sensors-logo

Journal Browser

Journal Browser

Micro- and Nano-Technologies for Sensing: From Device Fabrication to Applications

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Nanosensors".

Deadline for manuscript submissions: 20 April 2025 | Viewed by 15891

Special Issue Editor


E-Mail Website
Guest Editor
Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
Interests: nanofabrication; electron beam lithography; dry etch; electrochemical deposition; integration technologies of micro and nano devices

Special Issue Information

Dear Colleagues,

In a wide range of applications, sensors involve micro- and nanofabrication technologies, material/structure characterization methods, and interactions between functional structures and detected targets. The rapid miniaturization and multifunctionality of sensors have triggered research in both “top-down” fabrication techniques and “bottom-up” approaches, including diverse lithographic methods, pattern transfer, molecule assembly, functional film growth, and surface modification. To achieve specific functionalities and applications, these commonly used technologies need to be aligned and integrated with others. This ultimately leads to the emergence of new processes and novel sensors, accelerating the pace of the sensor-related industrial revolution.

The aim of this Special Issue is to highlight the latest developments in device fabrication, sensing principles, and sensor applications in diverse engineering and scientific fields. It brings together original research articles and reviews that cover a wide range of topics related to micro- and nanotechnologies for sensing. We sincerely invite you to submit original unpublished work.

Topics of interest of this Special Issue include, but are not limited to, the following:

  • Micro- and nanofabrication;
  • Process integration of sensors;
  • Surface modification and characterization;
  • Sensing principles;
  • Biomedical and chemical sensors;
  • Metamaterial sensors;
  • Flexible and wearable sensors;
  • Multifunctional sensors;
  • Optoelectronic and photonic sensors.

Dr. Xiaoli Zhu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • micro- and nanofabrication
  • process integration of sensors
  • surface modification and characterization
  • sensing principles
  • biomedical and chemical sensors
  • metamaterial sensors
  • flexible and wearable sensors
  • multifunctional sensors
  • optoelectronic and photonic sensors

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 4200 KiB  
Article
Strategy for Accurate Detection of Six Tropane Alkaloids in Honey Using Lateral Flow Immunosensors
by Boyan Sun, Chuanlei Wang, Zile Wang, Jiayi Liang, Ke Han, Shuai Zhang, Chunchao Yin, Xiaomei Wang, Chujun Liu, Zhiyue Feng, Sihan Wang and Haiyang Jiang
Sensors 2024, 24(22), 7265; https://doi.org/10.3390/s24227265 - 13 Nov 2024
Viewed by 1037
Abstract
Honey, a widely consumed food, is susceptible to contamination by various toxic substances during production. Tropane alkaloids, with their potent neurotoxicity, are frequently found in honey. Hence, there is an acute need for rapid and effective detection methods to monitor these alkaloids. Lateral [...] Read more.
Honey, a widely consumed food, is susceptible to contamination by various toxic substances during production. Tropane alkaloids, with their potent neurotoxicity, are frequently found in honey. Hence, there is an acute need for rapid and effective detection methods to monitor these alkaloids. Lateral flow immunoassay (LFIA), known for its simple operation, low cost, and reliable results, holds great promise. In this study, we developed an efficient and user-friendly analytical method for the simultaneous detection of six tropane alkaloids (atropine, L-hyoscyamine, scopolamine, anisodamine, homatropine, and apoatropine) in honey based on an AuNPs lateral flow immunoassay (AuNPs-LFIA) with broad-spectrum antibodies. Under optimal conditions, the calculated detection limits were 0.22, 0.29, 0.51, 6.34, 0.30, and 0.94 ng/mL, respectively. By diluting the honey sample five times, the contaminants can be readily detected using LFIA. Semi-quantitative and quantitative analyses can be completed within 17 min. This innovative method fills the void in LFIA for detecting tropane alkaloids and serves as a valuable reference for LFIA detection of honey samples, providing a crucial strategy for the accurate detection of these important compounds. Full article
Show Figures

Figure 1

11 pages, 1537 KiB  
Communication
A Fabrication Method for Realizing Vertically Aligned Silicon Nanowires Featuring Precise Dimension Control
by Sourav Mukherjee, Mohannad Y. Elsayed, Hani H. Tawfik and Mourad N. El-Gamal
Sensors 2024, 24(22), 7144; https://doi.org/10.3390/s24227144 - 6 Nov 2024
Cited by 1 | Viewed by 2028
Abstract
Silicon nanowires (SiNWs) have garnered considerable attention in the last few decades owing to their versatile applications. One extremely desirable aspect of fabricating SiNWs is controlling their dimensions and alignment. In addition, strict control of surface roughness or diameter modulation is another key [...] Read more.
Silicon nanowires (SiNWs) have garnered considerable attention in the last few decades owing to their versatile applications. One extremely desirable aspect of fabricating SiNWs is controlling their dimensions and alignment. In addition, strict control of surface roughness or diameter modulation is another key parameter for enhanced performance in applications such as photovoltaics, thermoelectric devices, etc. This study investigates a method of fabricating silicon nanowires using electron beam lithography (EBL) and the deep reactive ion etching (DRIE) Bosch process to achieve precisely controlled fabrication. The fabricated nanowires had a pitch error within 2% of the pitch of the direct writing mask. The maximum error in the average diameter was close to 25%. The simplified two-step method with tight control of the dimensions and surface tunability presents a reliable technique to fabricate vertically aligned SiNWs for some targeted applications. Full article
Show Figures

Figure 1

18 pages, 4323 KiB  
Article
One-Dimensional ZnO Nanorod Array Grown on Ag Nanowire Mesh/ZnO Composite Seed Layer for H2 Gas Sensing and UV Detection Applications
by Fang-Hsing Wang, An-Jhe Li, Han-Wen Liu and Tsung-Kuei Kang
Sensors 2024, 24(17), 5852; https://doi.org/10.3390/s24175852 - 9 Sep 2024
Cited by 1 | Viewed by 1039
Abstract
Photodetectors and gas sensors are vital in modern technology, spanning from environmental monitoring to biomedical diagnostics. This paper explores the UV detection and gas sensing properties of a zinc oxide (ZnO) nanorod array (ZNA) grown on silver nanowire mesh (AgNM) using a hydrothermal [...] Read more.
Photodetectors and gas sensors are vital in modern technology, spanning from environmental monitoring to biomedical diagnostics. This paper explores the UV detection and gas sensing properties of a zinc oxide (ZnO) nanorod array (ZNA) grown on silver nanowire mesh (AgNM) using a hydrothermal method. We examined the impact of different zinc acetate precursor concentrations on their properties. Results show the AgNM forms a network with high transparency (79%) and low sheet resistance (7.23 Ω/□). A sol–gel ZnO thin film was coated on this mesh, providing a seed layer with a hexagonal wurtzite structure. Increasing the precursor concentration alters the diameter, length, and area density of ZNAs, affecting their performance. The ZNA-AgNM-based photodetector shows enhanced dark current and photocurrent with increasing precursor concentration, achieving a maximum photoresponsivity of 114 A/W at 374 nm and a detectivity of 6.37 × 1014 Jones at 0.05 M zinc acetate. For gas sensing, the resistance of ZNA-AgNM-based sensors decreases with temperature, with the best hydrogen response (2.71) at 300 °C and 0.04 M precursor concentration. These findings highlight the potential of ZNA-AgNM for high-performance UV photodetectors and hydrogen gas sensors, offering an alternative way for the development of future sensing devices with enhanced performance and functionality. Full article
Show Figures

Figure 1

17 pages, 7161 KiB  
Article
Development of High-Precision NO2 Gas Sensor Based on Non-Dispersive Infrared Technology
by Yongmin Zhao, Congchun Zhang, Guangteng Ci, Xiaoguang Zhao, Jinguang Lv, Jingqiu Liang, Anjie Ming, Feng Wei and Changhui Mao
Sensors 2024, 24(13), 4146; https://doi.org/10.3390/s24134146 - 26 Jun 2024
Cited by 3 | Viewed by 2259
Abstract
Increasing concerns about air quality due to fossil fuel combustion, especially nitrogen oxides (NOx) from marine and diesel engines, necessitate advanced monitoring systems due to the significant health and environmental impacts of nitrogen dioxide (NO2). In this study, a [...] Read more.
Increasing concerns about air quality due to fossil fuel combustion, especially nitrogen oxides (NOx) from marine and diesel engines, necessitate advanced monitoring systems due to the significant health and environmental impacts of nitrogen dioxide (NO2). In this study, a gas detection system based on the principle of the non-dispersive infrared (NDIR) technique is proposed. Firstly, the pyroelectric detector was developed by employing an ultra-thin LiTaO3 (LT) layer as the sensitive element, integrated with nanoscale carbon material prepared by wafer-level graphics technology as the infrared absorption layer. Then, the sensor was hermetically sealed using inert gas through energy storage welding technology, exhibiting a high detectivity (D*) value of 4.19 × 108 cm·√Hz/W. Subsequently, a NO2 gas sensor was engineered based on the NDIR principle employing a Micro Electro Mechanical System (MEMS) infrared (IR) emitter, featuring a light path chamber length of 1.5 m, along with integrated signal processing and software calibration algorithms. This gas sensor was capable of detecting NO2 concentrations within the range of 0–500 ppm. Initial tests indicated that the gas sensor exhibited a full-scale relative error of less than 0.46%, a limit of 2.8 ppm, a linearity of −1.09%, a repeatability of 0.47% at a concentration of 500 ppm, and a stability of 2% at a concentration of 500 ppm. The developed gas sensor demonstrated significant potential for application in areas such as industrial monitoring and analytical instrumentation. Full article
Show Figures

Figure 1

12 pages, 2129 KiB  
Communication
Splitter-Based Sensors Realized via POFs Coupled by a Micro-Trench Filled with a Molecularly Imprinted Polymer
by Ines Tavoletta, Francesco Arcadio, Luca Pasquale Renzullo, Giuseppe Oliva, Domenico Del Prete, Debora Verolla, Chiara Marzano, Giancarla Alberti, Maria Pesavento, Luigi Zeni and Nunzio Cennamo
Sensors 2024, 24(12), 3928; https://doi.org/10.3390/s24123928 - 17 Jun 2024
Cited by 2 | Viewed by 1055
Abstract
An optical–chemical sensor based on two modified plastic optical fibers (POFs) and a molecularly imprinted polymer (MIP) is realized and tested for the detection of 2-furaldehyde (2-FAL). The 2-FAL measurement is a scientific topic of great interest in different application fields, such as [...] Read more.
An optical–chemical sensor based on two modified plastic optical fibers (POFs) and a molecularly imprinted polymer (MIP) is realized and tested for the detection of 2-furaldehyde (2-FAL). The 2-FAL measurement is a scientific topic of great interest in different application fields, such as human health and life status monitoring in power transformers. The proposed sensor is realized by using two POFs as segmented waveguides (SW) coupled through a micro-trench milled between the fibers and then filled with a specific MIP for the 2-FAL detection. The experimental results show that the developed intensity-based sensor system is highly selective and sensitive to 2-FAL detection in aqueous solutions, with a limit of detection of about 0.04 mg L−1. The proposed sensing approach is simple and low-cost, and it shows performance comparable to that of plasmonic MIP-based sensors present in the literature for 2-FAL detection. Full article
Show Figures

Figure 1

22 pages, 8481 KiB  
Article
A Surface Electromyography (sEMG) System Applied for Grip Force Monitoring
by Dantong Wu, Peng Tian, Shuai Zhang, Qihang Wang, Kang Yu, Yunfeng Wang, Zhixing Gao, Lin Huang, Xiangyu Li, Xingchen Zhai, Meng Tian, Chengjun Huang, Haiying Zhang and Jun Zhang
Sensors 2024, 24(12), 3818; https://doi.org/10.3390/s24123818 - 13 Jun 2024
Cited by 3 | Viewed by 2825
Abstract
Muscles play an indispensable role in human life. Surface electromyography (sEMG), as a non-invasive method, is crucial for monitoring muscle status. It is characterized by its real-time, portable nature and is extensively utilized in sports and rehabilitation sciences. This study proposed a wireless [...] Read more.
Muscles play an indispensable role in human life. Surface electromyography (sEMG), as a non-invasive method, is crucial for monitoring muscle status. It is characterized by its real-time, portable nature and is extensively utilized in sports and rehabilitation sciences. This study proposed a wireless acquisition system based on multi-channel sEMG for objective monitoring of grip force. The system consists of an sEMG acquisition module containing four-channel discrete terminals and a host computer receiver module, using Bluetooth wireless transmission. The system is portable, wearable, low-cost, and easy to operate. Leveraging the system, an experiment for grip force prediction was designed, employing the bald eagle search (BES) algorithm to enhance the Random Forest (RF) algorithm. This approach established a grip force prediction model based on dual-channel sEMG signals. As tested, the performance of acquisition terminal proceeded as follows: the gain was up to 1125 times, and the common mode rejection ratio (CMRR) remained high in the sEMG signal band range (96.94 dB (100 Hz), 84.12 dB (500 Hz)), while the performance of the grip force prediction algorithm had an R2 of 0.9215, an MAE of 1.0637, and an MSE of 1.7479. The proposed system demonstrates excellent performance in real-time signal acquisition and grip force prediction, proving to be an effective muscle status monitoring tool for rehabilitation, training, disease condition surveillance and scientific fitness applications. Full article
Show Figures

Figure 1

23 pages, 7409 KiB  
Article
Cardiac Multi-Frequency Vibration Signal Sensor Module and Feature Extraction Method Based on Vibration Modeling
by Zhixing Gao, Yuqi Wang, Kang Yu, Zhiwei Dai, Tingting Song, Jun Zhang, Chengjun Huang, Haiying Zhang and Hao Yang
Sensors 2024, 24(7), 2235; https://doi.org/10.3390/s24072235 - 30 Mar 2024
Viewed by 1990
Abstract
Cardiovascular diseases pose a long-term risk to human health. This study focuses on the rich-spectrum mechanical vibrations generated during cardiac activity. By combining Fourier series theory, we propose a multi-frequency vibration model for the heart, decomposing cardiac vibration into frequency bands and establishing [...] Read more.
Cardiovascular diseases pose a long-term risk to human health. This study focuses on the rich-spectrum mechanical vibrations generated during cardiac activity. By combining Fourier series theory, we propose a multi-frequency vibration model for the heart, decomposing cardiac vibration into frequency bands and establishing a systematic interpretation for detecting multi-frequency cardiac vibrations. Based on this, we develop a small multi-frequency vibration sensor module based on flexible polyvinylidene fluoride (PVDF) films, which is capable of synchronously collecting ultra-low-frequency seismocardiography (ULF-SCG), seismocardiography (SCG), and phonocardiography (PCG) signals with high sensitivity. Comparative experiments validate the sensor’s performance and we further develop an algorithm framework for feature extraction based on 1D-CNN models, achieving continuous recognition of multiple vibration features. Testing shows that the recognition coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) of the 8 features are 0.95, 2.18 ms, and 4.89 ms, respectively, with an average prediction speed of 60.18 us/point, meeting the re-quirements for online monitoring while ensuring accuracy in extracting multiple feature points. Finally, integrating the vibration model, sensor, and feature extraction algorithm, we propose a dynamic monitoring system for multi-frequency cardiac vibration, which can be applied to portable monitoring devices for daily dynamic cardiac monitoring, providing a new approach for the early diagnosis and prevention of cardiovascular diseases. Full article
Show Figures

Figure 1

12 pages, 3329 KiB  
Article
Fast Fabrication Nanopores on a PMMA Membrane by a Local High Electric Field Controlled Breakdown
by Shaoxi Fang, Delin Zeng, Shixuan He, Yadong Li, Zichen Pang, Yunjiao Wang, Liyuan Liang, Ting Weng, Wanyi Xie and Deqiang Wang
Sensors 2024, 24(7), 2109; https://doi.org/10.3390/s24072109 - 26 Mar 2024
Viewed by 1316
Abstract
The sensitivity and accuracy of nanopore sensors are severely hindered by the high noise associated with solid-state nanopores. To mitigate this issue, the deposition of organic polymer materials onto silicon nitride (SiNx) membranes has been effective in obtaining [...] Read more.
The sensitivity and accuracy of nanopore sensors are severely hindered by the high noise associated with solid-state nanopores. To mitigate this issue, the deposition of organic polymer materials onto silicon nitride (SiNx) membranes has been effective in obtaining low-noise measurements. Nonetheless, the fabrication of nanopores sub-10 nm on thin polymer membranes remains a significant challenge. This work proposes a method for fabricating nanopores on polymethyl methacrylate (PMMA) membrane by the local high electrical field controlled breakdown, exploring the impact of voltage and current on the breakdown of PMMA membranes and discussing the mechanism underlying the breakdown voltage and current during the formation of nanopores. By improving the electric field application method, transient high electric fields that are one–seven times higher than the breakdown electric field can be utilized to fabricate nanopores. A comparative analysis was performed on the current noise levels of nanopores in PMMA-SiNx composite membranes and SiNx nanopores with a 5 nm diameter. The results demonstrated that the fast fabrication of nanopores on PMMA-SiNx membranes exhibited reduced current noise compared to SiNx nanopores. This finding provides evidence supporting the feasibility of utilizing this technology for efficiently fabricating low-noise nanopores on polymer composite membranes. Full article
Show Figures

Figure 1

Review

Jump to: Research

28 pages, 8377 KiB  
Review
Research Progress on Saccharide Molecule Detection Based on Nanopores
by Bohua Yin, Wanyi Xie, Shaoxi Fang, Shixuan He, Wenhao Ma, Liyuan Liang, Yajie Yin, Daming Zhou, Zuobin Wang and Deqiang Wang
Sensors 2024, 24(16), 5442; https://doi.org/10.3390/s24165442 - 22 Aug 2024
Cited by 2 | Viewed by 1544
Abstract
Saccharides, being one of the fundamental molecules of life, play essential roles in the physiological and pathological functions of cells. However, their intricate structures pose challenges for detection. Nanopore technology, with its high sensitivity and capability for single-molecule-level analysis, has revolutionized the identification [...] Read more.
Saccharides, being one of the fundamental molecules of life, play essential roles in the physiological and pathological functions of cells. However, their intricate structures pose challenges for detection. Nanopore technology, with its high sensitivity and capability for single-molecule-level analysis, has revolutionized the identification and structural analysis of saccharide molecules. This review focuses on recent advancements in nanopore technology for carbohydrate detection, presenting an array of methods that leverage the molecular complexity of saccharides. Biological nanopore techniques utilize specific protein binding or pore modifications to trigger typical resistive pulses, enabling the high-sensitivity detection of monosaccharides and oligosaccharides. In solid-state nanopore sensing, boronic acid modification and pH gating mechanisms are employed for the specific recognition and quantitative analysis of polysaccharides. The integration of artificial intelligence algorithms can further enhance the accuracy and reliability of analyses. Serving as a crucial tool in carbohydrate detection, we foresee significant potential in the application of nanopore technology for the detection of carbohydrate molecules in disease diagnosis, drug screening, and biosensing, fostering innovative progress in related research domains. Full article
Show Figures

Figure 1

Back to TopTop