutionary relationship between ODC and LDC. Full article
(This article belongs to the Special Issue Plant Secondary Metabolism and Its Applications in Horticulture)
Show Figures

Figure 1

13 pages, 1938 KiB  
Article
Quasi-Targeted Metabonomics Reveals Metabolites Associated with Antioxidant Activity of Mesona chinensis Benth Cultivar Xiaoye
by Yuqing Niu, Meixia Zheng, Dagang Tian, Yanming Zhu, Hong Chen, Yujing Zhu and Hailan Su
Plants 2025, 14(11), 1585; https://doi.org/10.3390/plants14111585 - 23 May 2025
Viewed by 441
Abstract
Mesona chinensis Benth is a significant botanical resource utilized for both medicinal and dietary purposes, and the Xiaoye variety (XY) exhibited the highest antioxidant activity among the varieties. Despite its importance, metabolic information regarding its medicinal and nutritional properties remains sparse. This study [...] Read more.
Mesona chinensis Benth is a significant botanical resource utilized for both medicinal and dietary purposes, and the Xiaoye variety (XY) exhibited the highest antioxidant activity among the varieties. Despite its importance, metabolic information regarding its medicinal and nutritional properties remains sparse. This study examined the secondary metabolites of four M. chinensis Benth varieties using UHPLC-MS/MS and identified 102, 105, and 286 metabolites exhibiting differential accumulation in the XY variety compared to the Taiwan variety (TW), Minxuan variety (MX), and Zengcheng variety (ZC), respectively, among the 1287 metabolites identified. These metabolites are predominantly involved in secondary metabolic pathways such as “Tropane, Piperidine, and Pyridine Alkaloid Biosynthesis” and “Flavone and Flavonol Biosynthesis”. In addition, we identified the ten most significant differential metabolites that influence antioxidant activity, with flavonoids recognized as the primary contributors to the variation in antioxidant activities. In this study, we have outlined the metabolic landscape of M. chinensis Benth. These findings may aid in elucidating the mechanism behind the antioxidant activity of XY, which provides valuable insights for breeding, quality assurance, and product innovation related to M. chinensis Benth. Full article
(This article belongs to the Special Issue Phytochemical Analysis and Metabolic Profiling in Plants)
Show Figures

Figure 1

23 pages, 6192 KiB  
Article
Application of Rice Husk-Derived SBA-15 Bifunctionalized with C18 and Sulfonic Groups for Solid-Phase Extraction of Tropane, Pyrrolizidine, and Opium Alkaloids in Gluten-Free Bread
by Fernando L. Vera-Baquero, Judith Gañán, Natalia Casado, Damián Pérez-Quintanilla, Sonia Morante-Zarcero and Isabel Sierra
Foods 2025, 14(7), 1156; https://doi.org/10.3390/foods14071156 - 26 Mar 2025
Viewed by 666
Abstract
Rice husk (RH), a globally abundant agri-food waste, presents a promising renewable silicon source for producing SBA-15 mesoporous silica-based materials. This study aimed to synthesize and bifunctionalize SBA-15 using RH as a silica precursor, incorporating sulfonic and octadecyl groups to create a mixed-mode [...] Read more.
Rice husk (RH), a globally abundant agri-food waste, presents a promising renewable silicon source for producing SBA-15 mesoporous silica-based materials. This study aimed to synthesize and bifunctionalize SBA-15 using RH as a silica precursor, incorporating sulfonic and octadecyl groups to create a mixed-mode sorbent, RH-SBA-15-SO3H-C18, with reversed-phase and cation exchange properties. The material’s structure and properties were characterized using advanced techniques, including X-ray diffraction, infrared spectroscopy, N2 adsorption–desorption isotherms, nuclear magnetic resonance, and electron microscopy. These analyses confirmed an ordered mesoporous structure with a high specific surface area of 238 m2/g, pore volume of 0.45 cm3/g, pore diameter of 32 Å, and uniform pore distribution, highlighting its exceptional textural qualities. This sorbent was effectively utilized in solid-phase extraction to purify 29 alkaloids from three families—tropane, pyrrolizidine, and opium—followed by an analysis using ultra-high performance liquid chromatography coupled to ion-trap tandem mass spectrometry. The developed analytical method was validated and applied to gluten-free bread samples, revealing tropane and opium alkaloids, some at concentrations exceeding regulatory limits. These findings demonstrate that RH-derived RH-SBA-15-SO3H-C18 is a viable, efficient alternative to commercial sorbents for monitoring natural toxins in food, offering a sustainable solution for repurposing agri-food waste while addressing food safety challenges. Full article
(This article belongs to the Special Issue Detection and Characterization of Natural Toxins in Food Matrices)
Show Figures

