Global Trends in Biotic and Abiotic Stress Mitigation Strategies for Common Bean: A Bibliometric Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Database Selection
2.2. Inclusion and Exclusion Criteria
2.3. Search and Data Extraction Strategy
2.4. Data Analysis
3. Stress Factors in Common Bean
4. Bibliometric Analysis and Discussion
4.1. Analysis of Global Scientific Production
4.2. Countries, Affiliations, Authors, and Sources with the Highest Scientific Output
4.3. Local and International Collaboration
4.4. Citation Analysis
4.5. Co-Citation Analysis
4.6. Keyword Co-Occurrence
4.7. Thematic Map
4.7.1. Basic Topics
Drought
Anthracnose
4.7.2. Motor Themes
Epistasis
Seed Priming
Marker-Assisted Selection
Salt Stress
4.7.3. Niche Themes
4.7.4. Emerging Themes
Acanthoscelides obtectus
Biostimulants
4.8. Thematic Evolution
4.9. Trending Topics in Common Bean Research
4.9.1. Salinity Tolerance: An Emerging and Priority Challenge
4.9.2. Oxidative Stress: A Climate-Linked Axis of Research
4.9.3. Germination Under Abiotic Stress Conditions
4.9.4. Chromosomal Mapping and Precision Genomics
4.9.5. The Decline of Random Amplified Polymorphic DNA (RAPD): From Pioneer to Obsolescence
4.10. Evolution of Mitigation Strategies for Biotic and Abiotic Stresses
5. Study Limitations
6. Conclusions
Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uebersax, M.A.; Cichy, K.A.; Gomez, F.E.; Porch, T.G.; Heitholt, J.; Osorno, J.M.; Kamfwa, K.; Snapp, S.S.; Bales, S. Dry Beans (Phaseolus vulgaris L.) as a Vital Component of Sustainable Agriculture and Food Security—A Review. Legume Sci. 2023, 5, e155. [Google Scholar] [CrossRef]
- De Paiva Gouvêa, L.; Caldeira, R.F.; Azevedo, T.D.L.; Antoniassi, R.; Galdeano, M.C.; Felberg, I.; Lima, J.R.; Mellinger, C.G. Nutritional Properties of Common Bean Protein Concentrate Compared to Commercial Legume Ingredients for the Plant-Based Market. Curr. Res. Food Sci. 2024, 9, 100937. [Google Scholar] [CrossRef]
- Nadeem, M.A.; Yeken, M.Z.; Shahid, M.Q.; Habyarimana, E.; Yılmaz, H.; Alsaleh, A.; Hatipoğlu, R.; Çilesiz, Y.; Khawar, K.M.; Ludidi, N.; et al. Common Bean as a Potential Crop for Future Food Security: An Overview of Past, Current and Future Contributions in Genomics, Transcriptomics, Transgenics and Proteomics. Biotechnol. Biotechnol. Equip. 2021, 35, 759–787. [Google Scholar] [CrossRef]
- Meza, C.; Valenzuela, F.; Echeverría-Vega, A.; Gomez, A.; Sarkar, S.; Cabeza, R.A.; Arencibia, A.D.; Quiroz, K.; Carrasco, B.; Banerjee, A. Plant-Growth-Promoting Bacteria from Rhizosphere of Chilean Common Bean Ecotype (Phaseolus vulgaris L.) Supporting Seed Germination and Growth against Salinity Stress. Front. Plant Sci. 2022, 13, 1052263. [Google Scholar] [CrossRef] [PubMed]
- Abdelrhim, A.S.; Hemeda, N.F.; Mwaheb, M.A.; Omar, M.O.A.; Dawood, M.F.A. The Role of Trichoderma koningii and Trichoderma harzianum in Mitigating the Combined Stresses Motivated by Sclerotinia sclerotiorum and Salinity in Common Bean (Phaseolus vulgaris). Plant Stress 2024, 11, 100370. [Google Scholar] [CrossRef]
- Paul, W.S.; Afkairin, A.; Andales, A.A.; Qian, Y.; Davis, J.G. Assessing Salinity Tolerance in Pinto Bean Varieties: Implications for Sustainable Agriculture. Agronomy 2024, 14, 1877. [Google Scholar] [CrossRef]
- Kebede, E. Contribution, Utilization, and Improvement of Legumes-Driven Biological Nitrogen Fixation in Agricultural Systems. Front. Sustain. Food Syst. 2021, 5, 767998. [Google Scholar] [CrossRef]
- De Ron, A.M.; Rodiño, A.P.; Gioia, T.; Brezeanu, C.; Burzo, I.; van Rensburg, B.J.; Corrales, M.A.P.; Nay, M.M.; Fourie, D.; Nkhata, W.; et al. Common Bean Genetics, Breeding, and Genomics for Adaptation to Biotic Stress Conditions. In Genomic Designing for Biotic Stress Resistant Pulse Crops; Kole, C., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–116. ISBN 978-3-030-91043-3. [Google Scholar]
- Lone, A.A.; Khan, M.N.; Gul, A.; Dar, Z.A.; Iqbal, A.M.; Lone, B.A.; Ahangar, A.; Rasool, F.U.; Khan, M.H.; Ali, G.; et al. Common Beans and Abiotic Stress Challenges. Curr. J. Appl. Sci. Technol. 2021, 40, 41–53. [Google Scholar] [CrossRef]
- Parker, T.A.; Gallegos, J.A.; Beaver, J.; Brick, M.; Brown, J.K.; Cichy, K.; Debouck, D.G.; Delgado-Salinas, A.; Dohle, S.; Ernest, E.; et al. Genetic Resources and Breeding Priorities in Phaseolus Beans: Vulnerability, Resilience, and Future Challenges. Plant Breed. Rev. 2022, 46, 289–420. [Google Scholar]
- Oriama, S.O.; Kulohoma, B.W.; Nyaboga, E.; Masheti, Y.O.; Otsyula, R. Genetic Analysis of Scab Disease Resistance in Common Bean (Phaseolus vulgaris) Varieties Using GWAS and Functional Genomics Approaches. CABI Agric. Biosci. 2024, 5, 35. [Google Scholar] [CrossRef]
- Nisa, Q.; Lateef, I.; Nabi, A.; Nabi, N.; Fayaz, T.; Bashir, A.; Gulzar, G.; Rashid, Z.; Shah, M.D.; Bhat, Z.A.; et al. Northwestern Himalayan Common Beans: A Treasure Trove for Breeding Resistant Bean Cultivars for Multiple Foliar Pathogens. Physiol. Mol. Plant Pathol. 2024, 134, 102466. [Google Scholar] [CrossRef]
- Shafi, S.; Tahir, M.; Bawa, V.; Jan, F.; Choudhary, N.; Khan, M.A.; Singh, Y.; Kumar, U.; Bhat, B.A.; Dar, W.A.; et al. Biochemical Defense Arsenal, Genes/QTLs and Transcripts for Imparting Anthracnose Resistance in Common Bean (Phaseolus vulgaris L.). Plant Stress 2024, 14, 100609. [Google Scholar] [CrossRef]
- Wiersma, A.T.; Hamilton, J.P.; Vaillancourt, B.; Brose, J.; Awale, H.E.; Wright, E.M.; Kelly, J.D.; Buell, C.R. K-Mer Genome-Wide Association Study for Anthracnose and BCMV Resistance in a Phaseolus vulgaris Andean Diversity Panel. Plant Genome 2024, 17, e20523. [Google Scholar]
- Jeger, M.; Beresford, R.; Bock, C.; Brown, N.; Fox, A.; Newton, A.; Vicent, A.; Xu, X.; Yuen, J. Global Challenges Facing Plant Pathology: Multidisciplinary Approaches to Meet the Food Security and Environmental Challenges in the Mid-Twenty-First Century. CABI Agric. Biosci. 2021, 2, 20. [Google Scholar] [CrossRef]
- McCallum, A.J.; Idnurm, A.; Scanlan, J.L.; Van de Wouw, A.P. Analysis of Population-Level Avirulence and Virulence Genetic Frequencies Provides Insight Into Resistance Gene Rotation and Plant Disease Epidemiology. Plant Pathol. 2025, 74, 1055–1067. [Google Scholar] [CrossRef]
- Rodriguez, M.C.; Sautua, F.; Scandiani, M.; Carmona, M.; Asurmendi, S. Current Recommendations and Novel Strategies for Sustainable Management of Soybean Sudden Death Syndrome. Pest Manag. Sci. 2021, 77, 4238–4248. [Google Scholar] [CrossRef]
- Prasanna, B.M.; Bruce, A.; Beyene, Y.; Makumbi, D.; Gowda, M.; Asim, M.; Martinelli, S.; Head, G.P.; Parimi, S. Host Plant Resistance for Fall Armyworm Management in Maize: Relevance, Status and Prospects in Africa and Asia. Theor. Appl. Genet. 2022, 135, 3897–3916. [Google Scholar] [CrossRef] [PubMed]
- Ikhimiukor, O.O.; Odih, E.E.; Donado-Godoy, P.; Okeke, I.N. A Bottom-up View of Antimicrobial Resistance Transmission in Developing Countries. Nat. Microbiol. 2022, 7, 757–765. [Google Scholar] [CrossRef]
- Khan, Z. (Ed.) Plant Breeding Technology: Future Trends and Challenges; CABI Biotechnology Series; CABI: Wallingford, UK, 2025; ISBN 978-1-80062-661-4. [Google Scholar]
- Ahmad, N.; Naeem, M.; Ali, H.; Alabbosh, K.F.; Hussain, H.; Khan, I.; Siddiqui, S.A.; Khan, A.A.; Iqbal, B. From Challenges to Solutions: The Impact of Melatonin on Abiotic Stress Synergies in Horticultural Plants via Redox Regulation and Epigenetic Signaling. Sci. Hortic. 2023, 321, 112369. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Rashmi, R.; Surya Ulhas, R.; Sudheer, W.N.; Banadka, A.; Nagella, P.; Aldaej, M.I.; Rezk, A.A.-S.; Shehata, W.F.; Almaghasla, M.I. The Role of Nanoparticles in Response of Plants to Abiotic Stress at Physiological, Biochemical, and Molecular Levels. Plants 2023, 12, 292. [Google Scholar] [CrossRef] [PubMed]
- Prado-García, A.A.; Acosta-Gallegos, J.A.; Montero-Tavera, V.; Yáñez-López, R.; Ramírez-Pimentel, J.G.; Aguirre-Mancilla, C.L. Identification of Common Bean Genotypes Tolerant to the Combined Stress of Terminal Drought and High Temperature. Agronomy 2025, 15, 1624. [Google Scholar] [CrossRef]
- Mostafa, S.S.M.; Fares, C.N.; Bishara, M.M.; Azzam, C.R.; Awad, A.A.; Elgaml, N.M.M.; Mostafa, M.S.M. Microbiomes-Plant Interactions and K-Humate Application for Salinity Stress Mitigation and Yield Enhancement in Wheat and Faba Bean in Egypt’s Northeastern Delta. Int. J. Plant Biol. 2024, 15, 1077–1107. [Google Scholar] [CrossRef]
- Shahid, M.; Altaf, M.; Danish, M. The Halotolerant Exopolysaccharide-Producing Rhizobium azibense Increases the Salt Tolerance Mechanism in Phaseolus vulgaris (L.) by Improving Growth, Ion Homeostasis, and Antioxidant Defensive Enzymes. Chemosphere 2024, 360, 142431. [Google Scholar] [CrossRef]
- Hageman, A.; Van Volkenburgh, E. Sink Strength Maintenance Underlies Drought Tolerance in Common Bean. Plants 2021, 10, 489. [Google Scholar] [CrossRef]
- Mutari, B.; Sibiya, J.; Bogweh Nchanji, E.; Simango, K.; Gasura, E. Farmers’ Perceptions of Navy Bean (Phaseolus vulgaris L.) Production Constraints, Preferred Traits and Farming Systems and Their Implications on Bean Breeding: A Case Study from South East Lowveld Region of Zimbabwe. J. Ethnobiol. Ethnomed. 2021, 17, 13. [Google Scholar] [CrossRef]
- Smith, M.R.; Dinglasan, E.; Veneklaas, E.; Polania, J.; Rao, I.M.; Beebe, S.E.; Merchant, A. Effect of Drought and Low P on Yield and Nutritional Content in Common Bean. Front. Plant Sci. 2022, 13, 814325. [Google Scholar] [CrossRef] [PubMed]
- Oguz, M.C.; Aycan, M.; Oguz, E.; Poyraz, I.; Yildiz, M. Drought Stress Tolerance in Plants: Interplay of Molecular, Biochemical and Physiological Responses in Important Development Stages. Physiologia 2022, 2, 180–197. [Google Scholar] [CrossRef]
- Vargas Pérez, J.; Sosa del Castillo, D.; Diez García, N. Proteomic Analysis of Storage Proteins in Phaseolus vulgaris Associated with Resistance to Water Stress. Environ. Exp. Bot. 2024, 228, 106002. [Google Scholar] [CrossRef]
- Wu, L.; Chang, Y.; Wang, L.; Wang, S.; Wu, J. Genome-Wide Association Analysis of Drought Resistance Based on Seed Germination Vigor and Germination Rate at the Bud Stage in Common Bean. Agron. J. 2021, 113, 2980–2990. [Google Scholar] [CrossRef]
- Xu, P.; Jiang, M.; Khan, I.; Shaaban, M.; Wu, H.; Harerimana, B.; Hu, R. Regulatory Potential of Soil Available Carbon, Nitrogen, and Functional Genes on N2O Emissions in Two Upland Plantation Systems. J. Integr. Agric. 2024, 23, 2792–2806. [Google Scholar] [CrossRef]
- Jha, P.K.; Beebe, S.; Urban, M.; Soto, J.; Assefa, T.; Ramirez-Villegas, J. Model-Based Multi-Genotype Characterization of Drought Stress Target Population of Environments for the Common Bean in East Africa. Crop Sci. 2025, 65, e21290. [Google Scholar] [CrossRef]
- Katimbo, A.; Rudnick, D.R.; DeJonge, K.C.; Lo, T.H.; Qiao, X.; Franz, T.E.; Nakabuye, H.N.; Duan, J. Crop Water Stress Index Computation Approaches and Their Sensitivity to Soil Water Dynamics. Agric. Water Manag. 2022, 266, 107575. [Google Scholar] [CrossRef]
- Khatun, M.; Sarkar, S.; Era, F.M.; Islam, A.K.M.M.; Anwar, M.P.; Fahad, S.; Datta, R.; Islam, A.K.M.A. Drought Stress in Grain Legumes: Effects, Tolerance Mechanisms and Management. Agronomy 2021, 11, 2374. [Google Scholar] [CrossRef]
- Sofi, P.A.; Rehman, K.; Gull, M.; Kumari, J.; Djanaguiraman, M.; Prasad, P.V.V. Integrating Root Architecture and Physiological Approaches for Improving Drought Tolerance in Common Bean (Phaseolus vulgaris L.). Plant Physiol. Rep. 2021, 26, 4–22. [Google Scholar] [CrossRef]
- Abreha, K.B.; Enyew, M.; Carlsson, A.S.; Vetukuri, R.R.; Feyissa, T.; Motlhaodi, T.; Ng’uni, D.; Geleta, M. Sorghum in Dryland: Morphological, Physiological, and Molecular Responses of Sorghum under Drought Stress. Planta 2021, 255, 20. [Google Scholar] [CrossRef]
