Spatio-Temporal Distribution of Setipinna taty Resources Using a Zero-Inflated Model in the Offshore Waters of Southern Zhejiang, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Data Characteristics
2.3. Model Construction
2.3.1. Variable Screening
2.3.2. Model Selection
2.4. Spatio-Temporal Prediction of S. taty Distribution
3. Results
3.1. Seasonal Variations in Marine Environmental Factors
3.2. Distribution of Abundance Data of S. taty
3.3. Model Development and Performance Evaluation
3.3.1. Model Selection Result
3.3.2. Final Model Performance
3.4. Analysis of Response Curves of Environmental Factors
3.5. Prediction of Spatio-Temporal Distribution of S. taty Abundance
4. Discussion
4.1. Why Zero-Inflated Models Are Needed for Fishery Monitoring Data
4.2. Comparing ZINB and ZIP in Modeling Zero-Inflated Fishery Data
4.3. Key Environmental Factors and the Spatiotemporal Distribution of S. taty
5. Conclusions
- Using a zero-inflated modeling framework, this study characterized the spatio-temporal distribution of S. taty in the southern offshore waters of Zhejiang, China, and identified temperature, water depth, and season as the main predictors associated with its variability.
- The observed zero proportion exceeded that expected under baseline count models (0.26% under Poisson; 24.24% under negative binomial), and the Poisson dispersion ratio (Pearson χ2/df) was ≈293, indicating strong overdispersion. These diagnostics justify the use of ZINB as an appropriate final model for prediction and interpretation.
- S. taty abundance showed clear seasonal thermal associations, with higher abundance at 11–12 °C in winter, peaking at 19–20 °C in spring, and remaining relatively higher around 19 °C in autumn; abundance was also highest at 30–40 m depth. Seasonal predictions for spring–autumn 2020 indicated a summer peak, a nearshore-to-offshore decreasing gradient, and a nearshore hotspot off Wenzhou and Taizhou west of 122° E.
- These spatially explicit outputs provide reference information for regional monitoring and resource management. Future work could improve predictive skill and ecological realism by integrating additional environmental indicators (e.g., chlorophyll a, current velocity) and biotic information (e.g., prey availability) when available, extending spatio-temporal monitoring, and comparing alternative zero-inflated models under different data conditions.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirby, R.R.; Beaugrand, G.; Lindley, J.A. Synergistic effects of climate and fishing in a marine ecosystem. Ecosystems 2009, 12, 548–561. [Google Scholar] [CrossRef]
- Wang, J.; Gao, C.; Tian, S.; Han, D.; Ma, J.; Dai, L.; Ye, S. Shifts in composition and co-occurrence patterns of the fish community in the south inshore of Zhejiang, China. Glob. Ecol. Conserv. 2023, 44, e02502. [Google Scholar] [CrossRef]
- Pauly, D.; Christensen, V.; Dalsgaard, J.; Froese, R.; Torres, F. Fishing down marine food webs. Science 1998, 279, 860–863. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, J.; Chen, X. Studies on the seasonal distribution of Setipinna taty in the East China Sea. Mar. Fish. Res. 2006, 27, 1–6. [Google Scholar]
- Han, Q.; Shan, X.; Jin, X.; Gorfine, H.; Yang, T.; Su, C. Data-limited stock assessment for fish species devoid of catch statistics: Case studies for pampus argenteus and Setipinna taty in the bohai and yellow seas. Front. Mar. Sci. 2021, 8, 766499. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, J.; Li, S. A study on the distribution of Setipinna taty in the East China Sea. Mar. Fish. 2004, 26, 255–260. [Google Scholar]
- Froese, R.; Pauly, D. Setipinna taty (Valenciennes, 1848). FishBase. Available online: https://www.fishbase.se (accessed on 20 September 2025).