Figure 1

20 pages, 11056 KiB  
Article
Insights into the Role of GhTAT2 Genes in Tyrosine Metabolism and Drought Stress Tolerance in Cotton
by Teame Gereziher Mehari, Jungfeng Tang, Haijing Gu, Hui Fang, Jinlei Han, Jie Zheng, Fang Liu, Kai Wang, Dengbing Yao and Baohua Wang
Int. J. Mol. Sci. 2025, 26(3), 1355; https://doi.org/10.3390/ijms26031355 - 5 Feb 2025
Viewed by 1653
Abstract
Gossypium hirsutum is a key fiber crop that is sensitive to environmental factors, particularly drought stress, which can reduce boll size, increase flower shedding, and impair photosynthesis. The aminotransferase (AT) gene is essential for abiotic stress tolerance. A total of 3 Gossypium species [...] Read more.
Gossypium hirsutum is a key fiber crop that is sensitive to environmental factors, particularly drought stress, which can reduce boll size, increase flower shedding, and impair photosynthesis. The aminotransferase (AT) gene is essential for abiotic stress tolerance. A total of 3 Gossypium species were analyzed via genome-wide analysis, and the results unveiled 103 genes in G. hirsutum, 47 in G. arboreum, and 53 in G. raimondii. Phylogenetic analysis, gene structure examination, motif analysis, subcellular localization prediction, and promoter analysis revealed that the GhAT genes can be classified into five main categories and play key roles in abiotic stress tolerance. Using RNA-seq expression and KEGG enrichment analysis of GhTAT2, a coexpression network was established, followed by RT-qPCR analysis to identify hub genes. The RT-qPCR results revealed that the genes Gh_A13G1261, Gh_D13G1562, Gh_D10G1155, Gh_A10G1320, and Gh_D06G1003 were significantly upregulated in the leaf and root samples following drought stress treatment, with Gh_A13G1261 identified as the hub gene. The GhTAT2 genes were considerably enriched for tyrosine, cysteine, methionine, and phenylalanine metabolism and isoquinoline alkaloid, tyrosine, tryptophan, tropane, piperidine, and pyridine alkaloid biosynthesis. Under drought stress, KEGG enrichment analysis manifested significant upregulation of amino acids such as L-DOPA, L-alanine, L-serine, L-homoserine, L-methionine, and L-cysteine, whereas metabolites such as maleic acid, p-coumaric acid, quinic acid, vanillin, and hyoscyamine were significantly downregulated. Silencing the GhTAT2 gene significantly affected the shoot and root fresh weights of the plants compared with those of the wild-type plants under drought conditions. RT-qPCR analysis revealed that GhTAT2 expression in VIGS-treated seedlings was lower than that in both wild-type and positive control plants, indicating that silencing GhTAT2 increases sensitivity to drought stress. In summary, this thorough analysis of the gene family lays the groundwork for a detailed study of the GhTAT2 gene members, with a specific focus on their roles and contributions to drought stress tolerance. Full article
Show Figures