- Bornmann, L.; Haunschild, R.; Mutz, R. Growth Rates of Modern Science: A Latent Piecewise Growth Curve Approach to Model Publication Numbers from Established and New Literature Databases. Humanit. Soc. Sci. Commun. 2021, 8, 224. [Google Scholar] [CrossRef]
- Candela, L.; Frosini, L.; Mangiacrapa, F.; Rouchon, O.; Toulemonde, B.; Le Franc, Y. D5.6 FAIR Research Data Management Tool Set Update; Consiglio Nazionale delle Ricerche, CNR: Rome, Italy, 2022. [Google Scholar]
- Paudel, B.; Riaz, S.; Teng, S.W.; Kolluri, R.R.; Sandhu, H. The Digital Future of Farming: A Bibliometric Analysis of Big Data in Smart Farming Research. Clean. Circ. Bioecon. 2025, 10, 100132. [Google Scholar] [CrossRef]
- Öztürk, O.; Kocaman, R.; Kanbach, D.K. How to Design Bibliometric Research: An Overview and a Framework Proposal. Rev. Manag. Sci. 2024, 18, 3333–3361. [Google Scholar] [CrossRef]
- Singh, V.K.; Singh, P.; Karmakar, M.; Leta, J.; Mayr, P. The Journal Coverage of Web of Science, Scopus and Dimensions: A Comparative Analysis. Scientometrics 2021, 126, 5113–5142. [Google Scholar] [CrossRef]
- Sundarakani, B.; Ghouse, A. A Systematic Literature Review and Bibliometric Analysis of Blockchain Technology for Food Security. Foods 2024, 13, 3607. [Google Scholar] [CrossRef]
- Abdelwahab, S.I.; Taha, M.M.E.; Mariod, A.A. Performance Analysis, Conceptual Mapping, and Emerging Trends for Gum Arabic Research: A Comprehensive Bibliometric Analysis from 1916 to 2023. Food Prod. Process. Nutr. 2025, 7, 4. [Google Scholar] [CrossRef]
- Blanco, A. Structure and Trends of Worldwide Research on Durum Wheat by Bibliographic Mapping. Int. J. Plant Biol. 2024, 15, 132–160. [Google Scholar] [CrossRef]
- Sarkis-Onofre, R.; Catalá-López, F.; Aromataris, E.; Lockwood, C. How to Properly Use the PRISMA Statement. Syst. Rev. 2021, 10, 117. [Google Scholar] [CrossRef] [PubMed]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Ding, X.; Yang, Z. Knowledge Mapping of Platform Research: A Visual Analysis Using VOSviewer and CiteSpace. Electron. Commer. Res. 2022, 22, 787–809. [Google Scholar] [CrossRef]
- Etana, D. Major Insect Pests and Diseases in Common Bean (Phaseolus vulgaris L.) Production in Ethiopia. Frontiers 2022, 2, 79–87. [Google Scholar] [CrossRef]
- Mohammed, A. An Overview of Distribution, Biology and the Management of Common Bean Anthracnose. J. Plant Pathol. Microbiol. 2013, 4, 193. [Google Scholar] [CrossRef]
- Gupta, C.; Salgotra, R.K.; Venegas, R.A. SNP-Based Functional Marker for Anthracnose-Resistant Co-2 Gene in Common Bean (Phaseolus vulgaris L.). J. Plant Dis. Prot. 2025, 132, 66. [Google Scholar]
- Oblessuc, P.R.; Matiolli, C.C.; Chiorato, A.F.; Camargo, L.E.A.; Benchimol-Reis, L.L.; Melotto, M. Common Bean Reaction to Angular Leaf Spot Comprises Transcriptional Modulation of Genes in the ALS10.1 QTL. Front. Plant Sci. 2015, 6, 152. [Google Scholar] [CrossRef]
- Nay, M.M.; Souza, T.L.P.O.; Raatz, B.; Mukankusi, C.M.; Gonçalves-Vidigal, M.C.; Abreu, A.F.B.; Melo, L.C.; Pastor-Corrales, M.A. A Review of Angular Leaf Spot Resistance in Common Bean. Crop Sci. 2019, 59, 1376–1391. [Google Scholar] [CrossRef]
- Masangwa, J.I.G. Angular Leaf Spot on Common Bean-Malawi; CABI International: Wallingford, UK, 2022. [Google Scholar] [CrossRef]
- Odogwu, B.A.; Nkalubo, S.T.; Rubaihayo, P. Yield Loss of Common Bean Caused by Rust Disease in Uganda. J. Underutil. Legumes 2021, 13, 1–12. [Google Scholar]
- Tsegaye, Y.; Chala, A.; Rezene, Y. Destructive Fungal Disease Survey of Common Bean (Phaseolus vulgaris L.) Rust (Uromyces appendiculatus) in Southern Ethiopia. Sci. Rep. 2024, 14, 23642. [Google Scholar] [CrossRef]
- Abán, C.L.; Taboada, G.M.; Casalderrey, N.B.; Maggio, M.E.; Chocobar, M.O.; Spedaletti, Y.A.; Gonzalez, M.A.A.; Vizgarra, O.N.; Galván, M.Z. Screening Common Bean Germplasm for Resistance to Genetically Diverse Sclerotinia sclerotiorum Isolates from Argentina. Acta Sci. Agron. 2020, 42, e42786. [Google Scholar] [CrossRef]
- Escobar, E.; Oladzad, A.; Simons, K.; Miklas, P.; Lee, R.K.; Schroder, S.; Bandillo, N.; Wunsch, M.; McClean, P.E.; Osorno, J.M. New Genomic Regions Associated with White Mold Resistance in Dry Bean Using a MAGIC Population. Plant Genome 2022, 15, e20190. [Google Scholar] [CrossRef]
- Oladzad, A.; Zitnick-Anderson, K.; Jain, S.; Simons, K.; Osorno, J.M.; McClean, P.E.; Pasche, J.S. Genotypes and Genomic Regions Associated with Rhizoctonia solani Resistance in Common Bean. Front. Plant Sci. 2019, 10, 956. [Google Scholar] [CrossRef] [PubMed]
- Helmy, K.G.; Abu-Hussien, S.H. Root Rot Management in Common Bean (Phaseolus vulgaris L.) Through Integrated Biocontrol Strategies Using Metabolites from Trichoderma harzianum, Serratia marcescens, and Vermicompost Tea. Microb. Ecol. 2024, 87, 94. [Google Scholar] [CrossRef]
- Chiwina, K.; Xiong, H.; Bhattarai, G.; Dickson, R.W.; Phiri, T.M.; Chen, Y.; Alatawi, I.; Dean, D.; Joshi, N.K.; Chen, Y.; et al. Genome-Wide Association Study and Genomic Prediction of Fusarium Wilt Resistance in Common Bean Core Collection. Int. J. Mol. Sci. 2023, 24, 15300. [Google Scholar] [CrossRef]
- Benchimol-Reis, L.L.; Bueno, C.J.; Carbonell, S.A.M.; Chiorato, A.F. Fusarium Wilt–Common Bean Pathosystem: Pathogen Variability and Genetic Control. Crop Sci. 2023, 63, 2609–2622. [Google Scholar] [CrossRef]
- Leitão, S.T.; Mendes, F.A.; Rubiales, D.; Patto, M.C.V. Oligogenic Control of Quantitative Resistance Against Powdery Mildew Revealed in Portuguese Common Bean Germplasm. Plant Dis. 2023, 107, 3113–3122. [Google Scholar] [CrossRef]
- Francisco Francisco, N.; Gallegos Morales, G.; Ochoa Fuentes, Y.M.; Hernández Castillo, F.D.; Benavides Mendoza, A.; Castillo Reyes, F. Fundamental aspects of Common Bacterial Blight (Xanthomonas axonopodis pv. phaseoli Smith): Characteristic, Pathogenicity and Control. Rev. Mex. Fitopatol. 2013, 31, 147–160. [Google Scholar]
- Boersma, J.G.; Hou, A.; Gillard, C.L.; McRae, K.B.; Conner, R.L. Impact of Common Bacterial Blight on the Yield, Seed Weight and Seed Discoloration of Different Market Classes of Dry Beans (Phaseolus vulgaris L.). Can. J. Plant Sci. 2015, 95, 703–710. [Google Scholar] [CrossRef]
- Arnold, D.L.; Lovell, H.C.; Jackson, R.W.; Mansfield, J.W. Pseudomonas syringae pv. phaseolicola: From ‘Has Bean’ to Supermodel. Mol. Plant Pathol. 2011, 12, 617–627. [Google Scholar] [CrossRef] [PubMed]
- González, A.M.; Godoy, L.; Santalla, M. Dissection of Resistance Genes to Pseudomonas syringae pv. phaseolicola in UI3 Common Bean Cultivar. Int. J. Mol. Sci. 2017, 18, 2503. [Google Scholar] [CrossRef]
- Mavrič, I.; Šuštar-Vozlič, J. Virus Diseases and Resistance to Bean Common Mosaic and Bean Common Mosaic Necrosis Potyvirus in Common Bean (Phaseolus vulgaris L.). Acta Agric. Slov. 2004, 83, 181–190. [Google Scholar] [CrossRef]
- Osogo, A.K.; Muyekho, F.; Okoth, P.; Were, H.; Ayaaga, G. Occurrence, Distribution, Incidence, and Severity of Common Bean Viral Diseases in Resource-Limited Smallholder Farms of Western Kenya. Crop Prot. 2025, 194, 107231. [Google Scholar] [CrossRef]
- Mbogo, K.P.; Davis, J.; Myers, J.R. Transfer of the Arcelin-Phytohaemagglutinin-α Amylase Inhibitor Seed Protein Locus from Tepary Bean (Phaseolus acutifolius A. Gray) to Common Bean (P. vulgaris L.). Biotechnology 2009, 8, 285–295. [Google Scholar] [CrossRef]
- Parsons, D.M.J.; Credland, P.F. Determinants of Oviposition in Acanthoscelides obtectus: A Nonconformist Bruchid. Physiol. Entomol. 2003, 28, 221–231. [Google Scholar] [CrossRef]
- Jiménez, J.C.; de la Fuente, M.; Ordás, B.; García Domínguez, L.E.; Malvar, R.A. Resistance Categories to Acanthoscelides obtectus (Coleoptera: Bruchidae) in Tepary Bean (Phaseolus acutifolius), New Sources of Resistance for Dry Bean (Phaseolus vulgaris) Breeding. Crop Prot. 2017, 98, 255–266. [Google Scholar] [CrossRef]
- Mugovo, I.; Chinji, M.; Thole, R.; Hamabwe, S.M.; Kuwabo, K.; Nkandela, M.; Zimba, K.; Jochua, C.; Urrea, C.; McClean, P.; et al. Genome-Wide Association Analysis for Weevil Resistance in the Andean Gene Pool of Common Bean. Euphytica 2025, 221, 13. [Google Scholar] [CrossRef]
- Tsekenedza, S.; Shimelis, H.; Nkhata, W.; Mukankusi, C.M.; Dossa, E.N. Comparison of the Effectiveness of the Common Bean Fly (Ophiomyia spp.) Control Methods: Implications for Resistance Breeding: A Meta-Analysis. Euphytica, 2025; under review. [Google Scholar]
- Kasina, J.; Nderitu, J.; Nyamasyo, G.; Olubayo, F.; Waturu, C.; Obudho, E.; Yobera, D. Evaluation of Companion Crops for Thrips (Thysanoptera: Thripidae) Management on French Bean Phaseolus vulgaris (Fabaceae). Int. J. Trop. Insect Sci. 2006, 26, 121–125. [Google Scholar] [CrossRef]
- Lanna, A.C.; Mitsuzono, S.T.; Terra, T.G.R.; Vianello, R.P. Physiological Characterization of Common Bean (Phaseolus vulgaris L.) Genotypes, Water-Stress Induced with Contrasting Response towards Drought. Aust. J. Crop Sci. 2016, 10, 1–6. [Google Scholar]
- Kusvuran, S.; Dasgan, H.Y. Effects of Drought Stress on Physiological and Biochemical Changes in Phaseolus vulgaris L. Legume Res. 2017, 40, 55–62. [Google Scholar] [CrossRef]
- Mladenov, P.; Aziz, S.; Topalova, E.; Renaut, J.; Planchon, S.; Raina, A.; Tomlekova, N. Physiological Responses of Common Bean Genotypes to Drought Stress. Agronomy 2023, 13, 1022. [Google Scholar] [CrossRef]
- Hannachi, K.; Benariba, M.A.; Al-Ansi, W.; Fan, M.; Qian, H.; Li, Y.; Wang, L. Unveiling the Potential of Germinated Black Bean Extracts: Targeting Topoisomerase IIα through in Silico and In Vitro Approaches. Food Chem. 2025, 464, 141576. [Google Scholar] [CrossRef]
- Zhang, Q.; Qin, B.; Wang, G.; Zhang, W.; Li, M.; Yin, Z.; Yuan, X.; Sun, H.; Du, J.; Du, Y.; et al. Exogenous Melatonin Enhances Cell Wall Response to Salt Stress in Common Bean (Phaseolus vulgaris) and the Development of the Associated Predictive Molecular Markers. Front. Plant Sci. 2022, 13, 1012186. [Google Scholar] [CrossRef]
- Vargas, Y.; Mayor-Duran, V.M.; Buendia, H.F.; Ruiz-Guzman, H.; Raatz, B. Physiological and Genetic Characterization of Heat Stress Effects in a Common Bean RIL Population. PLoS ONE 2021, 16, e0249859. [Google Scholar] [CrossRef]
- Yang, X.; Liu, C.; Li, M.; Li, Y.; Yan, Z.; Feng, G.; Liu, D. Integrated Transcriptomics and Metabolomics Analysis Reveals Key Regulatory Network That Response to Cold Stress in Common Bean (Phaseolus vulgaris L.). BMC Plant Biol. 2023, 23, 85. [Google Scholar] [CrossRef]
- Araújo, S.S.; Beebe, S.; Crespi, M.; Delbreil, B.; González, E.M.; Gruber, V.; Lejeune-Henaut, I.; Link, W.; Monteros, M.J.; Prats, E.; et al. Abiotic Stress Responses in Legumes: Strategies Used to Cope with Environmental Challenges. Crit. Rev. Plant Sci. 2015, 34, 237–280. [Google Scholar] [CrossRef]
- Beebe, S.E.; Rao, I.M.; Blair, M.W.; Acosta-Gallegos, J.A. Phenotyping Common Beans for Adaptation to Drought. Front. Physiol. 2013, 4, 35. [Google Scholar] [CrossRef] [PubMed]
- Waltman, L. A Review of the Literature on Citation Impact Indicators. J. Informetr. 2016, 10, 365–391. [Google Scholar] [CrossRef]
- Glänzel, W.; Schubert, A. Analysing Scientific Networks Through Co-Authorship. In Handbook of Quantitative Science and Technology Research: The Use of Publication and Patent Statistics in Studies of S&T Systems; Moed, H.F., Glänzel, W., Schmoch, U., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 257–276. ISBN 978-1-4020-2755-0. [Google Scholar]
- Kiran, G.S.; Mohanta, A.; Malhi, R.K.M.; Prajapati, P.C.; Oza, K.K.; Rajput, S. Spatial Exploration of Plant Functional Types: Insights from Bibliometric Meta-Analysis. Discov. Plants 2025, 2, 124. [Google Scholar] [CrossRef]
- Michigan State University Dry Bean Breeding and Genetics Program. College of Agriculture and Natural Resources, Michigan State University. Available online: https://www.canr.msu.edu/beanbreeding/research/ (accessed on 19 July 2025).