- Jin, X.; Cheng, J.; Qiu, S.; Li, P.; Cui, Y.; Dong, J. The General Study and Evaluation of Fisheries Resources in Yellow Sea and Bohai Sea; Ocean Press: Beijing, China, 2006. [Google Scholar]
- Li, H.; Xu, T.; Cheng, Y.; Sun, D.; Wang, R. Genetic diversity of Setipinna taty (Engraulidae) populations from the China Sea based on mitochondrial DNA control region sequences. Genet. Mol. Res. 2012, 11, 1230–1237. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Gao, C.; Zhao, J.; Tian, S.; Ye, S.; Ma, J. Modeling and comparison of count data containing zero values: A case study of Setipinna taty in the south inshore of Zhejiang, China. Environ. Sci. Pollut. Res. 2021, 28, 46827–46837. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, T.; Chen, G.; Ye, S.; Gao, C.; Han, D. Feeding habits of Setipinna taty and its relationship with environmental factors in southern coastal waters of Zhejiang, China. Chin. J. Appl. Ecol. 2024, 35, 3174–3182. [Google Scholar]
- Ma, W.; Ding, L.; Wu, X.; Gao, C.; Ma, J.; Zhao, J. Impacts of data sources on the predictive performance of species distribution models: A case study for Scomber japonicus in the offshore waters southern Zhejiang, China. Acta Oceanol. Sin. 2025, 43, 113–122. [Google Scholar] [CrossRef]
- Liu, X.; Gao, C.; Tian, S.; Qin, S.; Ma, J.; Zhao, J. Distribution of optimal habitat for Setipinna taty in the southern coastal waters of Zhejiang based on habitat suitability index. J. Fish. Sci. China 2020, 27, 1485–1495. [Google Scholar]
- Chen, X.J. Fishery Resources and Fisheries, 2nd ed.; Ocean Press: Beijing, China, 2014; pp. 152–167. [Google Scholar]
- Arab, A.; Holan, S.H.; Wikle, C.K.; Wildhaber, M.L. Semiparametric bivariate zero-inflated poisson models with application to studies of abundance for multiple species. Environmetrics 2012, 23, 183–196. [Google Scholar] [CrossRef]
- Ma, J.; Li, B.; Zhao, J.; Wang, X.; Hodgdon, C.T.; Tian, S. Environmental influences on the spatio-temporal distribution of Coilia nasus in the Yangtze River estuary. J. Appl. Ichthyol. 2020, 36, 315–325. [Google Scholar] [CrossRef]
- Yau, K.K.W.; Wang, K.; Lee, A.H. Zero-inflated negative binomial mixed regression modeling of over-dispersed count data with extra zeros. Biometrical J. 2003, 45, 437–452. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, X.; Wu, J.; Han, D.; Tian, S.; Ma, J. Application of zero-inflated model in predicting the distribution of rare fish species: A case study of Coilia nasus in Yangtze estuary. Chin. J. Ecol. 2020, 39, 3155–3163. [Google Scholar]
- Zeng, P.; Liu, G.; Cao, H. Application of zero-inflated models in study of the impacting factors about segment number of myocardial ischemia. Chin. J. Health Stat. 2008, 25, 464–466. [Google Scholar]
- Zuur, A.F.; Ieno, E.N.; Walker, N.J.; Saveliev, A.A.; Smith, G.M. Mixed effects models and extensions in ecology with R. Technometrics 2010, 52, 464–465. [Google Scholar]
- Lynch, D.R.; McGillicuddy, D.J.; Werner, F.E. Skill assessment for coupled biological/physical models of marine systems preface. J. Mar. Syst. 2009, 76, 4–15. [Google Scholar] [CrossRef]
- Haslett, J.; Parnell, A.C.; Hinde, J.; de Andrade Moral, R. Modelling excess zeros in count data: A new perspective on modelling approaches. Int. Stat. Rev. 2022, 90, 216–236. [Google Scholar] [CrossRef]
- Jung, B.C.; Jhun, M.; Lee, J.W. Bootstrap tests for overdispersion in a zero-inflated poisson regression model. Biometrics 2005, 61, 626–628. [Google Scholar] [CrossRef]
- Minami, M.; Lennert-Cody, C.E.; Gao, W.; Roman-Verdesoto, M. Modeling shark bycatch: The zero-inflated negative binomial regression model with smoothing. Fish Res. 2007, 84, 210–221. [Google Scholar] [CrossRef]
- Virgili, A.; Racine, M.; Authier, M.; Monestiez, P.; Ridoux, V. Comparison of habitat models for scarcely detected species. Ecol. Model. 2017, 346, 88–98. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, G.; Dong, H. Distribution characteristics and relationship of dissolved oxygen, pH value and nutrients in the southern sea of Zhejiang in spring. Acta. Oceanol. Sin. 1990, 12, 654–660. [Google Scholar]
- Ma, W.; Gao, C.; Tang, W.; Qin, S.; Ma, J.; Zhao, J. Relationship between Engraulis japonicus resources and environmental factors based on multi-model comparison in offshore waters of southern Zhejiang, China. J. Mar. Sci. Eng. 2022, 10, 657. [Google Scholar] [CrossRef]
- Standard No. GB/T 12763.6–2007; Specifications for Oceanographic Survey—Part 6: Marine Biological Survey. China Standards Press: Beijing, China, 2007.