Figure 1

22 pages, 11309 KiB  
Article
Exploring Adsorption Performance of Functionalized Mesoporous Silicas with a Different Pore Structure as Strong Cation-Exchange Sorbents for Solid-Phase Extraction of Atropine and Scopolamine
by Fernando L. Vera-Baquero, Sonia Morante-Zarcero, Damián Pérez-Quintanilla and Isabel Sierra
Appl. Sci. 2025, 15(2), 646; https://doi.org/10.3390/app15020646 - 10 Jan 2025
Viewed by 1487
Abstract
In this work, mesoporous silicas with two types of mesoporous structures were synthesized and functionalized with sulfonic acid groups: MCM-41-SO3H (honeycomb-like hexagonal structure) and MSU-2-SO3H (three-dimensional porous structure with wormhole pores). The synthesized materials were characterized by X-ray diffraction, [...] Read more.
In this work, mesoporous silicas with two types of mesoporous structures were synthesized and functionalized with sulfonic acid groups: MCM-41-SO3H (honeycomb-like hexagonal structure) and MSU-2-SO3H (three-dimensional porous structure with wormhole pores). The synthesized materials were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, nitrogen adsorption–desorption, Fourier-transform infrared spectroscopy, 29Si solid-state nuclear magnetic resonance spectroscopy, and elemental analysis. The obtained functionalized materials were evaluated as sorbents for strong cation-exchange solid-phase extraction (SPE) to determine their efficiency in the adsorption and desorption of tropane alkaloids (atropine and scopolamine). The loading solvents, loading volume, analyte concentration, and elution volume were studied, using 50 mg of both materials. Analyses were carried out by ultra-high performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry. The synthesized MCM-41-SO3H material presented the highest recovery efficiency and has proven to be a promising sorbent for strong cation-exchange SPE of atropine and scopolamine in aqueous media. The high degree of functionalization of MCM-41-SO3H and the high accessibility of the sulfonic groups for the target analytes, due to the regularity and uniformity of their pores, maximize the contact between the alkaloids and the sorbent, favoring efficient adsorption. Full article
(This article belongs to the Special Issue New Trends in Functional and Multifunctional Advanced Materials)
Show Figures

Figure 1

11 pages, 6590 KiB  
Article
Genome-Wide Analysis of the Metallocarboxypeptidase Inhibitor Family Reveals That AbMCPI8 Affects Root Development and Tropane Alkaloid Production in Atropa belladonna
by Shengyu Yang, Yi Wang, Shiyu Wan, Can Zhang, Siyuan Liao, Min Chen, Xiaozhong Lan, Zhihua Liao and Lingjiang Zeng
Int. J. Mol. Sci. 2024, 25(24), 13729; https://doi.org/10.3390/ijms252413729 - 23 Dec 2024
Cited by 1 | Viewed by 821
Abstract
Atropa belladonna is a medicinal plant and an important source for the commercial production of tropane alkaloids (TAs), such as scopolamine and hyoscyamine, which are used clinically for their anticholinergic properties. In this study, we identified 16 metallocarboxypeptidase inhibitor (MCPI) genes from A. [...] Read more.
Atropa belladonna is a medicinal plant and an important source for the commercial production of tropane alkaloids (TAs), such as scopolamine and hyoscyamine, which are used clinically for their anticholinergic properties. In this study, we identified 16 metallocarboxypeptidase inhibitor (MCPI) genes from A. belladonna (AbMCPIs), which are grouped into three subgroups based on phylogenetic relationships and are distributed across 10 chromosomes. Promoter analysis showed that most cis-regulatory elements were related to defense and stress responses, such as drought, low-temperature, ABA (abscisic acid), GA (gibberellin), auxin, light and MeJA responsiveness. A gene encoding a putative metallocarboxypeptidase inhibitor (AbMCPI8) is cloned from A. belladonna and characterized. AbMCPI8 shows similar tissue expression pattern to TA biosynthesis genes such as AbPMT, AbAT4, AbTRI, etc., with exclusive expression in the roots. When AbMCPI8 is silenced by virus-induced gene silencing (VIGS), the root growth is markedly inhibited and the production of hyoscyamine and scopolamine is significantly reduced. Our findings indicate a positive role of AbMCPI8 in root development, which could positively affect TA production in A. belladonna. Full article
(This article belongs to the Special Issue Regulation and Application of Bioactive Metabolites in Plants)
Show Figures

