A Critical Review on Desalination Technologies for High-Salinity Wastewater: Development and Challenges
Abstract
1. Introduction
2. Bibliometric Analysis of Literature Characteristics
2.1. Spatial and Temporal Trends in Published Documents
2.2. Analysis of Main Keywords
2.2.1. Temporal Trend of Keywords
2.2.2. Keywords Cluster Analysis
3. Hot Spots and Future Research Needs
3.1. Desalination Technology for High-Salinity Wastewater
3.1.1. Biological Desalination
3.1.2. Thermal Desalination
3.1.3. Membrane-Based Desalination
3.1.4. Comparison of Treatment Technologies for High-Salinity Water
3.2. Membrane Scaling Issue
3.3. Zero Liquid Discharge
4. Challenge and Outlook
4.1. Key Functional Material Innovation
4.2. Emerging Technologies and Adsorption Desalination
4.3. Multi-Technology Integration
4.4. Sustainability Enhancement and Industrial Application Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brady, P.V.; Kottenstette, R.J.; Mayer, T.M.; Hightower, M.M. Inland Desalination: Challenges and Research Needs. J. Contemp. Water Res. Educ. 2005, 132, 46–51. [Google Scholar] [CrossRef]
- Kocher, J.D.; Menon, A.K. Addressing global water stress using desalination and atmospheric water harvesting: A thermodynamic and technoeconomic perspective. Energy Environ. Sci. 2023, 16, 4983–4993. [Google Scholar] [CrossRef]
- Jones, E.; Qadir, M.; van Vliet, M.T.H.; Smakhtin, V.; Kang, S.-m. The state of desalination and brine production: A global outlook. Sci. Total Environ. 2019, 657, 1343–1356. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, D.L.; Arias Chavez, L.H.; Ben-Sasson, M.; Romero-Vargas Castrillón, S.; Yip, N.Y.; Elimelech, M. Desalination and Reuse of High-Salinity Shale Gas Produced Water: Drivers, Technologies, and Future Directions. Environ. Sci. Technol. 2013, 47, 9569–9583. [Google Scholar] [CrossRef] [PubMed]
- Xiong, R.; Wei, C. Current status and technology trends of zero liquid discharge at coal chemical industry in China. J. Water Process Eng. 2017, 19, 346–351. [Google Scholar] [CrossRef]
- Correia, V.M.; Stephenson, T.; Judd, S.J. Characterisation of textile wastewaters—A review. Environ. Technol. 1994, 15, 917–929. [Google Scholar] [CrossRef]
- Liu, J.; Bai, X.; Bai, Y. Exploration and case analysis of treatment processes and reuse pathways for industrial brine wastewater in China. Water Cycle 2024, 5, 278–285. [Google Scholar] [CrossRef]
- Zhou, S.; Huang, L.; Wang, G.; Wang, W.; Zhao, R.; Sun, X.; Wang, D. A review of the development in shale oil and gas wastewater desalination. Sci. Total Environ. 2023, 873, 162376. [Google Scholar] [CrossRef]
- Guo, L.; Xie, Y.; Sun, W.; Xu, Y.; Sun, Y. Research Progress of High-Salinity Wastewater Treatment Technology. Water 2023, 15, 684. [Google Scholar] [CrossRef]
- Singh, A. Soil salinization and waterlogging: A threat to environment and agricultural sustainability. Ecol. Indic. 2015, 57, 128–130. [Google Scholar] [CrossRef]
- Shah, K.M.; Billinge, I.H.; Chen, X.; Fan, H.; Huang, Y.; Winton, R.K.; Yip, N.Y. Drivers, challenges, and emerging technologies for desalination of high-salinity brines: A critical review. Desalination 2022, 538, 115827. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Likens, G.E.; Mayer, P.M.; Shatkay, R.R.; Shelton, S.A.; Grant, S.B.; Utz, R.M.; Yaculak, A.M.; Maas, C.M.; Reimer, J.E.; et al. The anthropogenic salt cycle. Nat. Rev. Earth Environ. 2023, 4, 770–784. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, Y.; Lee, W. Zero-liquid discharge (ZLD) technology for resource recovery from wastewater: A review. Sci. Total Environ. 2019, 681, 551–563. [Google Scholar] [CrossRef] [PubMed]