- Standard No. GB 17378.3–1998; The Specification for Marine Monitoring—Part 3: Sample Collection, Storage and Transportation. China Standards Press: Beijing, China, 1998.
- Marcoulides, K.M.; Raykov, T. Evaluation of variance inflation factors in regression models using latent variable modeling methods. Educ. Psychol. Meas. 2019, 79, 874–882. [Google Scholar] [CrossRef]
- Sosebee, K.A.; Musick, J.A.; Rago, P.J.; Cerrato, R.M. Application of generalized additive models to examine ontogenetic and seasonal distributions of spiny dogfish (Squalus acanthias) in the northeast (US) shelf large marine ecosystem. Can. J. Fish. Aquat. Sci. 2014, 71, 847–877. [Google Scholar] [CrossRef]
- Chang, J.-H.; Chen, Y.; Holland, D.; Grabowski, J. Estimating spatial distribution of American lobster Homarus americanus using habitat variables. Mar. Ecol.-Prog. Ser. 2010, 420, 145–156. [Google Scholar] [CrossRef]
- Planque, B.; Bellier, E.; Lazure, P. Modelling potential spawning habitat of sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) in the Bay of Biscay. Fish Oceanogr. 2007, 16, 16–30. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Zeileis, A.; Kleiber, C.; Jackman, S. Regression Models for Count Data in R. J. Stat. Softw. 2008, 27, 1–25. [Google Scholar] [CrossRef]
- He, H.; Tang, W.; Wang, W.; Crits-Christoph, P. Structural zeroes and zero-inflated models. Shanghai Arch. Psychiatry 2014, 26, 236–242. [Google Scholar] [PubMed]
- Joseph, L.N.; Elkin, C.; Martin, T.G.; Possingham, H.P. Modeling abundance using N-mixture models: The importance of considering ecological mechanisms. Ecol. Appl. 2009, 19, 631–642. [Google Scholar] [CrossRef]
- Dean, C.; Lawless, J. Tests for detecting overdispersion in poisson regression-models. J. Am. Stat. Assoc. 1989, 84, 467–472. [Google Scholar] [CrossRef]
- Perumean-Chaney, S.E.; Morgan, C.; McDowall, D.; Aban, I. Zero-inflated and overdispersed: What’s one to do? J. Stat. Comput. Simul. 2013, 83, 1671–1683. [Google Scholar] [CrossRef]
- Xu, T.; Li, W.; Chen, T. Application of zero-inflated models on regression analysis of count data: A study of sub-health symptoms. Chin. J. Epidemiol. 2011, 32, 187–191. [Google Scholar]
- Li, B.; Cao, J.; Chang, J.; Wilson, C.; Chen, Y. Evaluation of effectiveness of fixed-station sampling for monitoring American lobster settlement. N. Am. J. Fish. Manage. 2015, 35, 942–957. [Google Scholar] [CrossRef]
- Li, Q.; Jiang, R.; Zhao, P.; Zhang, Q.; Liu, M.; Shen, J.; Zhang, H.; Zhu, W.; Long, X. Study on the potential suitable areas of Setipinna taty in Zhejiang coastal sea area based on MaxEnt model. J. Fish. Sci. China 2025, 32, 93–102. [Google Scholar]
- Zhang, M.; Sun, T.; Li, Y.; Wang, X.; Guo, J. On seasonal distribution of Setipinna taty in southern Bohai Sea. Shandong Fish. 1995, 12, 10–13. [Google Scholar]
- Piironen, J.; Holopainen, I. A note on seasonality in anoxia tolerance of crucian carp (Carassius carassius (L.)) in the laboratory. Ann. Zool. Fenn. 1986, 23, 335–338. [Google Scholar]
- Han, Q.; Shan, X.; Jin, X.; Gorfine, H.; Jin, Y.; Wu, Q.; Shi, Y. Understanding the effects of climate and anthropogenic stresses on distribution variability of Setipinna taty in the yellow sea. Fish Res. 2024, 276, 107037. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Q.; Zheng, Y.; Hong, W. Review and prospect of biological study on common marine pelagic commercial fishes in China. Mar. Fish. 2014, 36, 565–575. [Google Scholar]