Figure 1

12 pages, 4200 KiB  
Article
Strategy for Accurate Detection of Six Tropane Alkaloids in Honey Using Lateral Flow Immunosensors
by Boyan Sun, Chuanlei Wang, Zile Wang, Jiayi Liang, Ke Han, Shuai Zhang, Chunchao Yin, Xiaomei Wang, Chujun Liu, Zhiyue Feng, Sihan Wang and Haiyang Jiang
Sensors 2024, 24(22), 7265; https://doi.org/10.3390/s24227265 - 13 Nov 2024
Cited by 2 | Viewed by 1447
Abstract
Honey, a widely consumed food, is susceptible to contamination by various toxic substances during production. Tropane alkaloids, with their potent neurotoxicity, are frequently found in honey. Hence, there is an acute need for rapid and effective detection methods to monitor these alkaloids. Lateral [...] Read more.
Honey, a widely consumed food, is susceptible to contamination by various toxic substances during production. Tropane alkaloids, with their potent neurotoxicity, are frequently found in honey. Hence, there is an acute need for rapid and effective detection methods to monitor these alkaloids. Lateral flow immunoassay (LFIA), known for its simple operation, low cost, and reliable results, holds great promise. In this study, we developed an efficient and user-friendly analytical method for the simultaneous detection of six tropane alkaloids (atropine, L-hyoscyamine, scopolamine, anisodamine, homatropine, and apoatropine) in honey based on an AuNPs lateral flow immunoassay (AuNPs-LFIA) with broad-spectrum antibodies. Under optimal conditions, the calculated detection limits were 0.22, 0.29, 0.51, 6.34, 0.30, and 0.94 ng/mL, respectively. By diluting the honey sample five times, the contaminants can be readily detected using LFIA. Semi-quantitative and quantitative analyses can be completed within 17 min. This innovative method fills the void in LFIA for detecting tropane alkaloids and serves as a valuable reference for LFIA detection of honey samples, providing a crucial strategy for the accurate detection of these important compounds. Full article
Show Figures

Figure 1

14 pages, 2347 KiB  
Article
De Novo Synthesis of Anticholinergic Hyoscyamine and Scopolamine in Nicotiana benthamiana Based on Elucidating Tropane Alkaloid Biosynthetic Pathway of Anisodus luridus
by Mengling Wen, Junlan Zeng, Fei Qiu, Fangyuan Zhang and Zhihua Liao
Agronomy 2024, 14(11), 2460; https://doi.org/10.3390/agronomy14112460 - 22 Oct 2024
Cited by 1 | Viewed by 1341
Abstract
Anisodus luridus, a perennial herb belonging to the genus Anisodus of the Solanaceae family, is an important Tibetan medicinal plant that produces pharmaceutical tropane alkaloids (TAs) including hyoscyamine and scopolamine. Its high yield of hyoscyamine makes A. luridus a valuable plant source [...] Read more.
Anisodus luridus, a perennial herb belonging to the genus Anisodus of the Solanaceae family, is an important Tibetan medicinal plant that produces pharmaceutical tropane alkaloids (TAs) including hyoscyamine and scopolamine. Its high yield of hyoscyamine makes A. luridus a valuable plant source for commercially producing TAs. In this study, we conduct homologous gene research across transcriptome data of different tissues together with functionally tested sequences in Atropa belladonna as a reference and identify 13 candidate genes for TAs biosynthesis in A. luridus. The results show that these 13 TAs biosynthesis genes identified in A. luridus were highly conserved in terms of sequence similarity and gene expression patterns compared to A. belladonna, suggesting that the two species may share the same biosynthetic pathway for TAs biosynthesis. Furthermore, scopolamine was detected in Nicotiana benthamiana leaves when these 13 enzymes were co-expressed in N. benthamiana, which confirmed that these 13 TAs biosynthesis genes are involved in the biosynthesis of TAs. The results of our study not only systematically elucidate the tropane alkaloid biosynthetic pathway of A. luridus, but also realize the de novo synthesis of TAs in N. benthamiana for the first time. It is now possible to make N. benthamiana a potential source for TAs production through synthetic biology techniques. Full article
(This article belongs to the Special Issue Metabolomics-Centered Mining of Crop Metabolic Diversity and Function)
Show Figures