- Pollice, A.; Rozzi, A.; Tomei, M.C.; Di Pinto, A.C.; Limoni, N. Monitoring the Inhibitory Effect of NaCl on Anaerobic Wastewater Treatment Processes by the Rantox Biosensor. Environ. Technol. 2000, 21, 535–544. [Google Scholar] [CrossRef]
- Bengtsson, S.; de Blois, M.; Wilén, B.-M.; Gustavsson, D. A comparison of aerobic granular sludge with conventional and compact biological treatment technologies. Environ. Technol. 2019, 40, 2769–2778. [Google Scholar] [CrossRef]
- Zhao, Y.; Park, H.-D.; Park, J.-H.; Zhang, F.; Chen, C.; Li, X.; Zhao, D.; Zhao, F. Effect of different salinity adaptation on the performance and microbial community in a sequencing batch reactor. Bioresour. Technol. 2016, 216, 808–816. [Google Scholar] [CrossRef]
- Mulder, A.; van de Graaf, A.A.; Robertson, L.A.; Kuenen, J.G. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol. 1995, 16, 177–183. [Google Scholar] [CrossRef]
- Kuypers, M.M.M.; Sliekers, A.O.; Lavik, G.; Schmid, M.; Jørgensen, B.B.; Kuenen, J.G.; Sinninghe Damsté, J.S.; Strous, M.; Jetten, M.S.M. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 2003, 422, 608–611. [Google Scholar] [CrossRef]
- Carrera, P.; Campo, R.; Méndez, R.; Di Bella, G.; Campos, J.L.; Mosquera-Corral, A.; Val del Rio, A. Does the feeding strategy enhance the aerobic granular sludge stability treating saline effluents? Chemosphere 2019, 226, 865–873. [Google Scholar] [CrossRef]
- Guo, J.; Zhou, J.; Wang, D.; Tian, C.; Wang, P.; Uddin, M.S. A novel moderately halophilic bacterium for decolorizing azo dye under high salt condition. Biodegradation 2008, 19, 15–19. [Google Scholar] [CrossRef]
- Boujida, N.; Palau, M.; Charfi, S.; El Moussaoui, N.; Manresa, A.; Miñana-Galbis, D.; Skali Senhaji, N.; Abrini, J. Isolation and characterization of halophilic bacteria producing exopolymers with emulsifying and antioxidant activities. Biocatal. Agric. Biotechnol. 2018, 16, 631–637. [Google Scholar] [CrossRef]
- Mokashe, N.; Chaudhari, B.; Patil, U. Operative utility of salt-stable proteases of halophilic and halotolerant bacteria in the biotechnology sector. Int. J. Biol. Macromol. 2018, 117, 493–522. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; Han, Z.; Bai, Z.; Zhuang, G.; Shim, H. Progress in decontamination by halophilic microorganisms in saline wastewater and soil. Environ. Pollut. 2010, 158, 1119–1126. [Google Scholar] [CrossRef] [PubMed]
- Alabi, A. Insights into an emerging and bioenergy-producing desalination technology: Microbial desalination cells (MDCs). J. Clean. Prod. 2025, 501, 145324. [Google Scholar] [CrossRef]
- Al-Sahali, M.; Ettouney, H. Developments in thermal desalination processes: Design, energy, and costing aspects. Desalination 2007, 214, 227–240. [Google Scholar] [CrossRef]
- Anand, B.; Shankar, R.; Murugavelh, S.; Rivera, W.; Midhun Prasad, K.; Nagarajan, R. A review on solar photovoltaic thermal integrated desalination technologies. Renew. Sustain. Energy Rev. 2021, 141, 110787. [Google Scholar] [CrossRef]
- Bundschuh, J.; Ghaffour, N.; Mahmoudi, H.; Goosen, M.; Mushtaq, S.; Hoinkis, J. Low-cost low-enthalpy geothermal heat for freshwater production: Innovative applications using thermal desalination processes. Renew. Sustain. Energy Rev. 2015, 43, 196–206. [Google Scholar] [CrossRef]