- Michigan State University About Us—Feed the Future Innovation Lab for Legume Systems Research. Available online: https://www.canr.msu.edu/legumelab/about_us (accessed on 29 July 2025).
- Michigan State University MSU Awarded $13.6 Million from USAID to Lead Global Legume Research. Available online: https://msutoday.msu.edu/news/2018/msu-awarded-136-million-from-usaid-to-lead-global-legume-research (accessed on 29 July 2025).
- Varshney, R.K.; Ojiewo, C.; Monyo, E. A Decade of Tropical Legumes Projects: Development and Adoption of Improved Varieties, Creation of Market-demand to Benefit Smallholder Farmers and Empowerment of National Programmes in sub-Saharan Africa and South Asia. Plant Breed. 2019, 138, 379–388. [Google Scholar] [CrossRef]
- Beebe, S.E.; Rao, I.M.; Cajiao, C.; Grajales, M. Selection for Drought Resistance in Common Bean Also Improves Yield in Phosphorus Limited and Favorable Environments. Crop Sci. 2008, 48, 582–592. [Google Scholar] [CrossRef]
- Wagner, C.S.; Horlings, E.; Whetsell, T.A.; Mattsson, P.; Nordqvist, K. Do Nobel Laureates Create Prize-Winning Networks? An Analysis of Collaborative Research in Physiology or Medicine. PLoS ONE 2015, 10, e0134164. [Google Scholar] [CrossRef]
- Tennant, J.P. The State of the Art in Peer Review. FEMS Microbiol. Lett. 2018, 365, fny204. [Google Scholar] [CrossRef] [PubMed]
- Bornmann, L.; Daniel, H. What Do Citation Counts Measure? A Review of Studies on Citing Behavior. J. Doc. 2008, 64, 45–80. [Google Scholar] [CrossRef]
- Vanloqueren, G.; Baret, P.V. How agricultural research systems shape a technological regime that develops genetic engineering but locks out agroecological innovations. Res. Policy 2009, 38, 971–983. [Google Scholar] [CrossRef]
- The Royal Society Final Report—Knowledge, Networks and Nations. Available online: https://royalsociety.org/news-resources/projects/knowledge-networks-nations/report/ (accessed on 29 July 2025).
- Porch, T.G.; Urrea, C.A.; Beaver, J.S.; Valentin, S.; Peña, P.A.; Smith, J.R. Registration of TARS-MST1 and SB-DT1 Multiple-Stress-Tolerant Black Bean Germplasm. J. Plant Regist. 2011, 6, 75–80. [Google Scholar] [CrossRef]
- Leydesdorff, L.; Wagner, C.S. International Collaboration in Science and the Formation of a Core Group. J. Informetr. 2008, 2, 317–325. [Google Scholar] [CrossRef]
- Karimzadeh Soureshjani, H.; Nezami, A.; Kafi, M.; Tadayon, M. Responses of Two Common Bean (Phaseolus vulgaris L.) Genotypes Deficit Irrigation. Agric. Water Manag. 2019, 213, 270–279. [Google Scholar] [CrossRef]
- Gazni, A.; Sugimoto, C.R.; Didegah, F. Mapping World Scientific Collaboration: Authors, Institutions, and Countries. J. Am. Soc. Inf. Sci. 2012, 63, 323–335. [Google Scholar] [CrossRef]
- Bornmann, L.; Wagner, C.; Leydesdorff, L. BRICS Countries and Scientific Excellence: A Bibliometric Analysis of Most Frequently-Cited Papers. J. Assoc. Inf. Sci. Technol. 2015, 66, 1507–1513. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Montazeri, A.; Mohammadi, S.; M.Hesari, P.; Ghaemi, M.; Riazi, H.; Sheikhi-Mobarakeh, Z. Preliminary Guideline for Reporting Bibliometric Reviews of the Biomedical Literature (BIBLIO): A Minimum Requirements. Syst. Rev. 2023, 12, 239. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Navarro, A.; Brito, R. The Extreme Upper Tail of Japan’s Citation Distribution Reveals Its Research Success. Qual. Quant. 2024, 58, 3831–3844. [Google Scholar] [CrossRef]
- Zhang, S.; Aryadoust, V. Why Are Some Articles Highly Cited in Applied Linguistics? A Bibliometric Study. Stud. Second Lang. Acquis. 2025, 47, 3–25. [Google Scholar] [CrossRef]
- Miklas, P.N.; Kelly, J.D.; Beebe, S.E.; Blair, M.W. Common Bean Breeding for Resistance against Biotic and Abiotic Stresses: From Classical to MAS Breeding. Euphytica 2006, 147, 105–131. [Google Scholar] [CrossRef]
- Ramirez-Vallejo, P.; Kelly, J.D. Traits Related to Drought Resistance in Common Bean. Euphytica 1998, 99, 127–136. [Google Scholar] [CrossRef]
- Mendes, L.W.; Raaijmakers, J.M.; De Hollander, M.; Mendes, R.; Tsai, S.M. Influence of Resistance Breeding in Common Bean on Rhizosphere Microbiome Composition and Function. ISME J. 2018, 12, 212–224. [Google Scholar] [CrossRef]
- St. Clair, D.A. Quantitative Disease Resistance and Quantitative Resistance Loci in Breeding. Annu. Rev. Phytopathol. 2010, 48, 247–268. [Google Scholar] [CrossRef]
- Singh, S.P. Broadening the Genetic Base of Common Bean Cultivars: A Review. Crop Sci. 2001, 41, 1659–1675. [Google Scholar] [CrossRef]
- Martínez, J.P.; Silva, H.; Ledent, J.F.; Pinto, M. Effect of Drought Stress on the Osmotic Adjustment, Cell Wall Elasticity and Cell Volume of Six Cultivars of Common Beans (Phaseolus vulgaris L.). Eur. J. Agron. 2007, 26, 30–38. [Google Scholar] [CrossRef]
- Mathobo, R.; Marais, D.; Steyn, J.M. The Effect of Drought Stress on Yield, Leaf Gaseous Exchange and Chlorophyll Fluorescence of Dry Beans (Phaseolus vulgaris L.). Agric. Water Manag. 2017, 180, 118–125. [Google Scholar] [CrossRef]
- Kelly, J.D.; Gepts, P.; Miklas, P.N.; Coyne, D.P. Tagging and Mapping of Genes and QTL and Molecular Marker-Assisted Selection for Traits of Economic Importance in Bean and Cowpea. Field Crops Res. 2003, 82, 135–154. [Google Scholar] [CrossRef]
- Suárez, R.; Wong, A.; Ramírez, M.; Barraza, A.; Orozco, M.D.C.; Cevallos, M.A.; Lara, M.; Hernández, G.; Iturriaga, G. Improvement of Drought Tolerance and Grain Yield in Common Bean by Overexpressing Trehalose-6-Phosphate Synthase in Rhizobia. Mol. Plant-Microbe Interact. 2008, 21, 958–966. [Google Scholar] [CrossRef]
- Aksnes, D.W. Characteristics of Highly Cited Papers. Res. Eval. 2003, 12, 159–170. [Google Scholar] [CrossRef]
- Wang, D.; Barabási, A.-L. The Science of Science, 1st ed.; Cambridge University Press: Cambridge, UK, 2021; ISBN 978-1-108-61083-4. [Google Scholar]
- Small, H. Co-citation in the Scientific Literature: A New Measure of the Relationship between Two Documents. J. Am. Soc. Inf. Sci. 1973, 24, 265–269. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef]
- Campa, A.; Trabanco, N.; Ferreira, J.J. Identification of Clusters That Condition Resistance to Anthracnose in the Common Bean Differential Cultivars AB136 and MDRK. Phytopathology 2017, 107, 1515–1521. [Google Scholar] [CrossRef] [PubMed]
- Dramadri, I.O.; Nkalubo, S.T.; Kramer, D.M.; Kelly, J.D. Genome-wide Association Analysis of Drought Adaptive Traits in Common Bean. Crop Sci. 2021, 61, 3232–3253. [Google Scholar] [CrossRef]
- Valdisser, P.A.M.R.; Müller, B.S.F.; de Almeida Filho, J.E.; Morais Júnior, O.P.; Guimarães, C.M.; Borba, T.C.O.; de Souza, I.P.; Zucchi, M.I.; Neves, L.G.; Coelho, A.S.G.; et al. Genome-Wide Association Studies Detect Multiple QTLs for Productivity in Mesoamerican Diversity Panel of Common Bean Under Drought Stress. Front. Plant Sci. 2020, 11, 574674. [Google Scholar] [CrossRef]
- Polania, J.; Rao, I.M.; Cajiao, C.; Grajales, M.; Rivera, M.; Velasquez, F.; Raatz, B.; Beebe, S.E. Shoot and Root Traits Contribute to Drought Resistance in Recombinant Inbred Lines of MD 23–24 × SEA 5 of Common Bean. Front. Plant Sci. 2017, 8, 296. [Google Scholar] [CrossRef]
- Hamabwe, S.M.; Otieno, N.A.; Soler-Garzón, A.; Miklas, P.N.; Parker, T.; Kramer, D.M.; Chattopadhyay, A.; Cheelo, P.; Kuwabo, K.; Kamfwa, K. Identification of Quantitative Trait Loci for Drought Tolerance in Bukoba/Kijivu Andean Mapping Population of Common Bean. Theor. Appl. Genet. 2023, 136, 222. [Google Scholar] [CrossRef]
- Asfaw, A.; Blair, M.W. Quantitative Trait Loci for Rooting Pattern Traits of Common Beans Grown under Drought Stress versus Non-Stress Conditions. Mol. Breed. 2012, 30, 681–695. [Google Scholar] [CrossRef]
- Miklas, P.N.; Delorme, R.; Stone, V.; Daly, M.J.; Stavely, J.R.; Steadman, J.R.; Bassett, M.J.; Beaver, J.S. Bacterial, Fungal, and Viral Disease Resistance Loci Mapped in a Recombinant Inbred Common Bean Population (‘Dorado’/XAN 176). J. Am. Soc. Hortic. Sci. 2000, 125, 476–481. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. Science Mapping Software Tools: Review, Analysis, and Cooperative Study among Tools. J. Am. Soc. Inf. Sci. 2011, 62, 1382–1402. [Google Scholar] [CrossRef]
- Ávila-Toscano, J.H.; Romero-Pérez, I.C.; Marenco-Escuderos, A.; Guajardo, E.S. Identification of Research Thematic Approaches Based on Keywords Network Analysis in Colombian Social Sciences. In Data Mining; Thomas, C., Ed.; InTech: Berlin, Germany, 2018; ISBN 978-1-78923-596-8. [Google Scholar][Green Version]
- Strock, C.F.; Burridge, J.; Massas, A.S.F.; Beaver, J.; Beebe, S.; Camilo, S.A.; Fourie, D.; Jochua, C.; Miguel, M.; Miklas, P.N.; et al. Seedling Root Architecture and Its Relationship with Seed Yield across Diverse Environments in Phaseolus vulgaris. Field Crops Res. 2019, 237, 53–64. [Google Scholar] [CrossRef]
- Abenavoli, M.R.; Leone, M.; Sunseri, F.; Bacchi, M.; Sorgonà, A. Root Phenotyping for Drought Tolerance in Bean Landraces from Calabria (Italy). J. Agron. Crop Sci. 2016, 202, 1–12. [Google Scholar] [CrossRef]
- Polania, J.; Rao, I.M.; Cajiao, C.; Rivera, M.; Raatz, B.; Beebe, S. Physiological Traits Associated with Drought Resistance in Andean and Mesoamerican Genotypes of Common Bean (Phaseolus vulgaris L.). Euphytica 2016, 210, 17–29. [Google Scholar] [CrossRef]
- Polania, J.; Poschenrieder, C.; Rao, I.; Beebe, S. Root Traits and Their Potential Links to Plant Ideotypes to Improve Drought Resistance in Common Bean. Theor. Exp. Plant Physiol. 2017, 29, 143–154. [Google Scholar] [CrossRef]
- Ambachew, D.; Mekbib, F.; Asfaw, A.; Beebe, S.E.; Blair, M.W. Trait Associations in Common Bean Genotypes Grown under Drought Stress and Field Infestation by BSM Bean Fly. Crop J. 2015, 3, 305–316. [Google Scholar] [CrossRef]
- Assefa, T.; Beebe, S.E.; Rao, I.M.; Cuasquer, J.B.; Duque, M.C.; Rivera, M.; Battisti, A.; Lucchin, M. Pod Harvest Index as a Selection Criterion to Improve Drought Resistance in White Pea Bean. Field Crops Res. 2013, 148, 24–33. [Google Scholar] [CrossRef]
- Beebe, S.E.; Rao, I.M.; Devi, M.J.; Polania, J. Common Beans, Biodiversity, and Multiple Stresses: Challenges of Drought Resistance in Tropical Soils. Crop Pasture Sci. 2014, 65, 667–675. [Google Scholar]
- Souza, J.V.R.S.; Saad, J.C.C.; Sánchez-Román, R.M.; Rodríguez-Sinobas, L. No-till and Direct Seeding Agriculture in Irrigated Bean: Effect of Incorporating Crop Residues on Soil Water Availability and Retention, and Yield. Agric. Water Manag. 2016, 170, 158–166. [Google Scholar] [CrossRef][Green Version]
- Campos, K.; Schwember, A.R.; Machado, D.; Ozores-Hampton, M.; Gil, P.M. Physiological and Yield Responses of Green-Shelled Beans (Phaseolus vulgaris L.) Grown under Restricted Irrigation. Agronomy 2021, 11, 562. [Google Scholar] [CrossRef]
- Papathanasiou, F.; Ninou, E.; Mylonas, I.; Baxevanos, D.; Papadopoulou, F.; Avdikos, I.; Sistanis, I.; Koskosidis, A.; Vlachostergios, D.N.; Stefanou, S.; et al. The Evaluation of Common Bean (Phaseolus vulgaris L.) Genotypes under Water Stress Based on Physiological and Agronomic Parameters. Plants 2022, 11, 2432. [Google Scholar] [CrossRef]