- Ma, W.; Qin, S.; Gao, C.; Tang, W.; Ma, J.; Zhao, J. Distribution of Japanese scad (Decapterus maruadsi) and its relationship with environmental factors in the coast waters of southern Zhejiang based on the Tweedie-GAM. Prog. Fish. Sci. 2023, 44, 12–22. [Google Scholar]
- Li, Z.; Ye, Z.; Zhang, C.; Zhuang, L.; Wang, M. CPUE distribution of Setipinna taty in southern Yellow Sea and its influencing factors revealed by stow net fishing in spring. Period. Ocean Univ. China 2013, 43, 30–36. [Google Scholar]
- Liu, Z.; Yang, L.; Yan, L.; Yuan, X.; Cheng, J. Fish assemblages and environmental interpretation in the northern Taiwan Strait and its adjacent waters in summer. J. Fish. Sci. China 2016, 23, 1399–1416. [Google Scholar]
- Zerbini, A.N.; Friday, N.A.; Palacios, D.M.; Waite, J.M.; Ressler, P.H.; Rone, B.K.; Moore, S.E.; Clapham, P.J. Baleen whale abundance and distribution in relation to environmental variables and prey density in the Eastern Bering Sea. Deep Sea Res. Part II 2016, 134, 312–330. [Google Scholar] [CrossRef]
- Zhang, C.; Shang, S.; Hong, H. Spatial patterns of annual cycles in surface chlorophyll a in the Taiwan Strait. Acta Oceanol. Sin. 2006, 28, 165–170. [Google Scholar]







| Factor | Season | Temperature | Depth | Salinity | Longitude | Latitude |
|---|---|---|---|---|---|---|
| VIF value | 1.66 | 1.90 | 4.27 | 1.44 | 23.91 | 18.12 |
| Model | Index for Prediction | |
|---|---|---|
| RMSE | R2 | |
| ZINB | 199.1 | 0.25 |
| ZIP | 239.4 | 0.23 |
| Combination | AIC Value | Combination | AIC Value | ||
|---|---|---|---|---|---|
| Left Side | Right Side | Left Side | Right Side | ||
| Temperature | 1954.5 | 1900.9 | Season + Salinity | 1958.5 | 1900.8 |
| Depth | 1904.3 | 1899.8 | Season + Temperature | 1951.0 | 1884.9 |
| Salinity | 1956.7 | 1899.9 | Temperature + Depth + Salinity | 1896.3 | 1892.3 |
| Season | 1960.2 | 1900.1 | Temperature + Depth + Season | 1887.9 | 1878.5 |
| Season + Depth | 1906.3 | 1902.1 | Season + Depth + Salinity | 1907.7 | 1900.8 |
| Depth + Salinity | 1905.8 | 1901.6 | Temperature + Season + Salinity | 1936.3 | 1882.3 |
| Depth + Temperature | 1895.5 | 1902.1 | Temperature + Depth + Season + Salinity | 1888.6 | 1888.2 |
| Salinity + Temperature | 1942.4 | 1901.1 | |||
| Season | Bias | RMSE | p-Value |
|---|---|---|---|
| Spring | 61.20 | 125.13 | 0.054 |
| Summer | −25.53 | 110.14 | 0.038 |
| Autumn | 45.57 | 60.58 | 0.0012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Liu, X.; Ma, W.; Ma, J.; Gao, C.; Chen, W.; Zhao, J. Spatio-Temporal Distribution of Setipinna taty Resources Using a Zero-Inflated Model in the Offshore Waters of Southern Zhejiang, China. J. Mar. Sci. Eng. 2026, 14, 96. https://doi.org/10.3390/jmse14010096
Liu X, Ma W, Ma J, Gao C, Chen W, Zhao J. Spatio-Temporal Distribution of Setipinna taty Resources Using a Zero-Inflated Model in the Offshore Waters of Southern Zhejiang, China. Journal of Marine Science and Engineering. 2026; 14(1):96. https://doi.org/10.3390/jmse14010096
Chicago/Turabian StyleLiu, Xiaoxue, Wen Ma, Jin Ma, Chunxia Gao, Weifeng Chen, and Jing Zhao. 2026. "Spatio-Temporal Distribution of Setipinna taty Resources Using a Zero-Inflated Model in the Offshore Waters of Southern Zhejiang, China" Journal of Marine Science and Engineering 14, no. 1: 96. https://doi.org/10.3390/jmse14010096
APA StyleLiu, X., Ma, W., Ma, J., Gao, C., Chen, W., & Zhao, J. (2026). Spatio-Temporal Distribution of Setipinna taty Resources Using a Zero-Inflated Model in the Offshore Waters of Southern Zhejiang, China. Journal of Marine Science and Engineering, 14(1), 96. https://doi.org/10.3390/jmse14010096