- Chebli, H.; Fornarelli, F.; Bellantuono, N. Comparison of Desalination Technologies and Assessment of Their Sustainability. J. Phys. Conf. Ser. 2023, 2648, 012021. [Google Scholar] [CrossRef]
- Thiel, G.P.; Lienhard, J.H. Treating produced water from hydraulic fracturing: Composition effects on scale formation and desalination system selection. Desalination 2014, 346, 54–69. [Google Scholar] [CrossRef]
- Mistry, K.H.; Lienhard, J.H.; Zubair, S.M. Effect of entropy generation on the performance of humidification-dehumidification desalination cycles. Int. J. Therm. Sci. 2010, 49, 1837–1847. [Google Scholar] [CrossRef]
- Qiblawey, H.M.; Banat, F. Solar thermal desalination technologies. Desalination 2008, 220, 633–644. [Google Scholar] [CrossRef]
- Wang, Z.; Horseman, T.; Straub, A.P.; Yip, N.Y.; Li, D.; Elimelech, M.; Lin, S. Pathways and challenges for efficient solar-thermal desalination. Sci. Adv. 2019, 5, eaax0763. [Google Scholar] [CrossRef] [PubMed]
- Delyannis, A.A.; Delyannis, E. Solar desalination. Desalination 1984, 50, 71–81. [Google Scholar] [CrossRef]
- Gan, Y.; Feng, Z.; Xiao, R.; Alomar, M.; Quang, D.V.; Ho, N.X.; Arshad, N.; Tao, J.; Rehman, S.U.; Wang, X.; et al. Beyond brine: Super salt-resistant solar evaporator via inclined brine regulation and sustainable energy transition. Desalination 2025, 614, 119182. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, X.; Wang, H.; Wang, D.; Guo, Y.; Wang, D.; Gao, G.; Wang, X.; Hu, C. Waterwheel-inspired rotating evaporator for efficient and stable solar desalination even in saturated brine. Sci. Bull. 2023, 68, 1640–1650. [Google Scholar] [CrossRef]
- Zhao, D.; Ding, M.; Lin, T.; Duan, Z.; Wei, R.; Feng, P.; Yu, J.; Liu, C.-Y.; Li, C. Gradient Graphene Spiral Sponges for Efficient Solar Evaporation and Zero Liquid Discharge Desalination with Directional Salt Crystallization. Adv. Sci. 2024, 11, 2400310. [Google Scholar] [CrossRef]
- Dong, Y.; Violet, C.; Sun, C.; Li, X.; Sun, Y.; Zheng, Q.; Tang, C.; Elimelech, M. Ceramic-carbon Janus membrane for robust solar-thermal desalination. Nat. Commun. 2025, 16, 2659. [Google Scholar] [CrossRef]
- Mistry, K.H.; Antar, M.A.; Lienhard V, J.H. An improved model for multiple effect distillation. Desalination Water Treat. 2013, 51, 807–821. [Google Scholar] [CrossRef]
- El-Dessouky, H.T.; Ettouney, H.M.; Al-Roumi, Y. Multi-stage flash desalination: Present and future outlook. Chem. Eng. J. 1999, 73, 173–190. [Google Scholar] [CrossRef]
- Stepakoff, G.L.; Siegelman, D.; Johnson, R.; Gibson, W. Development of a eutectic freezing process for brine disposal. Desalination 1974, 15, 25–38. [Google Scholar] [CrossRef]
- Abd Elrahman, M.A.; Abdo, S.; Hussein, E.; Altohamy, A.A.; Attia, A.A.A. Exergy and parametric analysis of freeze desalination with reversed vapor compression cycle. Therm. Sci. Eng. Prog. 2020, 19, 100583. [Google Scholar] [CrossRef]
- Hassanpouryouzband, A.; Joonaki, E.; Vasheghani Farahani, M.; Takeya, S.; Ruppel, C.; Yang, J.; English, N.J.; Schicks, J.M.; Edlmann, K.; Mehrabian, H.; et al. Gas hydrates in sustainable chemistry. Chem. Soc. Rev. 2020, 49, 5225–5309. [Google Scholar] [CrossRef] [PubMed]