Figure 1

18 pages, 2091 KiB  
Review
The Spread of Invasive and Poisonous Plants: A Lesson from Alkaloids
by Rosa D’Alessandro, Rita Celano, Anna Lisa Piccinelli, Vincenzo D’Amelia and Teresa Docimo
Appl. Sci. 2024, 14(17), 8058; https://doi.org/10.3390/app14178058 - 9 Sep 2024
Viewed by 2118
Abstract
Invasive plant species pose a significant threat to global biodiversity and ecosystems. Climate changes favor the spread of non-native plants, whether voluntary or accidentally introduced into a new environment, as these plants possess a greater ability to adapt to changing environments. The spreading [...] Read more.
Invasive plant species pose a significant threat to global biodiversity and ecosystems. Climate changes favor the spread of non-native plants, whether voluntary or accidentally introduced into a new environment, as these plants possess a greater ability to adapt to changing environments. The spreading of these alien species has a negative impact also on agro-ecosystems, on agricultural yields, and on the nutritional quality of food crops. The high metabolic plasticity of these plants helps them to adapt to new ecosystems, enabling them to succeed in competing with crops. In particular, many alien plants are producers of alkaloids. These molecules represent the main chemical defense to biotic stressors and also the major risk for human health. In this review, we focused on invasive plants producing tropane alkaloids (TAs) and pyrrolizidine alkaloids (PAs). We explored the potential role of these molecules in the fitness of invasive plants in the context of climate change and reviewed the knowledge regarding their biosynthesis steps and examined the mechanism of toxicity when accidentally ingested. Finally, we summarized the most efficient analytical and molecular methods to detect either alkaloid contamination or the presence of invasive plant contaminants, which are the source of these molecules, in food crops. Possible solutions and precautions to ensure food safety have been also proposed. Full article
Show Figures

