Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (692)

Search Parameters:
Keywords = trend of salinization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3058 KB  
Article
Environmental Drivers and Long-Term Dynamics of Copepod Communities in the Black Sea: Contrasts Between Warm and Cold Periods
by George-Emanuel Harcota, Elena Bisinicu, Luminita Lazar, Florin Timofte and Geta Rîșnoveanu
Biology 2026, 15(2), 184; https://doi.org/10.3390/biology15020184 - 19 Jan 2026
Abstract
Copepods are key components of marine food webs, linking primary producers such as microalgae to higher trophic levels, including many fish species. This study investigates long-term changes in the composition, density, and biomass of copepod communities along the Romanian coast of the Black [...] Read more.
Copepods are key components of marine food webs, linking primary producers such as microalgae to higher trophic levels, including many fish species. This study investigates long-term changes in the composition, density, and biomass of copepod communities along the Romanian coast of the Black Sea over six decades (1956–2015), based on historical records and recent monitoring from 18 sampling stations. Mean copepod density declined markedly over the study period, particularly during the cold season, decreasing from values exceeding 1000 ind/m3 in the 1960s to <300 ind/m3 after 2000, while biomass showed weaker but comparable long-term fluctuations. Seasonal variability was pronounced, with significantly higher densities and biomass during the warm season. Generalised Additive Models (GAMs) explained up to 40–55% of the variance in copepod density and biomass, depending on the season. During the warm season, phosphate exerted a positive effect on copepod abundance, consistent with bottom-up control via phytoplankton productivity, whereas during the cold season, temperature showed a positive effect and salinity a negative effect, indicating stronger physical control of copepod persistence. Species composition shifted over time, with a reduction in constant species and an increase in rare or accidental taxa in later decades. These results indicate that climate variability and anthropogenic pressures have reshaped copepod communities, with potential consequences for food-web efficiency and ecosystem resilience in the Black Sea. Full article
(This article belongs to the Section Marine and Freshwater Biology)
22 pages, 3368 KB  
Article
Stress-Induced Cross-Protection and Combined Stress Responses in Extremotolerant Black Yeasts
by Klavdija Fortuna, Maja Kajin and Cene Gostinčar
J. Fungi 2026, 12(1), 43; https://doi.org/10.3390/jof12010043 - 6 Jan 2026
Viewed by 366
Abstract
Extremotolerant fungi inhabit environments with multiple overlapping stressors, yet most studies examine stresses individually. We tested whether preconditioning with salt, cold, or both improves survival after desiccation and freezing, and whether combined salinity and temperature effects on growth are additive or synergistic. We [...] Read more.
Extremotolerant fungi inhabit environments with multiple overlapping stressors, yet most studies examine stresses individually. We tested whether preconditioning with salt, cold, or both improves survival after desiccation and freezing, and whether combined salinity and temperature effects on growth are additive or synergistic. We studied Aureobasidium pullulans, Aureobasidium subglaciale, Aureobasidium melanogenum, and Hortaea werneckii (haploid and diploid). All preconditioning treatments significantly increased long-term desiccation survival in A. pullulans, reflecting its generalist capacity to activate cross-protective responses. H. werneckii displayed smaller improvements, consistent with a specialist strategy. Freezing survival without cryoprotectants remained ~100% in both species, indicating high intrinsic tolerance. Growth analyses revealed synergistic effects of salinity and temperature in Aureobasidium spp. Species differed in salinity sensitivity (A. melanogenum > A. pullulans > A. subglaciale) and thermal preferences. A. melanogenum and A. pullulans grew faster at higher temperatures, while A. subglaciale showed the opposite trend. In H. werneckii, salinity governed growth. Haploids slowed as salinity increased, while the diploid remained unaffected. This is the first confirmation of the long-standing suggestion that hybrid diploid genomes of many H. werneckii are an adaptation to osmotic stress. These findings illustrate two pathways to extremotolerance: inducible flexibility in Aureobasidium versus constitutive halotolerance in H. werneckii. Full article
(This article belongs to the Special Issue Stress Tolerance in Yeast Biotechnology)
Show Figures