- Arteaga, S.; Yabor, L.; Díez, M.J.; Prohens, J.; Boscaiu, M.; Vicente, O. The Use of Proline in Screening for Tolerance to Drought and Salinity in Common Bean (Phaseolus vulgaris L.) Genotypes. Agronomy 2020, 10, 817. [Google Scholar] [CrossRef]
- Dipp, C.C.; Marchese, J.A.; Woyann, L.G.; Bosse, M.A.; Roman, M.H.; Gobatto, D.R.; Paludo, F.; Fedrigo, K.; Kovali, K.K.; Finatto, T. Drought Stress Tolerance in Common Bean: What about Highly Cultivated Brazilian Genotypes? Euphytica 2017, 213, 102. [Google Scholar] [CrossRef]
- Cuellar-Ortiz, S.M.; De La Paz Arrieta-Montiel, M.; Acosta-Gallegos, J.; Covarrubias, A.A. Relationship between Carbohydrate Partitioning and Drought Resistance in Common Bean. Plant Cell Environ. 2008, 31, 1399–1409. [Google Scholar] [CrossRef]
- Zupin, M.; Sedlar, A.; Kidrič, M.; Meglič, V. Drought-Induced Expression of Aquaporin Genes in Leaves of Two Common Bean Cultivars Differing in Tolerance to Drought Stress. J. Plant Res. 2017, 130, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Cid-Ríos, J.Á.; Acosta-Gallegos, J.A.; Echavarría-Cháirez, F.G.; Bañuelos-Valenzuela, R.; Prado-García, A.A. Identification of Bean Lines (Phaseolus vulgaris) with Low Genotype–Environment Interactions Under Rainfed in Two Semiarid Sites of North-Central Mexico. Agronomy 2025, 15, 1160. [Google Scholar] [CrossRef]
- Andrade, E.R.; Ribeiro, V.N.; Azevedo, C.V.G.; Chiorato, A.F.; Williams, T.C.R.; Carbonell, S.A.M. Biochemical Indicators of Drought Tolerance in the Common Bean (Phaseolus vulgaris L.). Euphytica 2016, 210, 277–289. [Google Scholar] [CrossRef]
- Valle, O.H.T.; Salinas, E.L.; Lezama, R.Z.; Sánchez, B.V.; Rodríguez, J.R.R. Production of black bean genotypes under residual moisture and terminal drought conditions. Terra Latinoam. 2017, 35, 29–39. [Google Scholar]
- Mutari, B.; Sibiya, J.; Matova, P.M.; Gasura, E.; Simango, K. Drought Stress Impact on Agronomic, Shoot, Physiological, Canning and Nutritional Quality Traits of Navy Beans (Phaseolus vulgaris L.) under Field Conditions in Zimbabwe. Field Crops Res. 2023, 292, 108826. [Google Scholar] [CrossRef]
- Singh, S.P. Drought Resistance in the Race Durango Dry Bean Landraces and Cultivars. Agron. J. 2007, 99, 1219–1225. [Google Scholar] [CrossRef]
- Urrea, C.A.; Yonts, C.D.; Lyon, D.J.; Koehler, A.E. Selection for Drought Tolerance in Dry Bean Derived from the Mesoamerican Gene Pool in Western Nebraska. Crop Sci. 2009, 49, 2005–2010. [Google Scholar] [CrossRef]
- Arruda, I.M.; Moda-Cirino, V.; Koltun, A.; dos Santos, O.J.A.P.; Moreira, R.S.; Moreira, A.F.P.; Gonçalves, L.S.A. Physiological, Biochemical and Morphoagronomic Characterization of Drought-Tolerant and Drought-Sensitive Bean Genotypes under Water Stress. Physiol. Mol. Biol. Plants 2018, 24, 1059–1067. [Google Scholar] [CrossRef] [PubMed]
- Santillan Huaman, A.; Tejada-Alvarado, J.J.; García, L.; Vásquez-García, J.; Fernandez, E.; Vilca-Valqui, N.C.; Oliva-Cruz, M. Morpho-Physiological Response of Four Native Accessions of Phaseolus vulgaris L. Subjected to Water Stress under Greenhouse Conditions in Northeastern Peru. Agronomy 2024, 14, 2044. [Google Scholar] [CrossRef]
- Ječmenica, M.; Kravić, N.; Vasić, M.; Živanović, T.; Mandić, V.; Damnjanović, J.; Dragičević, V. Genetic Variability of Free Energy in a Function of Drought Tolerance in Common Bean Accessions. Genetika 2016, 48, 1003–1015. [Google Scholar] [CrossRef]
- Galan, P.-M.; Ivanescu, L.-C.; Leti, L.-I.; Zamfirache, M.M.; Gorgan, D.-L. Comparative Effects of Water Scarcity on the Growth and Development of Two Common Bean (Phaseolus vulgaris L.) Genotypes with Different Geographic Origin (Mesoamerica/Andean). Plants 2024, 13, 2111. [Google Scholar] [CrossRef]
- Mulatu Alemu, M.; Gedebo, A.; Gobena Roro, A.; Tamiru Geletu, T. Effect of Moisture Stress on Physiological and Yield Responses of Common Bean Varieties at Lath House Condition, Hawassa University, Southern Ethiopia. Int. J. Agron. 2023, 2023, 2626225. [Google Scholar] [CrossRef]
- Muñoz-Perea, C.G.; Allen, R.G.; Westermann, D.T.; Wright, J.L.; Singh, S.P. Water Use Efficiency among Dry Bean Landraces and Cultivars in Drought-Stressed and Non-Stressed Environments. Euphytica 2007, 155, 393–402. [Google Scholar] [CrossRef]
- Urrea, C.A.; Smith, J.R.; Porch, T.G. Release of Drought-Tolerant Pinto SB-DT2 and Small Red SB-DT3 Common Bean Germplasm from a Shuttle Breeding Program between Nebraska and Puerto Rico. J. Plant Regist. 2022, 16, 400–409. [Google Scholar] [CrossRef]
- Mohamed, M.F.; Tawfik, A.A. Breeding for Drought Resistance in Common Bean: In Vitro Assay for Root Osmotic Potential. J. Crop Improv. 2008, 22, 209–224. [Google Scholar] [CrossRef]
- Muñoz, L.C.; Debouck, D.G.; Rivera, M.; Muñoz, J.E.; Alpala, D.; Sarsu, F.; Rao, I.M. Mutation Breeding for Heat and Drought Tolerance in Tepary Bean (Phaseolus acutifolius A. Gray). Aust. J. Crop Sci. 2021, 15, 60–68. [Google Scholar] [CrossRef]
- Espadafor, M.; Couto, L.; Resende, M.; Henderson, D.W.; García-Vila, M.; Fereres, E. Simulation of the Responses of Dry Beans (Phaseolus vulgaris L.) to Irrigation. Trans. ASABE 2017, 60, 1983–1994. [Google Scholar] [CrossRef]
- Mathobo, R.; Marais, D.; Steyn, J.M. Calibration and Validation of the SWB Model for Dry Beans (Phaseolus vulgaris L.) at Different Drought Stress Levels. Agric. Water Manag. 2018, 202, 113–121. [Google Scholar] [CrossRef]
- Jha, P.K.; Beebe, S.; Alvarez-Toro, P.; Mukankusi, C.; Ramirez-Villegas, J. Characterizing Patterns of Seasonal Drought Stress for Use in Common Bean Breeding in East Africa under Present and Future Climates. Agric. For. Meteorol. 2023, 342, 109735. [Google Scholar] [CrossRef]
- Servín-Palestina, M.; López-Cruz, I.; Zegbe, J.A.; Ruiz-García, A.; Salazar-Moreno, R.; Cid-Ríos, J.Á. Calibration and Evaluation of the SIMPLE Crop Growth Model Applied to the Common Bean under Irrigation. Agronomy 2024, 14, 917. [Google Scholar] [CrossRef]
- Justino, L.F.; Heinemann, A.B.; da Matta, D.H.; Stone, L.F.; Gonçalves, P.A.d.O.; da Silva, S.C. Characterization of Common Bean Production Regions in Brazil Using Machine Learning Techniques. Agric. Syst. 2025, 224, 104237. [Google Scholar] [CrossRef]
- Durigon, A.; de Jong van Lier, Q. Canopy Temperature versus Soil Water Pressure Head for the Prediction of Crop Water Stress. Agric. Water Manag. 2013, 127, 1–6. [Google Scholar] [CrossRef]
- Marrou, H.; Sinclair, T.R.; Metral, R. Assessment of Irrigation Scenarios to Improve Performances of Lingot Bean (Phaseolus vulgaris) in Southwest France. Eur. J. Agron. 2014, 59, 22–28. [Google Scholar] [CrossRef]
- Satriani, A.; Loperte, A.; Soldovieri, F. Integrated Geophysical Techniques for Sustainable Management of Water Resource. A Case Study of Local Dry Bean versus Commercial Common Bean Cultivars. Agric. Water Manag. 2015, 162, 57–66. [Google Scholar] [CrossRef]
- Heinemann, A.B.; Ramirez-Villegas, J.; Souza, T.L.P.O.; Didonet, A.D.; di Stefano, J.G.; Boote, K.J.; Jarvis, A. Drought Impact on Rainfed Common Bean Production Areas in Brazil. Agric. For. Meteorol. 2016, 225, 57–74. [Google Scholar] [CrossRef]
- Heinemann, A.B.; Ramirez-Villegas, J.; Stone, L.F.; Didonet, A.D. Climate Change Determined Drought Stress Profiles in Rainfed Common Bean Production Systems in Brazil. Agric. For. Meteorol. 2017, 246, 64–77. [Google Scholar] [CrossRef]
- Alvar-Beltrán, J.; Franceschini, G. Effect of Future Climate on Crop Production in Bhutan. Ital. J. Agrometeorol. 2024, 2024, 101–119. [Google Scholar]
- Lipovac, A.; Bezdan, A.; Moravčević, D.; Djurović, N.; Ćosić, M.; Benka, P.; Stričević, R. Correlation between Ground Measurements and UAV Sensed Vegetation Indices for Yield Prediction of Common Bean Grown under Different Irrigation Treatments and Sowing Periods. Water 2022, 14, 3786. [Google Scholar] [CrossRef]
- Javornik, T.; Carović-Stanko, K.; Gunjača, J.; Vidak, M.; Lazarević, B. Monitoring Drought Stress in Common Bean Using Chlorophyll Fluorescence and Multispectral Imaging. Plants 2023, 12, 1386. [Google Scholar] [CrossRef]
- Polania, J.A.; Poschenrieder, C.; Beebe, S.; Rao, I.M. Effective Use of Water and Increased Dry Matter Partitioned to Grain Contribute to Yield of Common Bean Improved for Drought Resistance. Front. Plant Sci. 2016, 7, 660. [Google Scholar] [CrossRef] [PubMed]
- Fernando Capristo Silva, G.; Carlos Andrade Gonçalves, A.; Antonio da Silva, C.; Rafael Nanni, M.; Uliana Facco, C.; Cezar, E.; Antonio da Silva, A. NDVI Response to Water Stress in Different Phenological Stages in Culture Bean. J. Agron. 2016, 15, 1–10. [Google Scholar]
- Dramadri, I.O.; Nkalubo, S.T.; Kelly, J.D. Identification of QTL Associated with Drought Tolerance in Andean Common Bean. Crop Sci. 2019, 59, 1007–1020. [Google Scholar] [CrossRef]
- Elias, J.C.F.; Gonçalves-Vidigal, M.C.; Bisneta, M.V.; Valentini, G.; Filho, P.S.V.; Gilio, T.A.S.; Moda-Cirino, V.; Song, Q. Genome-Environment Association Analysis for Bio-Climatic Variables in Common Bean (Phaseolus vulgaris L.) from Brazil. Plants 2021, 10, 1572. [Google Scholar] [CrossRef]
- Cai, D.; Zhang, Y.; Ding, D.; Yang, S.; Zhang, J.; Chen, J. Whole-Transcriptome RNA Sequencing Reveals the Global Molecular Responses in Response to Drought Stress in Common Bean (Phaseolus vulgaris L.). Euphytica 2025, 221, 79. [Google Scholar] [CrossRef]
- Gutierrez-Benicio, G.M.; Ramirez-Pimentel, J.G.; Acosta-Gallegos, J.A.; Aguirre-Mancilla, C.L.; Raya-Perez, J.C.; Rodriguez-Vera, A.P.; Montero-Tavera, V. Identification of a Set of Genes from Genotypes of Common Bean Tolerant and Susceptible to Water Stress for a Macroarray-Based Selection Strategy. Biol. Plant. 2016, 60, 496–504. [Google Scholar] [CrossRef]
- Yerlikaya, B.A.; Yerlikaya, S.; Aydin, A.; Yilmaz, N.N.; Bahadır, S.; Abdulla, M.F.; Mostafa, K.; Kavas, M. Enhanced Drought and Salt Stress Tolerance in Arabidopsis via Ectopic Expression of the PvMLP19 Gene. Plant Cell Rep. 2025, 44, 130. [Google Scholar] [CrossRef]
- Wu, L.; Chang, Y.; Wang, L.; Wu, J.; Wang, S. Genetic Dissection of Drought Resistance Based on Root Traits at the Bud Stage in Common Bean. Theor. Appl. Genet. 2021, 134, 1047–1061. [Google Scholar] [CrossRef]
- Wu, L.; Chang, Y.; Wang, L.; Wang, S.; Wu, J. The Aquaporin Gene PvXIP1;2 Conferring Drought Resistance Identified by GWAS at Seedling Stage in Common Bean. Theor. Appl. Genet. 2022, 135, 485–500. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Chang, Y.; Wang, L.; Ji, L.; Peng, L.; Wang, S.; Wu, J. Genetic Dissection of Yield-Related Traits in Response to Drought Stress in Common Bean. Crop J. 2023, 11, 1097–1105. [Google Scholar] [CrossRef]
- Wu, L.; Chang, Y.; Wang, L.; Wang, S.; Wu, J. Genome-Wide Association Study Dissecting Drought Resistance-Associated Loci Based on Physiological Traits in Common Bean. J. Integr. Agric. 2024, 23, 3657–3671. [Google Scholar] [CrossRef]
- Souter, J.R.; Gurusamy, V.; Porch, T.G.; Bett, K.E. Successful Introgression of Abiotic Stress Tolerance from Wild Tepary Bean to Common Bean. Crop Sci. 2017, 57, 1160–1171. [Google Scholar] [CrossRef]
- Sadohara, R.; Cichy, K.; Fourie, D.; Msolla, S.N.; Song, Q.; Miklas, P.; Porch, T. Andean Common Bean Bulk Breeding Lines Selected on Multiple Continents Exhibit Broad Genetic Diversity and Stress Adaptation. Crop Sci. 2024, 64, 2801–2822. [Google Scholar] [CrossRef]
- Zadražnik, T.; Egge-Jacobsen, W.; Meglič, V.; Šuštar-Vozlič, J. Proteomic Analysis of Common Bean Stem under Drought Stress Using In-Gel Stable Isotope Labeling. J. Plant Physiol. 2017, 209, 42–50. [Google Scholar] [CrossRef]
- Damasceno, E.; Silva, K.J.; De Souza, E.A.; Ishikawa, F.H. Characterization of Colletotrichum lindemuthianum Isolates from the State of Minas Gerais, Brazil. J. Phytopathol. 2007, 155, 241–247. [Google Scholar] [CrossRef]
- Xavier, L.F.S.; Poletine, J.P.; Gonçalves-Vidigal, M.C.; Valentini, G.; Filho, P.S.V.; Pastor-Corrales, M.A. Characterization of Diversity in Colletotrichum lindemuthianum in Parana, Brazil, Suggest Breeding Strategies for Anthracnose Resistance in Common Bean. Eur. J. Plant Pathol. 2021, 160, 757–770. [Google Scholar] [CrossRef]
- Vidigal Filho, P.S.; Gonçalves-Vidigal, M.C.; Kelly, J.D.; Kirk, W.W. Sources of Resistance to Anthracnose in Traditional Common Bean Cultivars from Paraná, Brazil. J. Phytopathol. 2007, 155, 108–113. [Google Scholar] [CrossRef]
- Rodríguez-Suárez, C.; Méndez-Vigo, B.; Pañeda, A.; Ferreira, J.J.; Giraldez, R. A Genetic Linkage Map of Phaseolus vulgaris L. and Localization of Genes for Specific Resistance to Six Races of Anthracnose (Colletotrichum lindemuthianum). Theor. Appl. Genet. 2007, 114, 713–722. [Google Scholar] [CrossRef]
- Dongfang, Y.; Conner, R.L.; Yu, K.; Balasubramanian, P.; Penner, W.C.; Yager, L.M. Identification of Anthracnose Resistance Genes in Dry Bean Cultivars Grown in Manitoba. Can. J. Plant Sci. 2008, 88, 771–781. [Google Scholar] [CrossRef]
- Gilio, T.A.S.; Hurtado-Gonzales, O.P.; Goncalves-Vidigal, M.C.; Valentini, G.; Elias, J.C.F.; Song, Q.; Pastor-Corrales, M.A. Fine Mapping of an Anthracnose-Resistance Locus in Andean Common Bean Cultivar Amendoim Cavalo. PLoS ONE 2020, 15, e0239763. [Google Scholar] [CrossRef] [PubMed]
- Palacıoğlu, G.; Özer, G.; Yeken, M.Z.; Çiftçi, V.; Bayraktar, H. Resistance Sources and Reactions of Common Bean (Phaseolus vulgaris L.) Cultivars in Turkey to Anthracnose Disease. Genet. Resour. Crop Evol. 2021, 68, 3373–3381. [Google Scholar] [CrossRef]
- Lima, L.R.L.; Gonçalves-Vidigal, M.C.; Vaz Bisneta, M.; Valentini, G.; Vidigal Filho, P.S.; Martins, V.d.S.R.; de Souza, T.L.P.O. Genetic Fine-Mapping of Anthracnose Disease-Resistance Allele Co-14 Present in the Andean Common Bean Cultivar AND 277. Crop Sci. 2023, 63, 750–763. [Google Scholar] [CrossRef]
- Marcon, J.R.S.; Gonçalves-Vidigal, M.C.; Paulino, J.F.C.; Vidigal Filho, P.S.; Coêlho, M. Genetic Resistance of Common Bean Cultivar Beija Flor to Colletotrichum lindemuthianum. Acta Sci.-Agron. 2020, 43, e44910. [Google Scholar] [CrossRef]
- Gomes-Messias, L.M.; Vianello, R.P.; Monteiro-Júnior, J.P.; Rodrigues, L.A.; Mota, A.P.S.; Pereira, H.S.; Melo, L.C.; Raatz, B.; de Souza, T.L.P.O. Molecular Characterization of Parental Lines and Validation of SNP Markers for Anthracnose and Angular Leaf Spot in Common Bean. Euphytica 2022, 218, 49. [Google Scholar] [CrossRef]
- Borel, J.C.; Ramalho, M.A.P.; de Fátima Barbosa Abreu, Â.; Maia, L.G.S. Genetic Control of the Angular Leaf Spot Reaction in Common Bean Leaves and Pods. Sci. Agric. 2011, 68, 661–664. [Google Scholar] [CrossRef]
- Keller, B.; Manzanares, C.; Jara, C.; Lobaton, J.D.; Studer, B.; Raatz, B. Fine-Mapping of a Major QTL Controlling Angular Leaf Spot Resistance in Common Bean (Phaseolus vulgaris L.). Theor. Appl. Genet. 2015, 128, 813–826. [Google Scholar] [CrossRef]
- Gil, J.; Solarte, D.; Lobaton, J.D.; Mayor, V.; Barrera, S.; Jara, C.; Beebe, S.; Raatz, B. Fine-Mapping of Angular Leaf Spot Resistance Gene Phg-2 in Common Bean and Development of Molecular Breeding Tools. Theor. Appl. Genet. 2019, 132, 2003–2016. [Google Scholar] [CrossRef] [PubMed]
- de Pádua, P.F.; Pereira, R.; Abreu, Â.d.F.B.; Ramalho, M.A.P.; Souza, E.A. Efficiency of a Recurrent Selection Method to Achieve Resistance of Common Beans to Pseudocercospora griseola in a Short Period. Ciênc. Agrotec. 2021, 45, e013421. [Google Scholar] [CrossRef]
- Rezende, B.A.; Abreu, Â.d.F.B.; Ramalho, M.A.P.; de Souza, E.A. Severity Evaluation Methods in Common Bean Recurrent Selection Programme for Resistance to Angular Leaf Spot. J. Phytopathol. 2014, 162, 643–649. [Google Scholar] [CrossRef]
- Mündel, H.-H.; Kiehn, F.A.; Huang, H.C.; Conner, R.L.; Balasubramanian, P. Island Pinto Bean. Can. J. Plant Sci. 2008, 88, 161–163. [Google Scholar] [CrossRef]
- da Costa, J.G.C.; Melo, L.C.; Pereira, H.S.; del Peloso, M.J.; de Faria, L.C.; Díaz, J.L.C.; Wendland, A.; Rava, C.A. BRS Esplendor-Common Bean Cultivar with Black Grain, Upright Growth and Disease Resistance. Crop Breed. Appl. Biotechnol. 2011, 11, 276–279. [Google Scholar] [CrossRef]
- Ramalho, M.A.P.; Abreu, Â.d.F.B.; Carneiro, J.E.d.S.; Melo, L.C.; de Paula Júnior, T.J.; Pereira, H.S.; Del Peloso, M.J.; Pereira Filho, I.A.; Martins, M.; Del Giúdice, M.P.; et al. BRSMG Uai: Common Bean Cultivar with Carioca Grain Type and Upright Plant Architecture. Crop Breed. Appl. Biotechnol. 2016, 16, 261–264. [Google Scholar] [CrossRef]
- Meng, X.X.; Wang, Q.; Yin, Z.G.; Wei, S.H.; Guo, Y.F.; Zhang, W.; Yang, G.D. Breeding of a New Black Bean (Phaseolus vulgaris L.) Cultivar with a High Yield and Upright Growth Pattern: Longyundou 19. Legume Res. 2023, 46, 403–407. [Google Scholar] [CrossRef]
- Kadege, E.L.; Venkataramana, P.B.; Assefa, T.; Ndunguru, J.C.; Rubyogo, J.C.; Mbega, E.R. Assessing Disease Resistance and Yield Components in Advanced Breeding Lines of Common Bean in Different Locations of Northern Tanzania. Asian J. Agric. Biol. 2024, 2024, 2023233. [Google Scholar] [CrossRef]
- Urrea, C.A.; Steadman, J.R.; Pastor-Corrales, M.A.; Lindgren, D.T.; Venegas, J.P. Registration of Great Northern Common Bean Cultivar ‘Coyne’ with Enhanced Disease Resistance to Common Bacterial Blight and Bean Rust. J. Plant Regist. 2009, 3, 219–222. [Google Scholar] [CrossRef]
- Urrea, C.A.; Hurtado-Gonzales, O.P.; Pastor-Corrales, M.A.; Steadman, J.R. Registration of Great Northern Common Bean Cultivar ‘Panhandle Pride’ with Enhanced Disease Resistance to Bean Rust and Common Bacterial Blight. J. Plant Regist. 2019, 13, 311–315. [Google Scholar] [CrossRef]
- Balasubramanian, P.M.; Mündel, H.-H.; Conner, R.L.; Chatterton, S.; Hou, A. AAC Black Diamond 2 Dry Bean. Can. J. Plant Sci. 2015, 95, 437–440. [Google Scholar] [CrossRef]
- Gillard, C.L.; Conner, R.L.; Howard, R.J.; Pauls, K.P.; Shaw, L.; Taran, B. The Performance of Dry Bean Cultivars with and without Common Bacterial Blight Resistance in Field Studies across Canada. Can. J. Plant Sci. 2009, 89, 405–410. [Google Scholar] [CrossRef]
- Porch, T.G.; Beaver, J.S.; Abawi, G.; de Jensen, C.E.; Smith, J.R. Registration of a Small-Red Dry Bean Germplasm, TARS-LFR1, with Multiple Disease Resistance and Superior Performance in Low Nitrogen Soils. J. Plant Regist. 2014, 8, 177–182. [Google Scholar] [CrossRef]
- Paula Rodiño, A.; Belén Monteagudo, A.; de Ron, A.M.; Santalla, M. Ancestral Landraces of Common Bean from the South of Europe and Their Agronomical Value for Breeding Programs. Crop Sci. 2009, 49, 2087–2099. [Google Scholar] [CrossRef]
- Melo, L.C.; Pereira, H.S.; de Faria, L.C.; de Souza, T.L.P.O.; Wendland, A.; Díaz, J.L.C.; de Carvalho, H.W.L.; de Melo, C.L.P.; da Costa, A.F.; de Magaldi, M.C.S.; et al. BRS FC402: High-Yielding Common Bean Cultivar with Carioca Grain, Resistance to Anthracnose and Fusarium Wilt. Crop Breed. Appl. Biotechnol. 2017, 17, 67–71. [Google Scholar] [CrossRef]
- Nchimbi-Msolla, S.; Urrea, C.A.; Kilango, M.; Soler-Garzón, A.; Porch, T.G.; Miklas, P.N. Release of ‘Kikatiti’ a Multiple Disease Resistant Pinto Bean Cultivar with Superior Productivity in Tanzania Identified from Evaluation of the Durango Diversity Panel. J. Plant Regist. 2024, 18, 512–522. [Google Scholar] [CrossRef]
- Jiménez-Galindo, J.C.; Padilla-Chacón, D.; Anaya-López, J.L.; Acosta-Gallegos, J.A.; Ramírez-Cabral, N.; Sánchez-Gutiérrez, R.A.; Ortega-Ortega, A.; Figueroa-Gonzalez, J.J. ‘Tepehuán-RS’ a New Drought Tolerant, High Grain Yield in Low Plant Densities and Slow Darkening Pinto Bean Cultivar. J. Plant Regist. 2025, 19, e220420. [Google Scholar] [CrossRef]
- Osorno, J.M.; Simons, K.J.; Erfatpour, M.; Vander Wal, A.J.; Posch, J.; Grafton, K.F. Seed Yield Improvement in Navy Bean: Registration of ‘ND Polar’. J. Plant Regist. 2023, 17, 255–262. [Google Scholar] [CrossRef]
- Ferreira, S.; Gomes, L.A.A.; Maluf, W.R.; Campos, V.P.; de Carvalho Filho, J.L.S.; Santos, D.C. Resistance of Dry Bean and Snap Bean Cultivars to Root-Knot Nematodes. HortScience 2010, 45, 320–322. [Google Scholar] [CrossRef]
- Sadeghi, L.; Jamali, S.; Naderpour, M.; Asareh, M.H.; Lahiji, H.S.; Naghavi, M.R. Reactions of Selected Bean Cultivars and Accessions to Iranian Populations of Meloidogyne javanica and Race 2 of M. Incognita. Crop Prot. 2021, 140, 105433. [Google Scholar] [CrossRef]
- Vandemark, G.J.; Fourie, D.; Miklas, P.N. Genotyping with Real-Time PCR Reveals Recessive Epistasis between Independent QTL Conferring Resistance to Common Bacterial Blight in Dry Bean. Theor. Appl. Genet. 2008, 117, 513–522. [Google Scholar] [CrossRef]
- Alinia, M.; Kazemeini, S.A.; Dadkhodaie, A.; Sepehri, M.; Pessarakli, M. Improving Salt Tolerance Threshold in Common Bean Cultivars Using Melatonin Priming: A Possible Mission? J. Plant Nutr. 2021, 44, 2691–2714. [Google Scholar] [CrossRef]
- Alinia, M.; Kazemeini, S.A.; Sepehri, M.; Dadkhodaie, A. Simultaneous Application of Rhizobium Strain and Melatonin Improves the Photosynthetic Capacity and Induces Antioxidant Defense System in Common Bean (Phaseolus vulgaris L.) Under Salinity Stress. J. Plant Growth Regul. 2022, 41, 1367–1381. [Google Scholar] [CrossRef]
- Manoj, B.S.; Gupta, M.; Un Nissa, T.; Gupta, S.; Salgotra, R.K. Chitosan Priming Ameliorates Protein and Amino Acid Profiles in Red Kidney Bean under Drought Stress. J. Plant Growth Regul. 2025, 44, 1052–1067. [Google Scholar] [CrossRef]
- Keshavarz, H.; Moghadam, R.S.G. Seed Priming with Cobalamin (Vitamin B12) Provides Significant Protection against Salinity Stress in the Common Bean. Rhizosphere 2017, 3, 143–149. [Google Scholar] [CrossRef]
- Martínez-Aguilar, K.; Hernández-Chávez, J.L.; Alvarez-Venegas, R. Priming of Seeds with INA and Its Transgenerational Effect in Common Bean (Phaseolus vulgaris L.) Plants. Plant Sci. 2021, 305, 110834. [Google Scholar] [CrossRef]
- Borromeo, I.; Giordani, C.; Forni, C. Efficacy of Lippia Alba Essential Oil in Alleviating Osmotic and Oxidative Stress in Salt-Affected Bean Plants. Horticulturae 2025, 11, 457. [Google Scholar] [CrossRef]
- Lastochkina, O.; Aliniaeifard, S.; Garshina, D.; Garipova, S.; Pusenkova, L.; Allagulova, C.; Fedorova, K.; Baymiev, A.; Koryakov, I.; Sobhani, M. Seed Priming with Endophytic Bacillus Subtilis Strain-Specifically Improves Growth of Phaseolus vulgaris Plants under Normal and Salinity Conditions and Exerts Anti-Stress Effect through Induced Lignin Deposition in Roots and Decreased Oxidative and Osmotic Damages. J. Plant Physiol. 2021, 263, 153462. [Google Scholar] [PubMed]
- Mhada, M.; Zvinavashe, A.T.; Hazzoumi, Z.; Zeroual, Y.; Marelli, B.; Kouisni, L. Bioformulation of Silk-Based Coating to Preserve and Deliver Rhizobium tropici to Phaseolus vulgaris Under Saline Environments. Front. Plant Sci. 2021, 12, 700273. [Google Scholar] [CrossRef]
- Borromeo, I.; Domenici, F.; Giordani, C.; Del Gallo, M.; Forni, C. Enhancing Bean (Phaseolus vulgaris L.) Resilience: Unveiling the Role of Halopriming against Saltwater Stress. Seeds 2024, 3, 228–250. [Google Scholar] [CrossRef]
- Costa, M.R.; Tanure, J.P.M.; Arruda, K.M.A.; Carneiro, J.E.S.; Moreira, M.A.; Barros, E.G. Development and Characterization of Common Black Bean Lines Resistant to Anthracnose, Rust and Angular Leaf Spot in Brazil. Euphytica 2010, 176, 149–156. [Google Scholar] [CrossRef]
- Gonçalves-Vidigal, M.C.; Cruz, A.S.; Lacanallo, G.F.; Vidigal Filho, P.S.; Sousa, L.L.; Pacheco, C.M.N.A.; McClean, P.; Gepts, P.; Pastor-Corrales, M.A. Co-Segregation Analysis and Mapping of the Anthracnose Co-10 and Angular Leaf Spot Phg-ON Disease-Resistance Genes in the Common Bean Cultivar Ouro Negro. Theor. Appl. Genet. 2013, 126, 2245–2255. [Google Scholar] [CrossRef]
- Gonçalves-Vidigal, M.C.; Cruz, A.S.; Garcia, A.; Kami, J.; Filho, P.S.V.; Sousa, L.L.; McClean, P.; Gepts, P.; Pastor-Corrales, M.A. Linkage Mapping of the Phg-1 and Co-14 Genes for Resistance to Angular Leaf Spot and Anthracnose in the Common Bean Cultivar AND 277. Theor. Appl. Genet. 2011, 122, 893–903. [Google Scholar] [CrossRef]
- Luiza Ahern Beraldo, A.N.A.; Colombo, C.A.; Chiorato, A.F.; Fumikoito, M.; Carbonell, S.A.M. Use of scar markers in common bean breeding for anthracnose resistance. Bragantia 2009, 68, 53–61. [Google Scholar]
- Wasonga, C.J.; Pastor-Corrales, M.A.; Porch, T.G.; Griffiths, P.D. Targeting Gene Combinations for Broad-Spectrum Rust Resistance in Heat-Tolerant Snap Beans Developed for Tropical Environments. J. Am. Soc. Hortic. Sci. 2010, 135, 521–532. [Google Scholar] [CrossRef]
- Wasonga, C.J.; Pastor-Corrales, M.A.; Porch, T.G.; Griffiths, P.D. Multi-Environment Selection of Small Sieve Snap Beans Reduces Production Constraints in East Africa and Subtropical Regions. HortScience 2012, 47, 1000–1006. [Google Scholar] [CrossRef]
- Souza, T.L.P.O.; Ragagnin, V.A.; Dessaune, S.N.; Sanglard, D.A.; Carneiro, J.E.S.; Moreira, M.A.; Barros, E.G. DNA Marker-Assisted Selection to Pyramid Rust Resistance Genes in “Carioca” Seeded Common Bean Lines. Euphytica 2014, 199, 303–316. [Google Scholar] [CrossRef]
- Beaver, J.S.; Rosas, J.C.; Porch, T.G.; Pastor-Corrales, M.A.; Godoy-Lutz, G.; Prophete, E.H. Registration of PR0806-80 and PR0806-81 White Bean Germplasm Lines with Resistance to BGYMV, BCMV, BCMNV, and Rust. J. Plant Regist. 2015, 9, 208–211. [Google Scholar] [CrossRef]
- Terán, H.; Singh, S.P. Gamete and Recurrent Selection for Improving Physiological Resistance to White Mold in Common Bean. Can. J. Plant Sci. 2010, 90, 153–162. [Google Scholar] [CrossRef]
- Zuccarini, P. Effects of Silicon on Photosynthesis, Water Relations and Nutrient Uptake of Phaseolus vulgaris under NaCl Stress. Biol. Plant 2008, 52, 157–160. [Google Scholar] [CrossRef]
- Rady, M.M.; Mohamed, G.F. Modulation of Salt Stress Effects on the Growth, Physio-Chemical Attributes and Yields of Phaseolus vulgaris L. Plants by the Combined Application of Salicylic Acid and Moringa oleifera Leaf Extract. Sci. Hortic. 2015, 193, 105–113. [Google Scholar] [CrossRef]
- Osman, H.S.; Salim, B.B.M. Influence of Exogenous Application of Some Phytoprotectants on Growth, Yield and Pod Quality of Snap Bean under NaCl Salinity. Ann. Agric. Sci. 2016, 61, 1–13. [Google Scholar] [CrossRef][Green Version]
- Bargaz, A.; Nassar, R.M.A.; Rady, M.M.; Gaballah, M.S.; Thompson, S.M.; Brestic, M.; Schmidhalter, U.; Abdelhamid, M.T. Improved Salinity Tolerance by Phosphorus Fertilizer in Two Phaseolus vulgaris Recombinant Inbred Lines Contrasting in Their P-Efficiency. J. Agron. Crop Sci. 2016, 202, 497–507. [Google Scholar] [CrossRef]
- Gupta, S.; Pandey, S. Enhanced Salinity Tolerance in the Common Bean (Phaseolus vulgaris) Plants Using Twin ACC Deaminase Producing Rhizobacterial Inoculation. Rhizosphere 2020, 16, 100241. [Google Scholar] [CrossRef]
- Abdel Motaleb, N.A.; Abd Elhady, S.A.; Ghoname, A.A. AMF and Bacillus megaterium Neutralize the Harmful Effects of Salt Stress On Bean Plants. Gesunde Pflanz. 2020, 72, 29–39. [Google Scholar] [CrossRef]
- Ennoury, A.; BenMrid, R.; Nhhala, N.; Roussi, Z.; Latique, S.; Zouaoui, Z.; Nhiri, M. River’s Ulva intestinalis Extract Protects Common Bean Plants (Phaseolus vulgaris L.) against Salt Stress. S. Afr. J. Bot. 2022, 150, 334–341. [Google Scholar] [CrossRef]
- Taha, M.A.; Moussa, H.R.; Dessoky, E.S. The Influence of Spirulina platensis on Physiological Characterization and Mitigation of DNA Damage in Salt-Stressed Phaseolus vulgaris L. Plants. Egypt. J. Bot. 2023, 63, 607–620. [Google Scholar] [CrossRef]
- Eisakhani, M.R.; Ghooshchi, F.; Moghaddam, H.R.T.; Kasraie, P.; Oveysi, M. Mitigation the Adverse Effects of Salinity on Red Bean Plants via Exogenous Application of Glycine Betaine, Zinc, and Manganese: Physiological and Morphological Approach. Russ. J. Plant Physiol. 2023, 70, 51. [Google Scholar] [CrossRef]
- Naghavi, F.; Khoshroo, S.M.R.; Kazemipour, M.; Zarandi, M.M. Potassium Copper Sulfate Hydrate Nanoparticles Modulated Salinity Stress through Improving Germination, Growth, and Biochemical Attributes of Common Bean (Phaseolus vulgaris L.). Russ. J. Plant Physiol. 2023, 70, 152. [Google Scholar] [CrossRef]
- Shyaa, T.A.; Karomi Kisko, M.F. Effect of Humic Acid, Cytokinin and Arginine on Growth and Yield Traits of Bean Plant Phaseolus vulgaris L. under Salt Stress. Baghdad Sci. J. 2024, 21, 919–936. [Google Scholar] [CrossRef]
- Nhhala, N.; Latique, S.; Kchikich, A.; Kchikich, A.; Nhiri, M.; García-Angulo, P. Saccorhiza Polyschides Extract as Biostimulant for Reducing Salt Stress Effect in Common Bean Crops. Agronomy 2024, 14, 1626. [Google Scholar] [CrossRef]
- Karimi, M.R.; Sabokdast, M.; Korang Beheshti, H.; Abbasi, A.R.; Bihamta, M.R. Seed Priming with Salicylic Acid Enhances Salt Stress Tolerance by Boosting Antioxidant Defense in Phaseolus vulgaris Genotypes. BMC Plant Biol. 2025, 25, 489. [Google Scholar] [CrossRef] [PubMed]
- Gulmezoglu, N.; İzci, E. Ionic Responses of Bean (Phaseolus vulgaris L.) Plants under Salinity Stress and Humic Acid Applications. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 1317–1331. [Google Scholar] [CrossRef]
- Sitohy, M.Z.; Desoky, E.-S.M.; Osman, A.; Rady, M.M. Pumpkin Seed Protein Hydrolysate Treatment Alleviates Salt Stress Effects on Phaseolus vulgaris by Elevating Antioxidant Capacity and Recovering Ion Homeostasis. Sci. Hortic. 2020, 271, 109495. [Google Scholar] [CrossRef]
- Mohamed, H.I.; El-Sayed, A.A.; Rady, M.M.; Caruso, G.; Sekara, A.; Abdelhamid, M.T. Coupling Effects of Phosphorus Fertilization Source and Rate on Growth and Ion Accumulation of Common Bean under Salinity Stress. PeerJ 2021, 9, e11463. [Google Scholar] [CrossRef]
- Ghoname, A.A.; AbdelMotlb, N.A.; Abdel-Al, F.S.; Abu El-Azm, N.A.I.; Abd Elhady, S.A.; Merah, O.; Abdelhamid, M.T. Brassinosteroids or Proline Can Alleviate Yield Inhibition under Salt Stress via Modulating Physio-Biochemical Activities and Antioxidant Systems in Snap Bean. J. Hortic. Sci. Biotechnol. 2023, 98, 526–539. [Google Scholar] [CrossRef]
- Saadat, H.; Sedghi, M.; Seyed Sharifi, R.; Farzaneh, S. Evaluation of Gibberellin Synthesis Genes (GA3OX) expression and Antioxidant Capacity in Common Bean (Phaseolus vulgaris L. cv. Sadri) Seeds induced by Chitosan under Salinity. Iran. J. Plant Physiol. 2023, 5, 4715. [Google Scholar] [CrossRef]
- Gupta, A.; Bharati, R.; Kubes, J.; Popelkova, D.; Praus, L.; Yang, X.; Severova, L.; Skalicky, M.; Brestic, M. Zinc Oxide Nanoparticles Application Alleviates Salinity Stress by Modulating Plant Growth, Biochemical Attributes and Nutrient Homeostasis in Phaseolus vulgaris L. Front. Plant Sci. 2024, 15, 1432258. [Google Scholar] [CrossRef]
- Porch, T.G.; Beaver, J.S.; Brick, M.A. Registration of Tepary Germplasm with Multiple-Stress Tolerance, TARS-Tep 22 and TARS-Tep 32. J. Plant Regist. 2013, 7, 358–364. [Google Scholar] [CrossRef]
- Alghamdi, S.A.; Alharby, H.F.; Bamagoos, A.A.; Zaki, S.S.; Abu El-Hassan, A.M.A.; Desoky, E.-S.M.; Mohamed, I.A.A.; Rady, M.M. Rebalancing Nutrients, Reinforcing Antioxidant and Osmoregulatory Capacity, and Improving Yield Quality in Drought-Stressed Phaseolus vulgaris by Foliar Application of a Bee-Honey Solution. Plants 2023, 12, 63. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.E.A.; De Camargo, E.; Castro, P.R.; Gaziola, S.A.; Azevedo, R.A. Is Seaweed Extract an Elicitor Compound? Changing Proline Content in Drought-Stressed Bean Plants. Comun. Sci. 2018, 9, 292–297. [Google Scholar] [CrossRef]
- Bastos, F.J.d.C.; Soares, F.A.L.; Sousa, C.V.; Tavares, C.J.; Teixeira, M.B.; Sousa, A.E.C. Common Bean Yield under Water Suppression and Application of Osmoprotectants. Rev. Bras. Eng. Agric. Ambient. 2016, 20, 697–701. [Google Scholar] [CrossRef][Green Version]
- Nuzhyna, N.; Raksha, N.; Halenova, T.; Vovk, T.; Savchuk, O.; Maievska, T.; Maievskyi, K.; Tonkha, O.; Ostapchenko, L. Fish Hydrolysates as Potential Biostimulants for Growing Legumes and Cereals to Reduce Temperature Stress. Open Agric. J. 2024, 18. [Google Scholar] [CrossRef]
- Mohammadi, M.; Pouryousef, M.; Tavakoli, A.; Fard, E.M. Improvement in Photosynthesis, Seed Yield and Protein Content of Common Bean (Phaseolus vulgaris) by Foliar Application of 24-Epibrassinolide under Drought Stress. Crop Pasture Sci. 2019, 70, 535–545. [Google Scholar] [CrossRef]
- Mohammadi, M.; Tavakoli, A.; Pouryousef, M.; Mohseni Fard, E. Study the Effect of 24-Epibrassinolide Application on the Cu/Zn-SOD Expression and Tolerance to Drought Stress in Common Bean. Physiol. Mol. Biol. Plants 2020, 26, 459–474. [Google Scholar] [CrossRef]
- Schmit, R.; Ferrareze, J.P.; Sganzerla, W.G.; Rosa, G.B.; Xavier, L.O.; Veeck, A.P.d.L.; Ferreira, P.I.; Primieri, S. Salicylic Acid Application in the Initial Development of Beans (Phaseolus vulgaris L.) under Water Stress Conditions: Agronomical and Antioxidant Parameters. Biocatal. Agric. Biotechnol. 2021, 31, 101896. [Google Scholar] [CrossRef]
- Nodehi, M.S.; Moradi, J. Study of the Physiological and Biochemical Changes of Common Bean in Response to Foliar Application of Salcylic Acid under Drought Stress Conditions. J. Crop Breed. 2022, 14, 117–126. [Google Scholar]
- Abd El-Gawad, H.G.; Mukherjee, S.; Farag, R.; Abd Elbar, O.H.; Hikal, M.; Abou El-Yazied, A.; Abd Elhady, S.A.; Helal, N.; ElKelish, A.; El Nahhas, N.; et al. Exogenous γ-Aminobutyric Acid (GABA)-Induced Signaling Events and Field Performance Associated with Mitigation of Drought Stress in Phaseolus vulgaris L. Plant Signal. Behav. 2021, 16, 1853384. [Google Scholar] [CrossRef]
- Ulukapi, K.; Nasircilar, A.G.; Şener, S.; Aydinsakir, K. Alleviation of Drought Stress in Phaseolus vulgaris L. Cultivars Using Biostimulants in Organic Agriculture. Acta Sci. Pol. Hortorum Cultus 2020, 19, 143–157. [Google Scholar] [CrossRef]
- Hernández-Figueroa, K.I.; Sánchez-Chávez, E.; Ojeda-Barrios, D.L.; Chávez-Mendoza, C.; Muñoz-Márquez, E.; Palacio-Márquez, A. Effectiveness of the application of biostimulants in snap bean under water stress. Rev. Mex. Cienc. Agric. 2022, 13, 149–160. [Google Scholar]
- Yeken, M.Z.; Özer, G.; Çiftçi, V. Genome-Wide Identification and Expression Analysis of DGK (Diacylglycerol Kinase) Genes in Common Bean. J. Plant Growth Regul. 2023, 42, 2558–2569. [Google Scholar] [CrossRef]
- Zhang, W.; Cheng, Y.; Jian, L.; Wang, H.; Li, H.; Shen, Z.; Ying, W.; Yin, Z.; Zhang, Q.; Du, J. Genome-Wide Identification and Expression Analysis of the Trihelix Gene Family in Common Bean (Phaseolus Vulgaris L.) Under Salt and Drought Stress. J. Agron. Crop Sci. 2025, 211, e70038. [Google Scholar] [CrossRef]
- Gaafar, A.A.; Ali, S.I.; El-Shawadfy, M.A.; Salama, Z.A.; Sekara, A.; Ulrichs, C.; Abdelhamid, M.T. Ascorbic Acid Induces the Increase of Secondary Metabolites, Antioxidant Activity, Growth, and Productivity of the Common Bean under Water Stress Conditions. Plants 2020, 9, 627. [Google Scholar] [CrossRef] [PubMed]
- Semida, W.M.; Abd El-Mageed, T.A.; Gyushi, M.A.H.; Abd El-Mageed, S.A.; Rady, M.M.; Abdelkhalik, A.; Merah, O.; Sabagh, A.E.; El-Metwally, I.M.; Sadak, M.S.; et al. Exogenous Selenium Improves Physio-Biochemical and Performance of Drought-Stressed Phaseolus vulgaris Seeded in Saline Soil. Soil Syst. 2023, 7, 67. [Google Scholar] [CrossRef]
- Da silva, J.B.L.; Ferreira, P.A.; Justino, F.; Pires, L.C.; Toledo, A.S. Leaf Concentrations of Nitrogen and Phosphorus in Phaseolus vulgaris L. Plants under High CO2 Concentration and Drought Stress. Eng. Agric. 2014, 34, 935–944. [Google Scholar] [CrossRef]
- Heshmat, K.; Asgari Lajayer, B.; Shakiba, M.R.; Astatkie, T. Assessment of Physiological Traits of Common Bean Cultivars in Response to Water Stress and Molybdenum Levels. J. Plant Nutr. 2021, 44, 366–372. [Google Scholar] [CrossRef]
- Zimmer-Prados, L.M.; Moreira, A.S.F.P.; Magalhaes, J.R.; França, M.G.C. Nitric Oxide Increases Tolerance Responses to Moderate Water Deficit in Leaves of Phaseolus vulgaris and Vigna unguiculata Bean Species. Physiol. Mol. Biol. Plants 2014, 20, 295–301. [Google Scholar] [CrossRef]
- Ibrahim, M.F.M.; Ibrahim, H.A.; Abd El-Gawad, H.G. Folic Acid as a Protective Agent in Snap Bean Plants under Water Deficit Conditions. J. Hortic. Sci. Biotechnol. 2021, 96, 94–109. [Google Scholar] [CrossRef]
- Abd El Mageed, T.A.; Semida, W.; Hemida, K.A.; Gyushi, M.A.H.; Rady, M.M.; Abdelkhalik, A.; Merah, O.; Brestic, M.; Mohamed, H.I.; Sabagh, A.E.; et al. Glutathione-Mediated Changes in Productivity, Photosynthetic Efficiency, Osmolytes, and Antioxidant Capacity of Common Beans (Phaseolus vulgaris) Grown under Water Deficit. PeerJ 2023, 11, e15343. [Google Scholar] [CrossRef]
- Ozbahce, A.; Tari, A.F.; Gönülal, E.; Simsekli, N.; Padem, H. The Effect of Zeolite Applications on Yield Components and Nutrient Uptake of Common Bean under Water Stress. Arch. Agron. Soil Sci. 2015, 61, 615–626. [Google Scholar] [CrossRef]
- Seyahjani, E.A.; Yarnia, M.; Farahvash, F.; Benam, M.B.K.; Rahmani, H.A. Influence of Rhizobium, Pseudomonas and Mycorrhiza on Some Physiological Traits of Red Beans (Phaseolus vulgaris L.) under Different Irrigation Conditions. Legume Res. 2020, 43, 81–86. [Google Scholar] [CrossRef]
- Ziaei, M.; Pazoki, A. Foliar-Applied Seaweed Extract Improves Yield of Common Bean (Phaseolus vulgaris L.) Cultivars Through Changes in Biochemical and Fatty Acid Profile Under Irrigation Regimes. J. Soil Sci. Plant Nutr. 2022, 22, 2969–2979. [Google Scholar] [CrossRef]
- Arruda, B.; Bagagi, B.M.; de Freitas Junior, N.B.; Bejarano Herrera, W.F.; Estrada-Bonilla, G.A.; Leoti Zanetti, W.A.; Silva Silvério, A.L.; Ferrari Putti, F. Biochemical and Plant Growth Response of the Common Bean to Bioinput Application Under a Drought Stress Period. Stresses 2025, 5, 17. [Google Scholar] [CrossRef]
- Manoj, B.S.; Gupta, M.; Iqbal Jeelani, M.; Gupta, S. Chitosan Augments Bioactive Properties and Drought Resilience in Drought-Induced Red Kidney Beans. Food Res. Int. 2022, 159, 111597. [Google Scholar] [CrossRef] [PubMed]
- Dolatkhah Dashtmian, A.; Hosseini Mazinani, S.M.; Pazoki, A. Exogenous Chitosan Nanoparticles Modulated Drought Stress Through Changing Yield, Biochemical Attributes, and Fatty Acid Profile of Common Bean (Phaseolus vulgaris L.) Cultivars. Gesunde Pflanz. 2023, 75, 2463–2476. [Google Scholar] [CrossRef]
- Manoj, B.S.; Gupta, M.; Gupta, S.; Salgotra, R.K. Modulation of Antioxidant System Under Drought Conditions in Red Kidney Bean by Chitosan. J. Plant Growth Regul. 2025, 44, 569–586. [Google Scholar] [CrossRef]
- Kabay, T. Effects of Different Potassium Doses on Growth and Development of Drought-Sensitive Bean Plants. Acta Sci. Pol. Hortorum Cultus 2020, 19, 63–69. [Google Scholar] [CrossRef]
- Rodiño, A.P.; Riveiro, M.; De Ron, A.M. Implications of the Symbiotic Nitrogen Fixation in Common Bean under Seasonal Water Stress. Agronomy 2021, 11, 70. [Google Scholar] [CrossRef]
- Zvinavashe, A.T.; Laurent, J.; Mhada, M.; Sun, H.; Fouda, H.M.E.; Kim, D.; Mouhib, S.; Kouisni, L.; Marelli, B. Programmable Design of Seed Coating Function Induces Water-Stress Tolerance in Semi-Arid Regions. Nat. Food 2021, 2, 485–493. [Google Scholar] [CrossRef]
- Costa, L.C.; Nalin, R.S.; Dias, M.A.; Ferreira, M.E.; Song, Q.; Pastor-Corrales, M.A.; Hurtado-Gonzales, O.P.; de Souza, E.A. Different Loci Control Resistance to Different Isolates of the Same Race of Colletotrichum lindemuthianum in Common Bean. Theor. Appl. Genet. 2021, 134, 543–556. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, J.; Wang, L.; Wang, S. Genome-Wide Association Study Identifies NBS-LRR-Encoding Genes Related with Anthracnose and Common Bacterial Blight in the Common Bean. Front. Plant Sci. 2017, 8, 1398. [Google Scholar] [CrossRef] [PubMed]
- Ariza-Suarez, D.; Keller, B.; Spescha, A.; Aparicio, J.S.; Mayor, V.; Portilla-Benavides, A.E.; Buendia, H.F.; Bueno, J.M.; Studer, B.; Raatz, B. Genetic Analysis of Resistance to Bean Leaf Crumple Virus Identifies a Candidate LRR-RLK Gene. Plant J. 2023, 114, 23–38. [Google Scholar] [CrossRef]
- Soler-Garzón, A.; Miklas, P.N. An RNase H-Like Gene Complements Resistance to Bean Common Mosaic Necrosis Virus in Phaseolus vulgaris. Plant Genome 2025, 18, e70046. [Google Scholar] [CrossRef]
- Yeken, M.Z.; Çelik, A.; Emiralioğlu, O.; Çiftçi, V.; Baloch, F.S.; Özer, G. Exploring Differentially Expressed Genes in Phaseolus vulgaris L. during BCMV Infection. Physiol. Mol. Plant Pathol. 2024, 130, 102238. [Google Scholar] [CrossRef]
- Giordani, W.; Gama, H.C.; Chiorato, A.F.; Marques, J.P.R.; Huo, H.; Benchimol-Reis, L.L.; Camargo, L.E.A.; Garcia, A.A.F.; Vieira, M.L.C. Genetic Mapping Reveals Complex Architecture and Candidate Genes Involved in Common Bean Response to Meloidogyne Incognita Infection. Plant Genome 2022, 15, e20161. [Google Scholar] [CrossRef]
- Shi, A.; Xiong, H.; Michaels, T.E.; Chen, S. Genome and GWAS Analyses for Soybean Cyst Nematode Resistance in USDA World-Wide Common Bean (Phaseolus vulgaris) Germplasm. Front. Plant Sci. 2025, 16, 1520087. [Google Scholar] [CrossRef]
- Miklas, P.N.; Afanador, L.; Kelly, J.D. Recombination-Facilitated RAPD Marker-Assisted Selection for Disease Resistance in Common Bean. Crop Sci. 1996, 36, 86–90. [Google Scholar] [CrossRef]
- Melotto, M.; Kelly, J.D. An Allelic Series at the Co-1 Locus Conditioning Resistance to Anthracnose in Common Bean of Andean Origin. Euphytica 2000, 116, 143–149. [Google Scholar] [CrossRef]
- Haley, S.D.; Afanador, L.K.; Miklas, P.N.; Stavely, J.R.; Kelly, J.D. Heterogeneous Inbred Populations Are Useful as Sources of Near-Isogenic Lines for RAPD Marker Localization. Theor. Appl. Genet. 1994, 88, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Miklas, P.N.; Larsen, R.C.; Riley, R.; Kelly, J.D. Potential Marker-Assisted Selection for Bc-12 Resistance to Bean Common Mosaic Potyvirus in Common Bean. Euphytica 2000, 116, 211–219. [Google Scholar] [CrossRef]
- Schneider, K.A.; Grafton, K.F.; Kelly, J.D. QTL Analysis of Resistance to Fusarium Root Rot in Bean. Crop Sci. 2001, 41, 535–542. [Google Scholar] [CrossRef]
- Martínez-Aguilar, K.; Ramírez-Carrasco, G.; Hernández-Chávez, J.L.; Barraza, A.; Alvarez-Venegas, R. Use of BABA and INA As Activators of a Primed State in the Common Bean (Phaseolus vulgaris L.). Front. Plant Sci. 2016, 7, 653. [Google Scholar] [CrossRef]
- De la Rubia, A.G.; Mélida, H.; Centeno, M.L.; Encina, A.; García-Angulo, P. Immune Priming Triggers Cell Wall Remodeling and Increased Resistance to Halo Blight Disease in Common Bean. Plants 2021, 10, 1514. [Google Scholar] [CrossRef]
- Coss-Navarrete, E.L.; Díaz-Valle, A.; Alvarez-Venegas, R. Induction of Plant Resistance to Biotic Stress by Priming with β-Aminobutyric Acid (BABA) and Its Effect on Nitrogen-Fixing Nodule Development. In Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Díaz-Valle, A.; López-Calleja, A.C.; Alvarez-Venegas, R. Enhancement of Pathogen Resistance in Common Bean Plants by Inoculation with Rhizobium etli. Front. Plant Sci. 2019, 10, 1317. [Google Scholar] [CrossRef]
- Vieira, P.M.; Zeilinger, S.; Brandão, R.S.; Vianna, G.R.; Georg, R.C.; Gruber, S.; Aragão, F.J.L.; Ulhoa, C.J. Overexpression of an Aquaglyceroporin Gene in Trichoderma harzianum Affects Stress Tolerance, Pathogen Antagonism and Phaseolus vulgaris Development. Biol. Control 2018, 126, 185–191. [Google Scholar] [CrossRef]
- Azami-Sardooei, Z.; França, S.C.; De Vleesschauwer, D.; Höfte, M. Riboflavin Induces Resistance against Botrytis cinerea in Bean, but Not in Tomato, by Priming for a Hydrogen Peroxide-Fueled Resistance Response. Physiol. Mol. Plant Pathol. 2010, 75, 23–29. [Google Scholar] [CrossRef]
- Seifi, H.S.; Zarei, A.; Hsiang, T.; Shelp, B.J. Spermine Is a Potent Plant Defense Activator against Gray Mold Disease on Solanum lycopersicum, Phaseolus vulgaris, and Arabidopsis thaliana. Phytopathology 2019, 109, 1367–1377. [Google Scholar] [CrossRef] [PubMed]
- Gillard, C.L.; Ranatunga, N.K. Interaction between Seed Treatments, Surfactants and Foliar Fungicides on Controlling Dry Bean Anthracnose (Colletotrichum lindemuthianum). Crop Prot. 2013, 45, 22–28. [Google Scholar] [CrossRef]
- Mongi, R.; Tongoona, P.; Shimelis, H.; Sibiya, J. Agronomic Performance and Economics of Yield Loss Associated with Angular Leaf Spot Disease of Common Bean in the Southern Highlands of Tanzania. Plant Dis. 2018, 102, 85–90. [Google Scholar] [CrossRef]
- Agostini, E.A.T.; Machado-Neto, N.B.; Custódio, C.C. Induction of Water Deficit Tolerance by Cold Shock and Salicylic Acid during Germination in the Common Bean. Acta Scientiarum. Agron. 2013, 35, 209–219. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Plexida, S.; Chrysargyris, A.; Tzortzakis, N.; Barreira, J.C.M.; Barros, L.; Ferreira, I.C.F.R. Biostimulants Application Alleviates Water Stress Effects on Yield and Chemical Composition of Greenhouse Green Bean (Phaseolus vulgaris L.). Agronomy 2020, 10, 181. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Manual for VOSviewer, Version 1.6.20; Universiteit Leiden: Leiden, Netherlands, 2023. Available online: https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.20.pdf (accessed on 22 September 2025).











| Fungal Diseases | Damage | References |
|---|---|---|
| Anthracnose (Colletotrichum lindemuthianum) | Infects leaves, stems, pods, and seeds, producing sunken necrotic lesions that may lead to yield losses of up to 100%. | [50,51] |
| Angular leaf spot (Pseudocercospora griseola) | Causes angular, depressed lesions on leaves, stems, and pods, leading to defoliation, reduced grain quality, and yield losses of up to 80%. | [52,53,54] |
| Rust (Uromyces appendiculatus) | Produces reddish pustules with a yellow halo on leaves, stems, pods, and seeds, reducing photosynthesis, pod filling, and grain quality, with yield losses reaching 67%. | [55,56] |
| White mold (Sclerotinia sclerotiorum) | Infects aerial parts during vegetative and reproductive stages, forming small water-soaked lesions that develop into white mycelium and black sclerotia. Leads to irreversible wilting, tissue necrosis, and yield losses up to 100%. | [57,58] |
| Root rot (Rhizoctonia solani) | Affects roots, producing reddish-brown necrotic lesions that cause seedling wilting. In severe cases, delays growth and induces premature plant death, with yield losses up to 100%. | [59,60] |
| Vascular wilt (Fusarium oxysporum f. sp. phaseoli) | Infects the vascular system, causing foliar chlorosis, leaf drop, progressive wilting, and internal vascular discoloration, particularly in basal leaves. Early infections reduce growth and produce stunted plants, with yield losses up to 100%. | [61,62] |
| Powdery mildew (Erysiphe polygoni) | Primarly infects leaves, producing white powdery patches that cause curling and chlorosis. Severe infections cover foliage with mycelium reducing photosynthesis and the assimilation of carbon dioxide, with yield losses up to 69%. | [63] |
| Bacterial diseases | Damage | References |
| Common bacterial blight (Xanthomonas axonopodis pv. phaseoli) | Produces necrotic spots with yellow halos on leaves, stems, pods, and seeds, causing yield losses up to 36%. | [64,65] |
| Bacterial halo blight (Pseudomonas syringae pv. phaseolicola) | Produces chlorotic halos around necrotic lesions on leaves, pods, and petioles, with yield losses up to 43%. | [66,67] |
| Viral diseases | Damage | References |
| Bean Common Mosaic Virus (BCMV), Bean Common Mosaic Necrosis Virus (BCMNV), Bean Golden Mosaic Virus (BGMV), Cowpea Mild Mottle Virus (CPMMV) | Infect leaves, stems, pods, and seeds, causing mosaic patterns, chlorosis, deformation, necrosis, and reduced seed quality, with yield losses up to 35%. | [68,69] |
| Insect pests | Damage | References |
| Bean weevil (Acanthoscelides obtectus) | Infects stores seeds; larvae bore into seeds while adults perpetuate infestation through oviposition, causing 7–40% yield losses. | [70,71,72,73] |
| Bean fly (Ophiomya phaseoli) | Larvae minen stems and petioles, while adults feed on leaves and lay eggs. Leads to reduced growth, defoliation, and plant death in severe cases, with yield losses of 10–100%. | [74] |
| Thrips (Frankliniella occidentalis) | Feeds on leaf parenchyma and pollen, reducing photosynthetic activity. Also acts as a viral vector, with potential yield losses up to 60%. | [75] |
| Type of Stress | Definition/Plant Effects | References |
|---|---|---|
| Drought | Refers to prolonged water deficit that reduces soil water availability and limits root absorption. It affects cell turgor, vegetative growth, and leaf expansion. Plants respond by stomatal closure, which decreases transpiration but also photosynthesis. Additional physiological changes include reductions in relative water content and stomatal conductance, along with increased antioxidant defenses and osmoprotectant accumulation in sensitive genotypes. Collectively, these responses reduce biomass and compromise pod filling and yield potential. | [76,77,78] |
| Salinity | Involves the accumulation of soluble salts in the rhizosphere, which decreases soil osmotic potential and restricts water and nutrient uptake. This stress impairs plant development and growth. Salinity frequently co-occurs with drought, thereby intensifying the abiotic stress burden on the crop. | [79,80] |
| Heat | Results from exposure to high temperatures over extended periods, leading to physiological alterations that disrupt reproductive processes, pollen viability, seed filling, and photosynthetic efficiency, ultimately reducing yield. | [81] |
| Cold | Caused by exposure to low temperatures, either chilling (0–15 °C) or freezing (<0 °C), leading to tissue injury, foliar wilting, and impaired physiological processes such as photosynthesis, metabolism, and stomatal function. Cold stress also induces the accumulation of reactive oxygen species (ROS), generating oxidative stress that compromises growth and productivity. | [82] |
| Rank | Country | N | Affiliation | N | Author | N | Source (Q) | N |
|---|---|---|---|---|---|---|---|---|
| 1 | United States | 97 | Michigan State University | 47 | Beebe, S. | 30 | Euphytica (Q2) | 36 |
| 2 | Brazil | 86 | International Center for Tropical Agriculture | 46 | Kelly, J.D. | 29 | Crop Science (Q2) | 33 |
| 3 | Colombia | 27 | University of KwaZulu-Natal | 43 | Miklas, P.N. | 25 | Canadian Journal of Plant Science (Q3) | 19 |
| 4 | Spain | 24 | Universidade Estadual de Maringá | 34 | Singh, S.P. | 19 | Agronomy (Q1) | 18 |
| 5 | Turkey | 24 | Instituto Agronômico | 28 | Rao, I.M. | 16 | Frontiers in Plant Science (Q1) | 16 |
| 6 | India | 20 | North Dakota State University | 27 | Chiorato, A.F. | 15 | Theoretical and Applied Genetics (Q1) | 15 |
| 7 | Canada | 19 | Islamic Azad University | 22 | Carbonell, S. | 14 | Plants (Q1) | 14 |
| 8 | Mexico | 19 | Instituto Agronômico de Campinas | 21 | Porch, T.G. | 14 | Crop Breeding and Applied Biotechnology (Q3) | 1 |
| 9 | Iran | 17 | University of California | 21 | Pastor-Corrales, M.A. | 13 | Field Crops Research (Q1) | 11 |
| 10 | Egypt | 15 | University of Nebraska | 20 | Beaver, J.S. | 11 | Journal of the American Society for Horticultural Science (Q2) | 11 |
| Rank | Country | TC | Author | h-index | g-index | m-index | TC | PY_start | Source | h-index | g-index | m-index | TC | PY_start |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | United States | 4896 | Kelly, J.D. | 21 | 29 | 0.538 | 2470 | 1987 | Euphytica | 19 | 35 | 0.345 | 1919 | 1971 |
| 2 | Brazil | 1478 | Beebe, S. | 20 | 30 | 0.833 | 2258 | 2002 | Crop Science | 22 | 33 | 0.733 | 1879 | 1996 |
| 3 | Colombia | 1294 | Miklas, P.N. | 18 | 25 | 0.563 | 1595 | 1994 | Field Crops Research | 10 | 11 | 0.286 | 784 | 1991 |
| 4 | Mexico | 709 | Blair, M.W. | 10 | 11 | 0.5 | 1174 | 2006 | Theoretical and Applied Genetics | 13 | 15 | 0.406 | 724 | 1994 |
| 5 | Spain | 511 | Rao, I.M. | 11 | 16 | 0.611 | 1166 | 2008 | Frontiers in Plant Science | 11 | 16 | 1.1 | 507 | 2016 |
| 6 | Egypt | 432 | Singh, S.P. | 14 | 19 | 0.318 | 1001 | 1982 | Sciencia Horticulturae | 8 | 8 | 0.381 | 444 | 2005 |
| 7 | France | 361 | Gepts, P. | 8 | 10 | 0.276 | 620 | 1997 | Journal of the American Society for Horticultural Science | 9 | 11 | 0.321 | 435 | 1998 |
| 8 | South Africa | 332 | Acosta-Gallegos, J.A. | 6 | 9 | 0.171 | 563 | 1991 | Isme Journal | 2 | 2 | 0.25 | 416 | 2018 |
| 9 | Canada | 315 | Ramírez-Vallejo, J.P. | 2 | 2 | 0.069 | 561 | 1997 | Molecular Breeding | 5 | 5 | 0.179 | 384 | 1998 |
| 10 | Chile | 282 | Porch, T.G. | 9 | 14 | 0.45 | 545 | 2006 | Agricultural Water Management | 7 | 8 | 0.538 | 376 | 2013 |
| Rank | Title | Source | Year | TC | TC per Year |
|---|---|---|---|---|---|
| 1 | Common bean breeding for resistance against biotic and abiotic stresses: From classical to MAS breeding [107] | Euphytica | 2006 | 431 | 21.5 |
| 2 | Traits related to drought resistance in common bean [108] | Euphytica | 1998 | 342 | 12.2 |
| 3 | Influence of resistance breeding in common bean on rhizosphere microbiome composition and function [109] | The ISME Journal | 2018 | 322 | 40.3 |
| 4 | Quantitative disease resistance and quantitative resistance loci in breeding [110] | Annual Review of Phytopathology | 2010 | 274 | 17.1 |
| 5 | Broadening the genetic base of common bean cultivars [111] | Crop Science | 2001 | 264 | 10.6 |
| 6 | Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.) [112] | European Journal of Agronomy | 2007 | 249 | 13.1 |
| 7 | The effect of drought stress on yield, leaf gaseous exchange, and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.) [113] | Agricultural Water Management | 2017 | 229 | 25.4 |
| 8 | Tagging and mapping of genes and QTL and molecular marker-assisted selection for traits of economic importance in bean and cowpea [114] | Field Crops Research | 2003 | 229 | 10 |
| 9 | Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia [115] | Molecular Plant-Microbe Interactions | 2008 | 224 | 12.4 |
| 10 | Selection for drought resistance in common bean also improves yield in phosphorus-limited and favorable environments [92] | Crop Science | 2008 | 222 | 12.3 |
| N | Cluster Label | Terms | Cluster Frequency | Callon Centrality | Callon Density |
|---|---|---|---|---|---|
| 1 | Drought | Pod harvest index, yield, irrigation, crop adaptation, cultivar description, diallel, black bean, Phaseolus acutifolius, landrace, abiotic stress, drought tolerance, water deficit, vegetative growth, canopy temperature, photosynthesis, proline, abscisic acid (ABA), common bean rust, iron, proteomics, vegetation indices, genetic improvement, genetic resources, genome-wide association study (GWAS) | 340 | 1.65 | 36.23 |
| 2 | Anthracnose (Colletotrichum lindemuthianum) | Molecular marker, common bacterial blight, genome-wide association study (GWAS), Uromyces appendiculatus, Pseudocercospora griseola, angular leaf spot, gene pyramiding, Bean Common Mosaic Virus (BCMV), molecular breeding, quantitative trait loci (QTL), disease resistance genes, gene clusters | 105 | 0.76 | 38.07 |
| 3 | Plant breeding | Biotic stress, climate change, genetic diversity, food security, Phaseolus acutifolius, crop improvement, high temperature, nitrogen fixation, sustainable agriculture, biofortification, domestication, soil salinity, abscission, biodiversity, EMS mutagenesis | 82 | 0.92 | 42.21 |
| 4 | Salt stress | Osmolytes, stomatal conductance, deficit irrigation, salicylic acid, water productivity, antioxidant system, crop yield, drip irrigation, foliar application | 54 | 0.43 | 52.79 |
| 5 | Yield components | Combining ability, gene pools, Fusarium wilt, heat tolerance, heritability, ideotype | 32 | 0.34 | 32.46 |
| 6 | Grain yield | Heat stress, chlorophyll fluorescence, biomass, energy use | 25 | 0.29 | 41.11 |
| 7 | Epistasis | Linkage, pathogens, indirect selection, gene cluster | 17 | 0.52 | 71.25 |
| 8 | Antioxidant enzymes | Arbuscular mycorrhizal fungi, pod quality, biofertilizers, cyanobacteria | 16 | 0.17 | 49.67 |
| 9 | Pseudomonas spp. | Indole-3-butyric acid (IBA), 2.6-dichloroisonicotinic acid (INA), Beta-aminobutyric acid (BABA), cell wall, epigenetics | 15 | 0.08 | 77.78 |
| 10 | Sclerotinia sclerotiorum | Genetic resistance, partial resistance, association mapping | 15 | 0.06 | 37.85 |
| 11 | Xanthomonas axonopodis pv. phaseoli | Area Under the Disease Progress Curve (AUDPC), disease-resistance inheritance, disease severity | 14 | 0.02 | 45.31 |
| 12 | Gene expression | Root-knot nematode, aquaporins, gene | 13 | 0.056 | 47.222 |
| 13 | Seed priming | Antioxidant activity, biostimulant, chitosan, dry matter | 11 | 0.25 | 66.67 |
| 14 | Marker-Assisted Selection (MAS) | Marker-assisted selection (MAS), Xanthomonas campestris pv. phaseoli, common bacterial blight resistance | 8 | 0.33 | 53.70 |
| 15 | Random Amplified Polymorphic DNA (RAPD) | Phaeoisariopsis griseola | 8 | 0.43 | 30.00 |
| 16 | Leaf area index | Chlorophyll, chlorophyll content | 7 | 0.00 | 55.56 |
| 17 | Bacterial blight | Bean cultivars, breeding methods | 6 | 0.00 | 66.67 |
| 18 | Germination | Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) | 6 | 0.11 | 38.89 |
| 19 | Biostimulants | Temperature stress | 6 | 0.00 | 38.89 |
| 20 | Begomovirus | Genomic prediction | 4 | 0.00 | 62.50 |
| 21 | Acanthoscelides obtectus | Bean weevil | 3 | 0.00 | 33.33 |
| Genotype | Country | Disease Response | Reference |
|---|---|---|---|
| Island | Canada | R: Sclerotinia sclerotiorum S: Colletotrichum lindemuthianum | [200] |
| BRS Esplendor | Brazil | R: Colletotrichum lindemuthianum, Fusarium oxysporum f. sp. phaseoli, Xanthomonas axonopodis pv. phaseoli | [201] |
| BRSMG Uai | Brazil | R: Colletotrichum lindemuthianum, Bean Common Mosaic Virus, Fusarium oxysporum f. sp. Phaseoli S: Pseudocercospora griseola | [202] |
| Longyundou 19 | China | R: Colletotrichum lindemuthianum, Xanthomonas axonopodis pv. phaseoli, Bean Common Mosaic Virus | [203] |
| NUA 48/NUA 64 | Tanzania | R: Colletotrichum lindemuthianum | [204] |
| Coyne | United States | R: Xanthomonas axonopodis pv. phaseoli, Uromyces appendiculatus, Bean Common Mosaic Virus | [205] |
| Panhandle Pride | United States | R: Xanthomonas axonopodis pv. phaseoli, Bean Common Mosaic Virus | [206] |
| AAC Black Diamond 2, OAC Rex | Canada | R: Xanthomonas axonopodis pv. phaseoli | [207,208] |
| TARS-LFR1 | Puerto Rico, United States | R: Xanthomonas axonopodis pv. phaseoli, Bean Common Mosaic Virus | [209] |
| 0221-14 y 0452-03 | Spain | R: Colletotrichum lindemuthianum, Xanthomonas axonopodis pv. phaseoli, Pseudomonas syringae pv. phaseolicola, Bean Common Mosaic Virus | [210] |
| BRS FC402 | Brazil | R: Fusarium oxysporum f. sp. phaseoli, Colletotrichum lindemuthianum | [211] |
| Kikatiti | Tanzania | R: Bean Common Mosaic Virus, Bean Common Mosaic Necrosis Virus, Uromyces appendiculatus, Xanthomonas axonopodis pv. phaseoli; S: Pseudocercospora griseola | [212] |
| Tepehuán-RS | Mexico | R: Bean Common Mosaic Virus, Colletotrichum lindemuthianum | [213] |
| ND Polar | United States | R: Bean Common Mosaic Necrosis Virus, Xanthomonas axonopodis pv. phaseoli | [214] |
| Aporé, Ouro Negro, Macarrão Atibaia, Alabama #1 | Brazil | R: Meloidogyne javanica, Meloidogyne incognita | [215,216] |
| Carioca, Enxofre, Mulatinho Comun, Rio Doce | Iran, Colombia | S: Meloidogyne javanica, Meloidogyne incognita | [216] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meza-Maicelo, W.; Balcázar-Zumaeta, C.R.; Santillan Culquimboz, H.W.; Oliva-Cruz, M.; Lozano-Isla, F. Global Trends in Biotic and Abiotic Stress Mitigation Strategies for Common Bean: A Bibliometric Study. Int. J. Plant Biol. 2025, 16, 135. https://doi.org/10.3390/ijpb16040135
Meza-Maicelo W, Balcázar-Zumaeta CR, Santillan Culquimboz HW, Oliva-Cruz M, Lozano-Isla F. Global Trends in Biotic and Abiotic Stress Mitigation Strategies for Common Bean: A Bibliometric Study. International Journal of Plant Biology. 2025; 16(4):135. https://doi.org/10.3390/ijpb16040135
Chicago/Turabian StyleMeza-Maicelo, Wagner, César R. Balcázar-Zumaeta, Henry W. Santillan Culquimboz, Manuel Oliva-Cruz, and Flavio Lozano-Isla. 2025. "Global Trends in Biotic and Abiotic Stress Mitigation Strategies for Common Bean: A Bibliometric Study" International Journal of Plant Biology 16, no. 4: 135. https://doi.org/10.3390/ijpb16040135
APA StyleMeza-Maicelo, W., Balcázar-Zumaeta, C. R., Santillan Culquimboz, H. W., Oliva-Cruz, M., & Lozano-Isla, F. (2025). Global Trends in Biotic and Abiotic Stress Mitigation Strategies for Common Bean: A Bibliometric Study. International Journal of Plant Biology, 16(4), 135. https://doi.org/10.3390/ijpb16040135