Figure 1

14 pages, 2625 KiB  
Article
Whole-Genome Sequencing of Two Potentially Allelopathic Strains of Bacillus from the Roots of C. equisetifolia and Identification of Genes Related to Synthesis of Secondary Metabolites
by Ying Wang, Pan Chen, Qi Lin, Linzhi Zuo and Lei Li
Microorganisms 2024, 12(6), 1247; https://doi.org/10.3390/microorganisms12061247 - 20 Jun 2024
Cited by 1 | Viewed by 1457
Abstract
The coastal Casuarina equisetifolia is the most common tree species in Hainan’s coastal protection forests. Sequencing the genomes of its allelopathic endophytes can allow the protective effects of these bacteria to be effectively implemented in protected forests. The goal of this study was [...] Read more.
The coastal Casuarina equisetifolia is the most common tree species in Hainan’s coastal protection forests. Sequencing the genomes of its allelopathic endophytes can allow the protective effects of these bacteria to be effectively implemented in protected forests. The goal of this study was to sequence the whole genomes of the endophytes Bacillus amyloliquefaciens and Bacillus aryabhattai isolated from C. equisetifolia root tissues. The results showed that the genome sizes of B. amyloliquefaciens and B. aryabhattai were 3.854 Mb and 5.508 Mb, respectively. The two strains shared 2514 common gene families while having 1055 and 2406 distinct gene families, respectively. The two strains had 283 and 298 allelochemical synthesis-associated genes, respectively, 255 of which were shared by both strains and 28 and 43 of which were unique to each strain, respectively. The genes were putatively involved in 11 functional pathways, including secondary metabolite biosynthesis, terpene carbon skeleton biosynthesis, biosynthesis of ubiquinone and other terpene quinones, tropane/piperidine and piperidine alkaloids biosynthesis, and phenylpropanoid biosynthesis. NQO1 and entC are known to be involved in the biosynthesis of ubiquinone and other terpenoid quinones, and rfbC/rmlC, rfbA/rmlA/rffH, and rfbB/rmlB/rffG are involved in the biosynthesis of polyketide glycan units. Among the B. aryabhattai-specific allelochemical synthesis-related genes, STE24 is involved in terpene carbon skeleton production, atzF and gdhA in arginine biosynthesis, and TYR in isoquinoline alkaloid biosynthesis. B. amyloliquefaciens and B. aryabhattai share the genes aspB, yhdR, trpA, trpB, and GGPS, which are known to be involved in the synthesis of carotenoids, indole, momilactones, and other allelochemicals. Additionally, these bacteria are involved in allelochemical synthesis via routes such as polyketide sugar unit biosynthesis and isoquinoline alkaloid biosynthesis. This study sheds light on the genetic basis of allelopathy in Bacillus strains associated with C. equisetifolia, highlighting the possible use of these bacteria in sustainable agricultural strategies for weed management and crop protection. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

17 pages, 4169 KiB  
Article
Simultaneous Determination of 23 Pyrrolizidine and Tropane Alkaloids in Infusions from Dry Edible Flowers Using Optimized μSPEed® Microextraction Prior to Their Analysis by UHPLC-IT-MS/MS
by Begoña Fernández-Pintor, Sonia Morante-Zarcero and Isabel Sierra
Foods 2024, 13(11), 1740; https://doi.org/10.3390/foods13111740 - 1 Jun 2024
Cited by 1 | Viewed by 1752
Abstract
A miniaturized solid-phase extraction of two tropane alkaloids (TAs) and twenty-one pyrrolizidine alkaloids (PAs) from infusions of dry edible flowers using optimized µSPEed® technique was developed. The optimization of the µSPEed® methodology involved testing different cartridges and comparing various volumes and [...] Read more.
A miniaturized solid-phase extraction of two tropane alkaloids (TAs) and twenty-one pyrrolizidine alkaloids (PAs) from infusions of dry edible flowers using optimized µSPEed® technique was developed. The optimization of the µSPEed® methodology involved testing different cartridges and comparing various volumes and numbers of loading cycles. The final conditions allowed for a rapid extraction, taking only 3.5 min. This was achieved using a C18-ODS cartridge, conditioning with 100 µL of methanol (two cycles), loading 100 µL of the infusion sample (seven cycles), and eluting the analytes with 100 µL of methanol (two cycles). Prior to their analysis by UHPLC-IT-MS/MS, the extracts were evaporated and reconstituted in 100 µL of water (0.2% formic acid)/methanol (0.2% ammonia) 95:5 (v/v), allowing for a preconcentration factor of seven times. The methodology was successfully validated obtaining recoveries ranging between 87 and 97%, RSD of less than 12%, and MQL between 0.09 and 0.2 µg/L. The validated methodology was applied to twenty samples of edible flower infusions to evaluate the safety of these products. Two infusion samples obtained from Acmella oleracea and Viola tricolor were contaminated with 0.16 and 0.2 µg/L of scopolamine (TA), respectively, while the infusion of Citrus aurantium was contaminated with intermedine and lycopsamine (PAs) below the MQL. Full article
Show Figures