- Al Maimani, M.; Black, J.J.; Aldous, L. Achieving pseudo-‘n-type p-type’ in-series and parallel liquid thermoelectrics using all-iron thermoelectrochemical cells with opposite Seebeck coefficients. Electrochem. Commun. 2016, 72, 181. [Google Scholar] [CrossRef]
- Xu, S.; Torres, J.F. All-liquid thermal desalination and brine concentration via multichannel thermodiffusion. Nat. Water 2025, 3, 617–631. [Google Scholar] [CrossRef]
- Azimibavil, S.; Jafarian, A. Heat transfer evaluation and economic characteristics of falling film brine concentrator in zero liquid discharge processes. J. Clean. Prod. 2021, 285, 124892. [Google Scholar] [CrossRef]
- Panagopoulos, A.; Haralambous, K.-J.; Loizidou, M. Desalination brine disposal methods and treatment technologies—A review. Sci. Total Environ. 2019, 693, 133545. [Google Scholar] [CrossRef]
- Bajpayee, A.; Luo, T.; Muto, A.; Chen, G. Very low temperature membrane-free desalination by directional solvent extraction. Energy Environ. Sci. 2011, 4, 1672–1675. [Google Scholar] [CrossRef]
- Hood, D.W.; Davison, R.R. The Place of Solvent Extraction in Saline Water Conversion. In Saline Water Conversion; Advances in Chemistry; American Chemical Society: Washington, DC, USA, 1960; Volume 27, pp. 40–49. [Google Scholar]
- Kim, J.; Park, K.; Yang, D.R.; Hong, S. A comprehensive review of energy consumption of seawater reverse osmosis desalination plants. Appl. Energy 2019, 254, 113652. [Google Scholar] [CrossRef]
- Van Houghton, B.D.; Rosenblum, J.S.; Lampi, K.; Beaudry, E.; Herron, J.J.; del Cerro, M.; De Finnda, C.T.K.; Elimelech, M.; Gilron, J.; Cath, T.Y. Pilot Scale Demonstration of Low-Salt-Rejection Reverse Osmosis (LSRRO) Desalination of High Salinity Brines. ACS ES&T Water 2024, 4, 5089–5104. [Google Scholar] [CrossRef]
- Rahardianto, A.; McCool, B.C.; Cohen, Y. Reverse Osmosis Desalting of Inland Brackish Water of High Gypsum Scaling Propensity: Kinetics and Mitigation of Membrane Mineral Scaling. Environ. Sci. Technol. 2008, 42, 4292–4297. [Google Scholar] [CrossRef]
- Antony, A.; Low, J.H.; Gray, S.; Childress, A.E.; Le-Clech, P.; Leslie, G. Scale formation and control in high pressure membrane water treatment systems: A review. J. Membr. Sci. 2011, 383, 1–16. [Google Scholar] [CrossRef]
- Bartholomew, T.V.; Mey, L.; Arena, J.T.; Siefert, N.S.; Mauter, M.S. Osmotically assisted reverse osmosis for high salinity brine treatment. Desalination 2017, 421, 3–11. [Google Scholar] [CrossRef]
- Subramani, A.; Badruzzaman, M.; Oppenheimer, J.; Jacangelo, J.G. Energy minimization strategies and renewable energy utilization for desalination: A review. Water Res. 2011, 45, 1907–1920. [Google Scholar] [CrossRef] [PubMed]
- Elimelech, M.; Phillip, W.A. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Greenlee, L.F.; Lawler, D.F.; Freeman, B.D.; Marrot, B.; Moulin, P. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res. 2009, 43, 2317–2348. [Google Scholar] [CrossRef] [PubMed]
- Tong, T.; Wallace, A.F.; Zhao, S.; Wang, Z. Mineral scaling in membrane desalination: Mechanisms, mitigation strategies, and feasibility of scaling-resistant membranes. J. Membr. Sci. 2019, 579, 52–69. [Google Scholar] [CrossRef]
- Jiang, S.; Li, Y.; Ladewig, B.P. A review of reverse osmosis membrane fouling and control strategies. Sci. Total Environ. 2017, 595, 567–583. [Google Scholar] [CrossRef]
- Davenport, D.M.; Ritt, C.L.; Verbeke, R.; Dickmann, M.; Egger, W.; Vankelecom, I.F.J.; Elimelech, M. Thin film composite membrane compaction in high-pressure reverse osmosis. J. Membr. Sci. 2020, 610, 118268. [Google Scholar] [CrossRef]
- Lim, Y.J.; Nadzri, N.; Xue, Q.; Li, C.; Wang, R. Investigating the impact of TFC membrane structure and compaction on performance in hypersaline brine desalination via high-pressure reverse osmosis. Desalination 2025, 607, 118793. [Google Scholar] [CrossRef]
- Yang, R.; Liang, Z.; Wu, B.; Di, Y.; Lin, Y.; Wu, S.; Liu, Q.; Liang, S. “Cation-Recognition” Effect of 2D Nanochannels in Graphene Oxide Membranes Intercalated with Ionic Liquid for High Desalination Performance. Small 2025, 21, 2406550. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, T.; Chen, X.; Fu, K.; Qiu, M.; Fan, Y. The application of pressure-driven ceramic-based membrane for the treatment of saline wastewater and desalination—A review. Desalination 2025, 597, 118327. [Google Scholar] [CrossRef]
- Liu, C.; Xu, X.; Lin, X.; Wang, X.; Guo, X.; He, Q.; Song, D.; Chang, H. Architecting asymmetrical Janus membrane for robust membrane distillation desalination with enhanced anti-fouling performance. Water Res. 2026, 289, 124883. [Google Scholar] [CrossRef]
- Strathmann, H. Electrodialysis, a mature technology with a multitude of new applications. Desalination 2010, 264, 268–288. [Google Scholar] [CrossRef]
- Lee, H.-J.; Sarfert, F.; Strathmann, H.; Moon, S.-H. Designing of an electrodialysis desalination plant. Desalination 2002, 142, 267–286. [Google Scholar] [CrossRef]
- Wright, N.C.; Winter, A.G. Justification for community-scale photovoltaic-powered electrodialysis desalination systems for inland rural villages in India. Desalination 2014, 352, 82–91. [Google Scholar] [CrossRef]
- Turek, M. Dual-purpose desalination-salt production electrodialysis. Desalination 2003, 153, 377–381. [Google Scholar] [CrossRef]
- Zhang, Y.; Ghyselbrecht, K.; Meesschaert, B.; Pinoy, L.; Van der Bruggen, B. Electrodialysis on RO concentrate to improve water recovery in wastewater reclamation. J. Membr. Sci. 2011, 378, 101–110. [Google Scholar] [CrossRef]
- Doornbusch, G.J.; Tedesco, M.; Post, J.W.; Borneman, Z.; Nijmeijer, K. Experimental investigation of multistage electrodialysis for seawater desalination. Desalination 2019, 464, 105–114. [Google Scholar] [CrossRef]
- Wu, J.; Xiao, Z.; Hong, X.; Huang, Z.; Yuan, S.; Mao, D.; Li, X.; Cao, M.; Yu, Y. Highly conductive anti-fouling anion exchange membranes with easy building and rebuilding of anti-bacteria structure for the electrodialysis desalination of high-salinity organic aqueous solutions. Desalination 2025, 603, 118699. [Google Scholar] [CrossRef]
- Patel, C.G.; Barad, D.; Swaminathan, J. Desalination using pressure or electric field? A fundamental comparison of RO and electrodialysis. Desalination 2022, 530, 115620. [Google Scholar] [CrossRef]
- Cath, T.Y.; Childress, A.E.; Elimelech, M. Forward osmosis: Principles, applications, and recent developments. J. Membr. Sci. 2006, 281, 70–87. [Google Scholar] [CrossRef]
- Coday, B.D.; Xu, P.; Beaudry, E.G.; Herron, J.; Lampi, K.; Hancock, N.T.; Cath, T.Y. The sweet spot of forward osmosis: Treatment of produced water, drilling wastewater, and other complex and difficult liquid streams. Desalination 2014, 333, 23–35. [Google Scholar] [CrossRef]
- Awad, A.M.; Jalab, R.; Minier-Matar, J.; Adham, S.; Nasser, M.S.; Judd, S.J. The status of forward osmosis technology implementation. Desalination 2019, 461, 10–21. [Google Scholar] [CrossRef]
- Shaffer, D.L.; Werber, J.R.; Jaramillo, H.; Lin, S.; Elimelech, M. Forward osmosis: Where are we now? Desalination 2015, 356, 271–284. [Google Scholar] [CrossRef]
- Klaysom, C.; Cath, T.Y.; Depuydt, T.; Vankelecom, I.F.J. Forward and pressure retarded osmosis: Potential solutions for global challenges in energy and water supply. Chem. Soc. Rev. 2013, 42, 6959–6989. [Google Scholar] [CrossRef]
- Islam, M.S.; Sultana, S.; McCutcheon, J.R.; Rahaman, M.S. Treatment of fracking wastewaters via forward osmosis: Evaluation of suitable organic draw solutions. Desalination 2019, 452, 149–158. [Google Scholar] [CrossRef]
- Suwaileh, W.; Johnson, D.; Jones, D.; Hilal, N. An integrated fertilizer driven forward osmosis- renewables powered membrane distillation system for brackish water desalination: A combined experimental and theoretical approach. Desalination 2019, 471, 114126. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, M.; Deng, Q.; Cai, T. Combination and performance of forward osmosis and membrane distillation (FO-MD) for treatment of high salinity landfill leachate. Desalination 2017, 420, 99–105. [Google Scholar] [CrossRef]
- Wang, P.; Chung, T.-S. Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring. J. Membr. Sci. 2015, 474, 39–56. [Google Scholar] [CrossRef]
- Deshmukh, A.; Boo, C.; Karanikola, V.; Lin, S.; Straub, A.P.; Tong, T.; Warsinger, D.M.; Elimelech, M. Membrane distillation at the water-energy nexus: Limits, opportunities, and challenges. Energy Environ. Sci. 2018, 11, 1177–1196. [Google Scholar] [CrossRef]
- Adham, S.; Hussain, A.; Matar, J.M.; Dores, R.; Janson, A. Application of Membrane Distillation for desalting brines from thermal desalination plants. Desalination 2013, 314, 101–108. [Google Scholar] [CrossRef]
- Lin, S.; Yip, N.Y.; Cath, T.Y.; Osuji, C.O.; Elimelech, M. Hybrid Pressure Retarded Osmosis–Membrane Distillation System for Power Generation from Low-Grade Heat: Thermodynamic Analysis and Energy Efficiency. Environ. Sci. Technol. 2014, 48, 5306–5313. [Google Scholar] [CrossRef] [PubMed]
- Dow, N.; Gray, S.; Li, J.-d.; Zhang, J.; Ostarcevic, E.; Liubinas, A.; Atherton, P.; Roeszler, G.; Gibbs, A.; Duke, M. Pilot trial of membrane distillation driven by low grade waste heat: Membrane fouling and energy assessment. Desalination 2016, 391, 30–42. [Google Scholar] [CrossRef]
- Wang, S.; Gui, L.; Qiao, D.; Tao, M.; Huang, S.; Tian, X. Fluorinated Covalent Organic Framework Membranes with Robust Wetting Resistance for Durable Membrane Distillation. Angew. Chem. Int. Ed. 2025, 64, e202507913. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Y.; Chen, X.; Huang, C.; Xu, S.; Xu, Q.; Zhao, S.; Kujawski, W.; Zhang, P. Ultrathin Nanocomposite Membrane With Robust Anti-Wettability for Stable Membrane Distillation. Interdiscip. Mater. 2025, 4, 610–619. [Google Scholar] [CrossRef]
- Ananda, S.R.; Subrahmanya, T.M.; Aralekallu, S.; Hung, W.-S.; Kurkuri, M.D. Tailored architectures in desalination membranes with MXene: Is this the way forward? Prog. Mater. Sci. 2026, 155, 101537. [Google Scholar] [CrossRef]
- Zhou, P.; Zhu, Q.; Sun, X.; Liu, L.; Cai, Z.; Xu, J. Recent advances in MXene-based membrane for solar-driven interfacial evaporation desalination. Chem. Eng. J. 2023, 464, 142508. [Google Scholar] [CrossRef]
- Fan, H.; Yip, N.Y. Elucidating conductivity-permselectivity tradeoffs in electrodialysis and reverse electrodialysis by structure-property analysis of ion-exchange membranes. J. Membr. Sci. 2019, 573, 668–681. [Google Scholar] [CrossRef]
- Ang, W.L.; Mohammad, A.W.; Johnson, D.; Hilal, N. Unlocking the application potential of forward osmosis through integrated/hybrid process. Sci. Total Environ. 2020, 706, 136047. [Google Scholar] [CrossRef]
- Zou, S.; Yuan, H.; Childress, A.; He, Z. Energy Consumption by Recirculation: A Missing Parameter When Evaluating Forward Osmosis. Environ. Sci. Technol. 2016, 50, 6827–6829. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Hashaikeh, R.; Hilal, N. Hybrid technologies: The future of energy efficient desalination—A review. Desalination 2020, 495, 114659. [Google Scholar] [CrossRef]
- Anvari, A.; Kekre, K.M.; Ronen, A. Scaling mitigation in radio-frequency induction heated membrane distillation. J. Membr. Sci. 2020, 600, 117859. [Google Scholar] [CrossRef]
- Al-Amshawee, S.; Yunus, M.Y.B.M.; Yunus, R.B.M.; Lynam, J.G. Zero waste system comprised of fixed bed biofilm reactor, ozone oxidation, and electrodialysis desalination for wastewater sustainability. J. Water Process Eng. 2020, 38, 101593. [Google Scholar] [CrossRef]
- Soliman, M.N.; Guen, F.Z.; Ahmed, S.A.; Saleem, H.; Khalil, M.J.; Zaidi, S.J. Energy consumption and environmental impact assessment of desalination plants and brine disposal strategies. Process Saf. Environ. Prot. 2021, 147, 589–608. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, J.; Tang, C.Y.; Kimura, K.; Wang, Q.; Han, X. Membrane cleaning in membrane bioreactors: A review. J. Membr. Sci. 2014, 468, 276–307. [Google Scholar] [CrossRef]
- Tan, X.; Acquah, I.; Liu, H.; Li, W.; Tan, S. A critical review on saline wastewater treatment by membrane bioreactor (MBR) from a microbial perspective. Chemosphere 2019, 220, 1150–1162. [Google Scholar] [CrossRef]
- Dai, Y.; Chen, Y.; Dong, X.; Ali, M.S.; Ali, S.; Jiang, Y.-H.; Zheng, Y.-M.; Yuan, Z.-H. Calcium scaling control unlocks stable membrane distillation for desulfurization wastewater treatment. Chem. Eng. J. 2025, 524, 169226. [Google Scholar] [CrossRef]
- Tong, T.; Elimelech, M. The Global Rise of Zero Liquid Discharge for Wastewater Management: Drivers, Technologies, and Future Directions. Environ. Sci. Technol. 2016, 50, 6846–6855. [Google Scholar] [CrossRef]
- Durham, B.; Mierzejewski, M. Water reuse and zero liquid discharge: A sustainable water resource solution. Water Supply 2003, 3, 97–103. [Google Scholar] [CrossRef]
- Bond, R.; Veerapaneni, S. Zeroing in on ZLD Technologies for Inland Desalination. J. Am. Water Work. Assoc. 2008, 100, 76–89. [Google Scholar] [CrossRef]
- Oren, Y.; Korngold, E.; Daltrophe, N.; Messalem, R.; Volkman, Y.; Aronov, L.; Weismann, M.; Bouriakov, N.; Glueckstern, P.; Gilron, J. Pilot studies on high recovery BWRO-EDR for near zero liquid discharge approach. Desalination 2010, 261, 321–330. [Google Scholar] [CrossRef]
- Zhao, S.; Hu, S.; Zhang, X.; Song, L.; Wang, Y.; Tan, M.; Kong, L.; Zhang, Y. Integrated membrane system without adding chemicals for produced water desalination towards zero liquid discharge. Desalination 2020, 496, 114693. [Google Scholar] [CrossRef]
- Stanford, B.D.; Leising, J.F.; Bond, R.G.; Snyder, S.A. Chapter 11 Inland Desalination: Current Practices, Environmental Implications, and Case Studies in Las Vegas, NV. In Sustainability Science and Engineering; Escobar, I.C., Schäfer, A.I., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; Volume 2, pp. 327–350. [Google Scholar]
- Lugo, A.; Ahmed, M.F.; Oddonetto, T.L.; Senanayake, P.S.; Basnayake, I.; Stoll, Z.; Ehsani, M.; Moe, N.E.; Barber, J.; Wang, H.; et al. Operational optimization of bipolar membrane electrodialysis for acid and base production in zero liquid discharge of high-salinity brine. Desalination 2025, 615, 119290. [Google Scholar] [CrossRef]
- Ding, M.; Zhao, D.; Duan, Z.; Pan, Z.; Liu, C.-Y.; Li, C.; Zhang, J. Bio-inspired solar evaporators for stable and efficient desalination of high-salinity brine with zero liquid discharge. Sci. Bull. 2025, 70, 2812–2823. [Google Scholar] [CrossRef]
- Panagopoulos, A. Techno-economic assessment and feasibility study of a zero liquid discharge (ZLD) desalination hybrid system in the Eastern Mediterranean. Chem. Eng. Process. Process Intensif. 2022, 178, 109029. [Google Scholar] [CrossRef]
- Zhang, Y.; Ghyselbrecht, K.; Vanherpe, R.; Meesschaert, B.; Pinoy, L.; Van der Bruggen, B. RO concentrate minimization by electrodialysis: Techno-economic analysis and environmental concerns. J. Environ. Manag. 2012, 107, 28–36. [Google Scholar] [CrossRef]
- Panagopoulos, A. Brine management (saline water & wastewater effluents): Sustainable utilization and resource recovery strategy through Minimal and Zero Liquid Discharge (MLD & ZLD) desalination systems. Chem. Eng. Process. Process Intensif. 2022, 176, 108944. [Google Scholar]
- Date, M.; Patyal, V.; Jaspal, D.; Malviya, A.; Khare, K. Zero liquid discharge technology for recovery, reuse, and reclamation of wastewater: A critical review. J. Water Process Eng. 2022, 49, 103129. [Google Scholar] [CrossRef]
- Xevgenos, D.; Moustakas, K.; Malamis, D.; Loizidou, M. An overview on desalination & sustainability: Renewable energy-driven desalination and brine management. Desalination Water Treat. 2016, 57, 2304–2314. [Google Scholar] [CrossRef]
- Prado de Nicolás, A.; Molina-García, A.; García-Bermejo, J.T.; Vera-García, F. Reject brine management: Denitrification and zero liquid discharge (ZLD)—Current status, challenges and future prospects. J. Clean. Prod. 2022, 381, 135124. [Google Scholar] [CrossRef]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, X.; Cheng, X.; Shuai, A.; Xu, X.; Guo, X.; Song, D.; Liu, C.; Zhang, W. A Critical Review on Desalination Technologies for High-Salinity Wastewater: Development and Challenges. Membranes 2026, 16, 27. https://doi.org/10.3390/membranes16010027
Wang X, Cheng X, Shuai A, Xu X, Guo X, Song D, Liu C, Zhang W. A Critical Review on Desalination Technologies for High-Salinity Wastewater: Development and Challenges. Membranes. 2026; 16(1):27. https://doi.org/10.3390/membranes16010027
Chicago/Turabian StyleWang, Xiao, Xinyi Cheng, Ao Shuai, Xiyu Xu, Xinran Guo, Dan Song, Caihong Liu, and Wenjuan Zhang. 2026. "A Critical Review on Desalination Technologies for High-Salinity Wastewater: Development and Challenges" Membranes 16, no. 1: 27. https://doi.org/10.3390/membranes16010027
APA StyleWang, X., Cheng, X., Shuai, A., Xu, X., Guo, X., Song, D., Liu, C., & Zhang, W. (2026). A Critical Review on Desalination Technologies for High-Salinity Wastewater: Development and Challenges. Membranes, 16(1), 27. https://doi.org/10.3390/membranes16010027