Graphical abstract

16 pages, 2700 KB  
Article
Spatio-Temporal Distribution of Setipinna taty Resources Using a Zero-Inflated Model in the Offshore Waters of Southern Zhejiang, China
by Xiaoxue Liu, Wen Ma, Jin Ma, Chunxia Gao, Weifeng Chen and Jing Zhao
J. Mar. Sci. Eng. 2026, 14(1), 96; https://doi.org/10.3390/jmse14010096 - 3 Jan 2026
Viewed by 186
Abstract
Effective fishery management in coastal waters requires accurate assessments of species–environment relationships, particularly in data-rich but zero-inflated contexts (i.e., datasets with an excess of zero catches). Here, we used fishery-independent trawl survey data collected from 2018 to 2019 in the offshore waters of [...] Read more.
Effective fishery management in coastal waters requires accurate assessments of species–environment relationships, particularly in data-rich but zero-inflated contexts (i.e., datasets with an excess of zero catches). Here, we used fishery-independent trawl survey data collected from 2018 to 2019 in the offshore waters of southern Zhejiang Province of China to investigate the spatio-temporal distribution of Setipinna taty (scaly hairfin anchovy) and its environmental determinants. Given the high frequency of zero catches, we fitted both zero-inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB) models and selected the best-performing approach using the Akaike information criterion (AIC). Cross-validation indicated that the ZINB model (RMSE: 199.1, R2; 0.25) outperformed ZIP model (RMSE: 239.4, R2; 0.23). Temperature, depth, and salinity were key predictors of S. taty abundance, which generally occurred at depths of 20–40 m and salinities of 26–34 psu. We then applied the optimal ZINB model to predict S. taty distributions in spring, summer, and autumn of 2020. The predictions indicated a summer peak in abundance and a nearshore-to-offshore decreasing gradient, and were broadly consistent with the spatial distribution trends observed in the 2020 survey data. The highest predicted densities were located in nearshore areas off Wenzhou and Taizhou, west of 122° E. By clarifying the key environmental factors shaping S. taty distribution and applying zero-inflated count models to account for an excess of zero catches, which occur more frequently than expected under standard negative binomial models, this study provides an improved basis for effective conservation and sustainable utilization of S. taty resources in the southern offshore waters of Zhejiang; nevertheless, predictive performance could be further improved by incorporating additional environmental and biotic covariates together with extended spatio-temporal data. Full article
(This article belongs to the Section Marine Ecology)
Show Figures

Figure 1

21 pages, 7172 KB  
Review
A Critical Review on Desalination Technologies for High-Salinity Wastewater: Development and Challenges
by Xiao Wang, Xinyi Cheng, Ao Shuai, Xiyu Xu, Xinran Guo, Dan Song, Caihong Liu and Wenjuan Zhang
Membranes 2026, 16(1), 27; https://doi.org/10.3390/membranes16010027 - 3 Jan 2026
Viewed by 482
Abstract
The ongoing expansion of industrial operations has resulted in the generation of a large amount of high-salinity wastewater with complex compositions. The direct discharge of this wastewater poses significant threats to ecosystems and leads to the loss of valuable salt resources, for example, [...] Read more.
The ongoing expansion of industrial operations has resulted in the generation of a large amount of high-salinity wastewater with complex compositions. The direct discharge of this wastewater poses significant threats to ecosystems and leads to the loss of valuable salt resources, for example, triggering freshwater salinization syndrome and mobilizing heavy metals to form toxic “chemical cocktails”, leading to the loss of valuable salt resources. Desalination of high-salinity wastewater primarily involves two key processes: concentration and crystallization, whereby a concentrated brine is first obtained through membrane-based or thermal methods, followed by salt recovery via crystallization. This review begins by employing a bibliometric analysis to map the knowledge structure and trace the evolution of research trends, revealing that “membrane-thermal integration” has become a dominant research hotspot since 2020. It then provides a systematic examination of advanced treatment technologies, chronicling the progression from early biological methods to contemporary membrane-based and thermal desalination approaches. A specific analysis of the influence of salinity on membrane scaling is also included. Consequently, this paper critically assesses the prospects and challenges of several alternative desalination technologies and proposes that integrated processes, combining membrane-based and thermal desalination, represent a highly promising pathway for achieving zero liquid discharge (ZLD). Finally, we suggest that future research should prioritize the development of key functional materials, explore efficient hybrid physiochemical–biochemical processes, and advance emerging technologies, aimed at enhancing treatment efficiency and reducing operational costs. Full article
Show Figures

Figure 1

31 pages, 30685 KB  
Article
Orbital-Scale Climate Control on Facies Architecture and Reservoir Heterogeneity: Evidence from the Eocene Fourth Member of the Shahejie Formation, Bonan Depression, China
by Shahab Aman e Room, Liqiang Zhang, Yiming Yan, Waqar Ahmad, Paulo Joaquim Nota and Aamir Khan
Minerals 2026, 16(1), 48; https://doi.org/10.3390/min16010048 - 31 Dec 2025
Viewed by 277
Abstract
The Eocene fourth member of the Shahejie formation (Es4x) in the Bonan Depression, Bohai Bay Basin, records syn-rift sedimentation under alternating arid and humid climates. It provides insight into how orbital-scale climatic fluctuations influenced tectonics, facies patterns, and reservoir distribution. This study integrates [...] Read more.
The Eocene fourth member of the Shahejie formation (Es4x) in the Bonan Depression, Bohai Bay Basin, records syn-rift sedimentation under alternating arid and humid climates. It provides insight into how orbital-scale climatic fluctuations influenced tectonics, facies patterns, and reservoir distribution. This study integrates 406 m of core data, 92 thin sections, 450 km2 of 3D seismic data, and multiple geochemical proxies, leading to the recognition of five facies associations (LFA): (1) alluvial fans, (2) braided rivers, (3) floodplain mudstones, (4) fan deltas, and (5) saline lacustrine evaporites. Three major depositional cycles are defined within the Es4x. Seismic reflections, well-log patterns, and thickness trends suggest that these cycles represent fourth-order lake-level fluctuations (0.8–1.1 Myr) rather than short 21-kyr precession rhythms. This implies long-term climate and tectonic modulation, likely linked to eccentricity-scale monsoon variability. Hyperarid phases are marked by Sr/Ba > 4, δ18O > +4‰, and thick evaporite accumulations. In contrast, Sr/Ba < 1 and δ18O < −8‰ reflect humid conditions with larger lakes and enhanced fluvial input. During wet periods, rivers produced sand bodies nearly 40 times thicker than in dry intervals. Reservoir quality is highest in braided-river sandstones (LFA 2) with 12%–19% porosity, preserved by chlorite coatings that limit quartz cement. Fan-delta sands (LFA 4) have <8% porosity due to calcite cementation, though fractures (10–50 mm) improve permeability. Floodplain mudstones (LFA 3) and evaporites (LFA 5) act as seals. This work presents a predictive depositional and reservoir model for arid–humid rift systems and highlights braided-river targets as promising exploration zones in climate-sensitive basins worldwide. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

22 pages, 3379 KB  
Review
Life-History Traits of a Small Cosmopolitan Copepod (Oithona similis) in the Barents Sea: A Review
by Vladimir G. Dvoretsky and Alexander G. Dvoretsky
Biology 2026, 15(1), 27; https://doi.org/10.3390/biology15010027 - 23 Dec 2025
Viewed by 264
Abstract
This review synthesizes current knowledge on the biology and ecology of the small cyclopoid copepod Oithona similis, a prevalent planktonic species in the Barents Sea, during the period of Arctic warming since the early 2000s. The region serves as an effective model [...] Read more.
This review synthesizes current knowledge on the biology and ecology of the small cyclopoid copepod Oithona similis, a prevalent planktonic species in the Barents Sea, during the period of Arctic warming since the early 2000s. The region serves as an effective model system for examining the influence of different water masses on Arctic zooplankton dynamics. The highest abundances and biomass of Oithona similis are observed in Murmansk Coastal Waters (MCW) and Arctic Waters (ArW). Although its contribution to total zooplankton biomass is generally lower than that of higher copepod taxa, it can account for up to 27–35% seasonally and regionally. Ovigerous females are most abundant in Novaya Zemlya Waters (NZW) and ArW. Egg production rates exhibit a decreasing trend from south to north across the sea. Morphometric analyses reveal an increase in prosome length for both sexes, while relative antenna size diminishes from the south (MCW) to the north (ArW). The highest mortality rates occur during summer, coinciding with peak abundances of Oithona similis, its predators, and parasites, as well as increased interspecific competition. Based on morphological and reproductive parameters, three distinct populations are delineated within the Barents Sea: southern (MCW), central (Atlantic Water/Barents Sea Water), and northern/eastern (ArW/NZW), with respective life cycle durations of 11–12, 9–10, and 11 months, and typically one to two generations per year. The primary environmental drivers influencing population abundance, biomass, size, and reproduction are temperature and salinity, while chlorophyll a concentration predominantly affects mortality rates. Full article
Show Figures

Figure 1

17 pages, 1853 KB  
Article
Anthropogenic Management Dominates the Spatial Pattern of Soil Organic Carbon in Saline Cotton Fields of Xinjiang: A Modeling Investigation Based on the Modified Process-Based Model
by Haiyan Han, Jianli Ding, Jinjie Wang, Ping Wang, Shuang Zhao, Zihan Zhang and Xiangyu Ge
Agronomy 2026, 16(1), 17; https://doi.org/10.3390/agronomy16010017 - 20 Dec 2025
Viewed by 347
Abstract
Salinity is a key abiotic stress limiting crop growth. Accurate quantification of carbon budgets and their environmental responses is critical for sustainable cotton production, yet regional-scale assessments remain scarce. To clarify the evolutionary patterns and driving mechanisms of soil organic carbon (SOC) in [...] Read more.
Salinity is a key abiotic stress limiting crop growth. Accurate quantification of carbon budgets and their environmental responses is critical for sustainable cotton production, yet regional-scale assessments remain scarce. To clarify the evolutionary patterns and driving mechanisms of soil organic carbon (SOC) in saline cotton fields of arid Central Asia, this study focused on Xinjiang and modified the RothC model by integrating salinity adjustment factors and vegetation carbon decomposition indices, simulating SOC dynamics (1980–2022) with multi-source data. Results showed the improved model achieved high accuracy in capturing SOC dynamics in salinized cotton fields. Spatially, SOC exhibited high levels south of the Tianshan Mountains and low levels in southwestern Xinjiang; temporally, it showed an overall fluctuating upward trend, though both high- and low-value zones displayed localized declines. Geodetector analysis revealed fertilizer application as the primary driver of SOC spatial variation, followed by straw return, precipitation, and temperature, with most factors showing synergistic enhancement effects. Human management (fertilization and straw return) is the core regulator of SOC, and its synergy with natural factors shapes SOC spatiotemporal patterns. The salinization-adapted RothC model provides a novel framework for arid cotton field SOC simulation, offering scientific support for carbon pool optimization and sustainable agriculture in arid regions. Full article
(This article belongs to the Special Issue Soil Organic Matter and Tillage—2nd Edition)
Show Figures

Figure 1

27 pages, 10128 KB  
Article
Late Pleistocene to Holocene Depositional Environments in Foredeep Basins: Coastal Plain Responses to Sea-Level and Tectonic Forcing—The Metaponto Area (Southern Italy)
by Agostino Meo and Maria Rosaria Senatore
Geosciences 2026, 16(1), 5; https://doi.org/10.3390/geosciences16010005 - 20 Dec 2025
Viewed by 398
Abstract
The Metaponto coastal plain (Ionian margin, Southern Italy) records the Late Pleistocene–Holocene evolution of a foredeep coastal system shaped by relative sea-level change, vertical land motion, and compaction. We analyze a 22 m continuous core (Meta 1) using lithofacies logging, grain size statistics [...] Read more.
The Metaponto coastal plain (Ionian margin, Southern Italy) records the Late Pleistocene–Holocene evolution of a foredeep coastal system shaped by relative sea-level change, vertical land motion, and compaction. We analyze a 22 m continuous core (Meta 1) using lithofacies logging, grain size statistics and cumulative curves, multivariate analysis of grain size distributions (PCA and k-means clustering), and three AMS 14C ages, and we compare the record with a nearby borehole (MSB) and a global eustatic curve. Four depositional units document a shift from lower-shoreface–offshore deposition to lagoon–barrier/aeolian systems, culminating in late Holocene near-surface progradation. Textural end members (mud-rich offshore/lagoonal, traction-dominated, and sand-rich) are coherent across classical parameters, Visher-type curves, PCA, and k-means clusters. Depth–age comparisons suggest net uplift during the Late Glacial, followed by near-present relative sea level and a Late Holocene onset of modest net subsidence; a compaction contribution is plausible but unquantified. Subsidence/uplift rates therefore remain upper-bound estimates owing to sparse chronological control and the lack of glacio-isostatic and compaction modeling. Together with the MSB emerged-beach tie-point, the record constrains shoreline position and progradation. The inferred Mid- to Late-Holocene stabilization and progradational trends are consistent with other Italian and wider Mediterranean coastal plains. Additional dating and quantitative paleoecological proxies (e.g., foraminifera/ostracods/molluscs) are key to independently constrain salinity and water-depth changes and to refine the partitioning between subsidence and compaction. Full article
Show Figures

Figure 1

27 pages, 4434 KB  
Article
Soil Organic Carbon Stock (SOCS) in Eutrophic and Saline Ramsar Wetlands in Serbia
by Filip Vasić, Snežana Belanović-Simić, Jelena Beloica, Dragana Čavlović, Jiří Kaňa, Carsten Paul, Cenk Donmez, Nikola Jovanović and Predrag Miljković
Water 2026, 18(1), 16; https://doi.org/10.3390/w18010016 - 20 Dec 2025
Viewed by 651
Abstract
Wetlands store large amounts of soil organic carbon stock (SOCS), making them crucial for global climate regulation. However, climate change, poor management, and weak protection policies threaten these stocks. To assess the contribution of different wetland types for national and international climate targets [...] Read more.
Wetlands store large amounts of soil organic carbon stock (SOCS), making them crucial for global climate regulation. However, climate change, poor management, and weak protection policies threaten these stocks. To assess the contribution of different wetland types for national and international climate targets and to monitor the effectiveness of protection measures, additional research is required. Therefore, we assessed SOCS and disturbances from climate change, land use/land cover (LULC), and soil chemical composition in saline and eutrophic Ramsar sites in Serbia. Analyzing a total of 96 samples, we accounted for soil depth, reference soil group (RSG), and habitat/vegetation type. Mean SOCS in the saline site ranged from approximately 36 t·ha−1 at 0–30 cm to 26 t·ha−1 at 30–60 cm, whereas values were much higher for the eutrophic sites, ranging from 81 to 82 t·ha−1 at 0–30 cm and 47–63 t·ha−1 at 30–60 cm. Differences between groups for the whole soil columns (0–60 cm) were significant at the 0.1% level. While SOCS generally decreases with depth, it showed notable local variability, including occasional instances at deeper layers, indicating complex environmental and anthropogenic influences. Spatial mapping of soil chemistry parameters (pH, humus, P2O5, and K2O) along with land use/land cover (LULC) data revealed nutrient dynamics influenced by agricultural activities. An analysis of regional climate data revealed temperature increases relative to the reference period of 1971–2000 by 0.5 °C for the decade 2001–2010 and of 1.5 °C for 2011–2020. Climate projections under the RCP4.5 and 8.5 scenarios predict further warming trends, as well as increased rainfall variability and drought risks. The results of our study contribute to quantifying the important, though variable, contribution of wetland sites to global climate regulation and show the influence of geogenic, pedogenic, and anthropogenic factors on SOCS. National policies should be adapted to safeguard these stocks and to limit negative effects from surrounding agricultural areas, as well as to develop strategies to cope with expected regional climate change effects. Full article
(This article belongs to the Special Issue Climate, Water, and Soil, 2nd Edition)
Show Figures

Graphical abstract

25 pages, 7026 KB  
Article
Effects of Thermal Cycling and Environmental Exposure on Mechanical Properties of 6061 and 7075 Aluminum Alloys
by Valentin Zichil, Cosmin Constantin Grigoras, Ana-Maria Rosu, Vlad Andrei Ciubotariu and Aurel Mihail Titu
Processes 2026, 14(1), 16; https://doi.org/10.3390/pr14010016 - 19 Dec 2025
Viewed by 335
Abstract
This work quantifies the environmental sensitivity of tartaric–sulfuric acid (TSA) anodized and sealed 6061 and 7075 aluminum. Five alloy–temper states (6061-T4, 6061-T62, 7075-T0, 7075-T62, and 7075-T73) were TSA-treated, pore sealed and then exposed for eight weeks (56 days) to ambient air, 11 wt.% [...] Read more.
This work quantifies the environmental sensitivity of tartaric–sulfuric acid (TSA) anodized and sealed 6061 and 7075 aluminum. Five alloy–temper states (6061-T4, 6061-T62, 7075-T0, 7075-T62, and 7075-T73) were TSA-treated, pore sealed and then exposed for eight weeks (56 days) to ambient air, 11 wt.% NaCl brine, or a microbiological medium, with weekly +20 °C/−20 °C freeze–thaw cycles. Tensile tests assessing yield strength, ultimate strength, and elongation were conducted. Strength losses were modest in ambient conditions (<5%) but increased to ≈5–10% for yield and ≈2–9% for ultimate under saline and microbial conditions, particularly in the annealed 7075-T0 and peak-aged 7075-T62 states. Ductility was more sensitive, declining up to ≈30% for 6061-T4 and 6061-T62 in harsh media. Permutation-based inference within an additive screening model indicated that environmental exposure is strongly associated with the dominant share of the observed variability (R2env ≈ 0.91–0.93 for yield, ultimate strength, and elongation), within the limits of the present dataset. These results suggest that freeze–thaw cycling, chloride exposure, and microbiological activity are consistent with the observed degradation trends. Over-aged 7075-T73 retained properties better than T62, highlighting the roles of temper and pore sealing quality in cold, saline, and microbiologically active service. Full article
Show Figures

Figure 1

25 pages, 6641 KB  
Article
A Multi-Factor Comparative Study on H2 and CO2 Migration Behaviors in Saline Aquifers
by Zihao Shi, Jiayu Qin, Nengxiong Xu, Yan Qin, Bin Zhang, Shuangxi Feng, Liuping Chen and Hao Wang
Appl. Sci. 2025, 15(24), 13107; https://doi.org/10.3390/app152413107 - 12 Dec 2025
Viewed by 344
Abstract
In contrast to CCUS/CCS, research on UHS in saline aquifers remains limited. Comparative analysis of H2 and CO2 migration offers a basis for transferring CCUS/CCS insights to UHS. Thus, to investigate how multiple factors affect H2 and CO2 migration [...] Read more.
In contrast to CCUS/CCS, research on UHS in saline aquifers remains limited. Comparative analysis of H2 and CO2 migration offers a basis for transferring CCUS/CCS insights to UHS. Thus, to investigate how multiple factors affect H2 and CO2 migration in saline aquifers, this paper constructs various 3D models considering porosity, permeability, pressure, temperature, salinity, and capillary pressure. Numerical simulation results show that (1) H2 exhibits strong fingering and wide plume spread, with low solubility and weak residual retention. CO2 shows compact, stable plumes with high solubility and strong residual retention. (2) Low porosity enhances lateral migration and residual retention, especially for CO2. (3) Reduced vertical permeability (Kv) significantly suppresses the upward migration of CO2 and strengthens residual retention, whereas its effect on the H2 migration range is less than 5%. Low horizontal permeability (Kh) mainly restricts lateral spreading and only slightly increases residual retention, but the sensitivity of H2 is lower than that of CO2. (4) Increased pressure promotes the dissolution of H2 and CO2. The dissolved amount of H2 increased by approximately 16.15%, and CO2 by about 7.49%. The temperature rise increases the solubility of H2 and decreases that of CO2. H2 increased by approximately 15.56%, and CO2 decreased by about 13.82%. The increase in salinity inhibited the dissolution of the two gases. H2 and CO2 decreased by approximately 17.5% and 16.6%, respectively. Additionally, high salinity weakens the temperature sensitivity of gas solubility. (5) Ignoring capillary pressure underestimates residual retention. However, it is mainly reflected in an increase in the retention scale and does not change the trend of residual retention controlled by different variables. These insights provide a basis for applying CCUS/CCS experiences to UHS. Full article
Show Figures

Figure 1

15 pages, 1740 KB  
Article
Spatiotemporal and Environmental Effects on Demersal Fishes Along the Nearshore Texas Continental Shelf
by Erin M. Johnson, Fernando Martinez-Andrade, P. Santiago Domínguez-Sánchez, Aurora Gaona-Hernandez, Chengxue Li and R. J. David Wells
Fishes 2025, 10(12), 632; https://doi.org/10.3390/fishes10120632 - 9 Dec 2025
Viewed by 391
Abstract
The goal of this study was to analyze data from a 10-year bottom longline survey to examine spatial, temporal, and environmental effects on demersal fishes along the Texas coast within the northwestern Gulf of Mexico. Generalized additive models (GAMs) and generalized linear models [...] Read more.
The goal of this study was to analyze data from a 10-year bottom longline survey to examine spatial, temporal, and environmental effects on demersal fishes along the Texas coast within the northwestern Gulf of Mexico. Generalized additive models (GAMs) and generalized linear models (GLMs) were employed to evaluate trends and patterns in species composition (species richness and species diversity), relative abundance, and presence probability of fish species in the Texas region of the northwestern Gulf of Mexico. Temperature, salinity, and dissolved oxygen were the most influential variables driving richness, diversity, and abundance of demersal fish assemblages. The community was dominated by six species that represent 93% of total catch: Rhizoprionodon terraenovae (Atlantic sharpnose shark), Bagre marinus (gafftopsail catfish), Sciaenops ocellatus (red drum), Carcharhinus limbatus (blacktip shark), Carcharhinus brevipinna (spinner shark), and Carcharhinus leucas (bull shark). Analyses of dominant species revealed that multiple factors modulated their presence probability, with temperature and dissolved oxygen as common environmental drivers among species. Findings from the present study suggest that the composition and abundance of demersal fish assemblages were shaped by key environmental drivers. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Graphical abstract

37 pages, 134145 KB  
Article
Remote Sensing Inversion and Spatiotemporal Dynamics of Multi-Depth Soil Salinity in a Typical Arid Wetland: A Case Study of Ebinur Wetland Reserve, Xinjiang
by Jinjie Wang, Jinming Zhang and Zihan Zhang
Remote Sens. 2025, 17(24), 3958; https://doi.org/10.3390/rs17243958 - 7 Dec 2025
Viewed by 598
Abstract
Soil salinization in arid regions threatens ecological security and sustainable agriculture. The Ebinur Lake wetland in Xinjiang, situated in an arid climate and subject to human disturbance, suffers from severe salt accumulation and ecological degradation. To overcome the lack of soil depth information [...] Read more.
Soil salinization in arid regions threatens ecological security and sustainable agriculture. The Ebinur Lake wetland in Xinjiang, situated in an arid climate and subject to human disturbance, suffers from severe salt accumulation and ecological degradation. To overcome the lack of soil depth information and limited spatiotemporal monitoring, this study integrates multi-year field samples and Landsat imagery (1996–2024) to construct a six-layer (0–100 cm) soil salinity inversion framework. Multi-source spectral features were optimized using the Random Frog Leaping Algorithm (RFLA), and models based on Convolutional Neural Network (CNN), Long Short-Term Memory Network (LSTM), and Random Forest (RF) were compared. The results (1) demonstrated that RFLA effectively identified high-contribution features, enhancing efficiency and reducing redundancy; (2) showed that CNN outperformed LSTM and RF in capturing spatial salinity, with R2 values of 0.75, 0.59, 0.63, 0.69, 0.57, and 0.56 for the six layers; and (3) revealed salinity migration: surface enrichment, mid-layer buffering, and deep-layer accumulation. In oases, surface salinity declined while deep layers accumulated; in deserts, surface salinity increased. The proposed framework enhances the accuracy of multi-depth salinity retrieval and provides technical support for salinization monitoring, irrigation management, ecological assessment, and control of land degradation in arid regions. Full article
Show Figures

Figure 1

24 pages, 3319 KB  
Article
Parameter Uncertainty in Water–Salt Balance Modeling of Arid Irrigation Districts
by Ziyi Zan, Zhiming Ru, Changming Cao, Kun Wang, Guangyu Chen, Hangzheng Zhao, Xinli Hu, Lingming Su and Weifeng Yue
Agronomy 2025, 15(12), 2814; https://doi.org/10.3390/agronomy15122814 - 7 Dec 2025
Viewed by 437
Abstract
Soil salinization poses a major threat to agricultural sustainability in arid regions worldwide, where it is intrinsically linked to irrigated agriculture. In these water-scarce environments, the equilibrium of the water and salt balance is easily disrupted, causing salts to accumulate in the root [...] Read more.
Soil salinization poses a major threat to agricultural sustainability in arid regions worldwide, where it is intrinsically linked to irrigated agriculture. In these water-scarce environments, the equilibrium of the water and salt balance is easily disrupted, causing salts to accumulate in the root zone and directly constraining crop growth, thereby creating an urgent need for precise water and salt management strategies. While precise water and salt transport models are essential for prediction and control, their accuracy is often compromised by parameter uncertainty. To address this, we developed a lumped water–salt balance model for the Hetao Irrigation District (HID) in China, integrating farmland and non-farmland areas and vertically structured into root zone, transition layer, and aquifer. A novel calibration approach, combining random sampling with Kernel Density Estimation (KDE), was introduced to identify optimal parameter ranges rather than single values, thereby enhancing model robustness. The model was calibrated and validated using data from the Yichang sub-district. Results showed that the water balance module performed satisfactorily in simulating groundwater depth (R2 = 0.79 for calibration, 0.65 for validation). The salt balance module effectively replicated the general trends of soil salinity dynamics, albeit with lower R2 values, which reflects the challenges of high spatial variability and data scarcity. This method innovatively addresses the common challenge of parameter uncertainty in the model, narrows the parameter value ranges, enhances model reliability, and incorporates sensitivity analysis (SA) to identify key parameters in the water–salt model. This study not only provides a practical tool for managing water and salt dynamics in HID but also offers a methodological reference for addressing parameter uncertainty in hydrological modeling of other data-scarce regions. Full article
(This article belongs to the Special Issue Water–Salt in Farmland: Dynamics, Regulation and Equilibrium)
Show Figures

Figure 1

49 pages, 6957 KB  
Review
Global Trends in Biotic and Abiotic Stress Mitigation Strategies for Common Bean: A Bibliometric Study
by Wagner Meza-Maicelo, César R. Balcázar-Zumaeta, Henry W. Santillan Culquimboz, Manuel Oliva-Cruz and Flavio Lozano-Isla
Int. J. Plant Biol. 2025, 16(4), 135; https://doi.org/10.3390/ijpb16040135 - 3 Dec 2025
Viewed by 870
Abstract
Common bean (Phaseolus vulgaris L.) is a cornerstone of global food security, yet its production is persistently challenged by biotic and abiotic stresses. This study conducted a bibliometric analysis following PRISMA guidelines on 549 documents published between 1971 and mid-2025, using Biblioshiny, [...] Read more.
Common bean (Phaseolus vulgaris L.) is a cornerstone of global food security, yet its production is persistently challenged by biotic and abiotic stresses. This study conducted a bibliometric analysis following PRISMA guidelines on 549 documents published between 1971 and mid-2025, using Biblioshiny, VOSviewer, and CiteSpace. Results reveal a scientific output concentrated in leading institutions such as Michigan State University (MSU, USA) and the International Center for Tropical Agriculture (CIAT, Colombia). Collaboration networks are dominated by influential authors including Beebe, S. and Kelly, J.D., with Euphytica and Crop Science emerging as primary publication outlets. Research trends highlight salinity tolerance, oxidative stress, and chromosomal mapping, where advanced technologies such as SNP chips have supplanted RAPD markers. Critical challenges remain, including limited phenotyping capacity and the complexity of polygenic resistance, with urgent implications for developing countries where beans are vital for food security but face barriers to technology adoption and restricted participation in global research networks. Concurrently, mitigation strategies have shifted toward sustainable approaches, incorporating beneficial microorganisms for biotic stress and bio-stimulants or plant extracts for abiotic stress. Since 2020, the field has increasingly embraced multifunctional strategies leveraging natural mechanisms to enhance crop resilience. This analysis offers a comprehensive knowledge base to guide future research agendas. Full article
(This article belongs to the Topic New Challenges on Plant–Microbe Interactions)
Show Figures

Figure 1

Back to TopTop