Figure 1

14 pages, 2497 KiB  
Article
GWAS and WGCNA Analysis Uncover Candidate Genes Associated with Oil Content in Soybean
by Xunchao Zhao, Yan Zhang, Jie Wang, Xue Zhao, Yongguang Li, Weili Teng, Yingpeng Han and Yuhang Zhan
Plants 2024, 13(10), 1351; https://doi.org/10.3390/plants13101351 - 14 May 2024
Cited by 8 | Viewed by 2431
Abstract
Soybean vegetable oil is an important source of the human diet. However, the analysis of the genetic mechanism leading to changes in soybean oil content is still incomplete. In this study, a total of 227 soybean materials were applied and analyzed by a [...] Read more.
Soybean vegetable oil is an important source of the human diet. However, the analysis of the genetic mechanism leading to changes in soybean oil content is still incomplete. In this study, a total of 227 soybean materials were applied and analyzed by a genome-wide association study (GWAS). There are 44 quantitative trait nucleotides (QTNs) that were identified as associated with oil content. A total of six, four, and 34 significant QTN loci were identified in Xiangyang, Hulan, and Acheng, respectively. Of those, 26 QTNs overlapped with or were near the known oil content quantitative trait locus (QTL), and 18 new QTNs related to oil content were identified. A total of 594 genes were located near the peak single nucleotide polymorphism (SNP) from three tested environments. These candidate genes exhibited significant enrichment in tropane, piperidine, and pyridine alkaloid biosynthesiss (ko00960), ABC transporters (ko02010), photosynthesis-antenna proteins (ko00196), and betalain biosynthesis (ko00965). Combined with the GWAS and weighted gene co-expression network analysis (WGCNA), four candidate genes (Glyma.18G300100, Glyma.11G221100, Glyma.13G343300, and Glyma.02G166100) that may regulate oil content were identified. In addition, Glyma.18G300100 was divided into two main haplotypes in the studied accessions. The oil content of haplotype 1 is significantly lower than that of haplotype 2. Our research findings provide a theoretical basis for improving the regulatory mechanism of soybean oil content. Full article
(This article belongs to the Special Issue Germplasm Resources and Molecular Breeding of Soybean)
Show Figures

Figure 1

18 pages, 3603 KiB  
Article
Modulation of Tropane Alkaloids’ Biosynthesis and Gene Expression by Methyl Jasmonate in Datura stramonium L.: A Comparative Analysis of Scopolamine, Atropine, and Hyoscyamine Accumulation
by Arash Rasi, Manijeh Sabokdast, Mohammad Reza Naghavi, Parisa Jariani and Beáta Dedičová
Life 2024, 14(5), 618; https://doi.org/10.3390/life14050618 - 10 May 2024
Cited by 6 | Viewed by 2793
Abstract
Scopolamine and atropine are two medicinal alkaloids derived from Datura stramonium L. with anticholinergic properties. This study explored how methyl jasmonate (MJ), a plant growth regulator, affects the biosynthesis and accumulation of these alkaloids in different plant tissues. The expression levels of putrescine [...] Read more.
Scopolamine and atropine are two medicinal alkaloids derived from Datura stramonium L. with anticholinergic properties. This study explored how methyl jasmonate (MJ), a plant growth regulator, affects the biosynthesis and accumulation of these alkaloids in different plant tissues. The expression levels of putrescine N-methyltransferase (PMT), tropinone reductase I (TR1), and hyoscyamine 6β-hydroxylase (h6h), three critical enzymes in the biosynthetic pathway, were also analyzed. The results indicated that MJ at 150 µM increased the production of scopolamine and atropine in both leaves and roots, while MJ at 300 µM had an adverse effect. Furthermore, MJ enhanced the expression of PMT, TR1, and h6h genes in the roots, the primary site of alkaloid synthesis, but not in the leaves, the primary site of alkaloid storage. These results imply that MJ can be applied to regulate the biosynthesis and accumulation of scopolamine and atropine in D. stramonium, thereby improving their production efficiency. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop