Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (701)

Search Parameters:
Keywords = tree species identification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3991 KiB  
Article
Detection of Pestalotiopsis abbreviata sp. nov., the Causal Agent of Pestalotiopsis Leaf Blight on Camellia japonica Based on Metagenomic Analysis
by Sung-Eun Cho, Ki Hyeong Park, Keumchul Shin and Dong-Hyeon Lee
J. Fungi 2025, 11(8), 553; https://doi.org/10.3390/jof11080553 - 25 Jul 2025
Viewed by 291
Abstract
Tree diseases affecting Camellia japonica have emerged as a significant threat to the health and longevity of this ornamental tree, particularly in countries where this tree species is widely distributed and cultivated. Among these, Pestalotiopsis spp. have been frequently reported and are considered [...] Read more.
Tree diseases affecting Camellia japonica have emerged as a significant threat to the health and longevity of this ornamental tree, particularly in countries where this tree species is widely distributed and cultivated. Among these, Pestalotiopsis spp. have been frequently reported and are considered one of the most impactful fungal pathogens, causing leaf blight or leaf spot, in multiple countries. Understanding the etiology and distribution of these diseases is essential for effective management and conservation of C. japonica populations. The traditional methods based on pathogen isolation and pure culture cultivation for diagnosis of tree diseases are labor intensive and time-consuming. In addition, the frequent coexistence of the major pathogens with other endophytes within a single C. japonica tree, coupled with inconsistent symptom expression and the occurrence of pathogens in asymptomatic hosts, further complicates disease diagnosis. These challenges highlight the urgent need to develop more rapid, accurate, and efficient diagnostic or monitoring tools to improve disease monitoring and management on trees, including C. japonica. To address these challenges, we applied a metagenomic approach to screen fungal communities within C. japonica trees. This method enabled comprehensive detection and characterization of fungal taxa present in symptomatic and asymptomatic tissues. By analyzing the correlation between fungal dominance and symptom expression, we identified key pathogenic taxa associated with disease manifestation. To validate the metagenomic approach, we employed a combined strategy integrating metagenomic screening and traditional fungal isolation to monitor foliar diseases in C. japonica. The correlation between dominant taxa and symptom expression was confirmed. Simultaneously, traditional isolation enabled the identification of a novel species, Pestalotiopsis, as the causal agent of leaf spot disease on C. japonica. In addition to confirming previously known pathogens, our study led to the discovery and preliminary characterization of a novel fungal taxon with pathogenic potential. Our findings provide critical insights into the fungal community of C. japonica and lay the groundwork for developing improved, rapid diagnostic tools for effective disease monitoring and management of tree diseases. Full article
Show Figures

Figure 1

22 pages, 9071 KiB  
Article
Integrating UAV-Based RGB Imagery with Semi-Supervised Learning for Tree Species Identification in Heterogeneous Forests
by Bingru Hou, Chenfeng Lin, Mengyuan Chen, Mostafa M. Gouda, Yunpeng Zhao, Yuefeng Chen, Fei Liu and Xuping Feng
Remote Sens. 2025, 17(15), 2541; https://doi.org/10.3390/rs17152541 - 22 Jul 2025
Viewed by 315
Abstract
The integration of unmanned aerial vehicle (UAV) remote sensing and deep learning has emerged as a highly effective strategy for inventorying forest resources. However, the spatiotemporal variability of forest environments and the scarcity of annotated data hinder the performance of conventional supervised deep-learning [...] Read more.
The integration of unmanned aerial vehicle (UAV) remote sensing and deep learning has emerged as a highly effective strategy for inventorying forest resources. However, the spatiotemporal variability of forest environments and the scarcity of annotated data hinder the performance of conventional supervised deep-learning models. To overcome these challenges, this study has developed efficient tree (ET), a semi-supervised tree detector designed for forest scenes. ET employed an enhanced YOLO model (YOLO-Tree) as a base detector and incorporated a teacher–student semi-supervised learning (SSL) framework based on pseudo-labeling, effectively leveraging abundant unlabeled data to bolster model robustness. The results revealed that SSL significantly improved outcomes in scenarios with sparse labeled data, specifically when the annotation proportion was below 50%. Additionally, employing overlapping cropping as a data augmentation strategy mitigated instability during semi-supervised training under conditions of limited sample size. Notably, introducing unlabeled data from external sites enhances the accuracy and cross-site generalization of models trained on diverse datasets, achieving impressive results with F1, mAP50, and mAP50-95 scores of 0.979, 0.992, and 0.871, respectively. In conclusion, this study highlights the potential of combining UAV-based RGB imagery with SSL to advance tree species identification in heterogeneous forests. Full article
(This article belongs to the Special Issue Remote Sensing-Assisted Forest Inventory Planning)
Show Figures

Figure 1

13 pages, 5233 KiB  
Article
Neosilba batesi Curran (Diptera: Lonchaeidae): Identification, Distribution, and Its Relationship with Avocado Fruits
by Braulio Alberto Lemus-Soriano, Oscar Morales-Galván, David García-Gallegos, Diana Vely García-Banderas, Mona Kassem and Carlos Patricio Illescas-Riquelme
Diversity 2025, 17(7), 499; https://doi.org/10.3390/d17070499 - 21 Jul 2025
Viewed by 425
Abstract
In this study, the association between Neosilba batesi (Diptera: Lonchaeidae) and avocado fruits (Persea americana L.) was investigated. Fruits showing signs of rot and infested with Diptera larvae were collected from commercial orchards in the states of Michoacán and Jalisco, Mexico. N. [...] Read more.
In this study, the association between Neosilba batesi (Diptera: Lonchaeidae) and avocado fruits (Persea americana L.) was investigated. Fruits showing signs of rot and infested with Diptera larvae were collected from commercial orchards in the states of Michoacán and Jalisco, Mexico. N. batesi was identified in association with fruits from both trees and the ground at all sampling sites. Furthermore, a phylogenetic analysis based on the mitochondrial cytochrome c oxidase subunit I (COI) gene supported the morphological identification, showing >99% identity with records from Veracruz, and revealed distinct genetic lineages within the Neosilba genus. In a study within one Michoacán orchard, infested tree-borne fruits averaged 5.40 cm in length and 3.90 cm in width, with a mean of 9.61 larvae emerging per fruit. Females were observed to lay eggs in openings between the pedicel and the fruit, never piercing the exocarp. In contrast, on fallen fruit, they utilized existing wounds with exposed pulp. Infested avocados exhibit characteristic spots indicating the presence of internal larvae and generally detach from the tree. Larvae can feed on avocados in various stages of decomposition and may either emerge through wounds or pupate within the fruit. These findings support the opportunistic and saprophagous behavior associated with this fly species. Full article
Show Figures

Figure 1

22 pages, 825 KiB  
Review
Research on the Emission of Biogenic Volatile Organic Compounds from Terrestrial Vegetation
by Dingyi Pei, Anzhi Wang, Lidu Shen and Jiabing Wu
Atmosphere 2025, 16(7), 885; https://doi.org/10.3390/atmos16070885 - 19 Jul 2025
Viewed by 486
Abstract
Biogenic volatile organic compounds (BVOCs) are low-boiling-point compounds commonly synthesized by secondary metabolic pathways in plants. As key precursors of ozone (O3) and secondary organic aerosols (SOA), BVOCs play a critical role in ecosystem-atmosphere interactions. However, their emission from both marine [...] Read more.
Biogenic volatile organic compounds (BVOCs) are low-boiling-point compounds commonly synthesized by secondary metabolic pathways in plants. As key precursors of ozone (O3) and secondary organic aerosols (SOA), BVOCs play a critical role in ecosystem-atmosphere interactions. However, their emission from both marine and terrestrial ecosystems, as well as their association with climate and the environment, remain poorly characterized. In light of recent advances in BVOC research, including the establishment of emission inventories, identification of driving factors, and evaluation of ecological and environmental impacts, this study reviews the latest advancements in the field. The findings underscore that the carbon losses via BVOC emission should not be overlooked when estimating the terrestrial carbon balance. Additionally, more work needs to be conducted to quantify the emission factors of specific tree species and to establish links between BVOC emission and climate or environment change. This study contributes to a deeper understanding of vegetation ecology and its environmental functions. Full article
(This article belongs to the Special Issue Atmospheric Particulate Matter: Origin, Sources, and Composition)
Show Figures

Figure 1

14 pages, 1016 KiB  
Article
Identification of Auchenorrhyncha Nymphs Using DNA Barcoding and Phylogenetic Analysis of the Most Common Genera Collected in Olive Fields
by Zoi Thanou, Maria Bouga, Georgios Papadoulis and Antonios Tsagkarakis
Diversity 2025, 17(7), 496; https://doi.org/10.3390/d17070496 - 19 Jul 2025
Viewed by 202
Abstract
Due to the potential role of Auchenorrhyncha in the transmission of the bacterium Xylella fastidiosa in a wide variety of cultivations, during recent years in Europe, many studies have focused on species composition, abundance and seasonal appearance of Auchenorrhyncha. However, females and nymphs [...] Read more.
Due to the potential role of Auchenorrhyncha in the transmission of the bacterium Xylella fastidiosa in a wide variety of cultivations, during recent years in Europe, many studies have focused on species composition, abundance and seasonal appearance of Auchenorrhyncha. However, females and nymphs are difficult to identify, as species-level identification relies primarily on male genitalia morphology. Sampling was conducted over four years in olive fields in Lesvos Island, in the Northeast Aegean, Greece, using sweep nets and Malaise traps. Both adults and nymphs were collected, with males identified to species level, while females and nymphs were separated on different morphotypes. Representatives from each morphotype and identified adults were sequenced using the mitochondrial cytochrome oxidase subunit I (COI) gene. Using a classical morphological approach, 58 species were identified to species level, and using DNA barcoding, nymph morphotypes and females were successfully identified within the families Cicadellidae, Aphrophoridae, Delphacidae and Issidae. A phylogenetic tree was generated, clustering nymphs together with the corresponding adults. Our results demonstrate the utility of combining morphological and molecular methods for accurate species identification and highlight the importance of enriching online databases with additional species records. Full article
(This article belongs to the Section Phylogeny and Evolution)
Show Figures

Figure 1

22 pages, 4848 KiB  
Article
Characterization and Mapping of Conservation Hotspots for the Climate-Vulnerable Conifers Abies nephrolepis and Picea jezoensis in Northeast Asia
by Seung-Jae Lee, Dong-Bin Shin, Jun-Gi Byeon, Sang-Hyun Lee, Dong-Hyoung Lee, Sang Hoon Che, Kwan Ho Bae and Seung-Hwan Oh
Forests 2025, 16(7), 1183; https://doi.org/10.3390/f16071183 - 18 Jul 2025
Viewed by 348
Abstract
Abies nephrolepis and Picea jezoensis are native Pinaceae trees distributed in high mountainous regions of Northeast Asia (typically above ~1000 m a.s.l. on the Korean peninsula, northeastern China, Sakhalin, and the Russian Far East) and southern boreal forests, vulnerable to climate change and [...] Read more.
Abies nephrolepis and Picea jezoensis are native Pinaceae trees distributed in high mountainous regions of Northeast Asia (typically above ~1000 m a.s.l. on the Korean peninsula, northeastern China, Sakhalin, and the Russian Far East) and southern boreal forests, vulnerable to climate change and human disturbances, necessitating accurate habitat identification for effective conservation. While protected areas (PAs) are essential, merely expanding existing ones often fail to protect populations under human pressure and climate change. Using species distribution models with current and projected climate data, we mapped potential habitats across Northeast Asia. Spatial clustering analyses integrated with PA and land cover data helped identify optimal sites and priorities for new conservation areas. Ensemble species distribution models indicated extensive suitable habitats, especially in southern Sikhote-Alin, influenced by maritime-continental climates. Specific climate variables strongly affected habitat suitability for both species. The Kamchatka peninsula consistently emerged as an optimal habitat under future climate scenarios. Our study highlights essential environmental characteristics shaping the habitats of these species, reinforcing the importance of strategically enhancing existing PAs, and establishing new ones. These insights inform proactive conservation strategies for current and future challenges, by focusing on climate refugia and future habitat stability. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

17 pages, 2706 KiB  
Article
Phylogenetic Determinants Behind the Ecological Traits of Relic Tree Family Juglandaceae, Their Root-Associated Symbionts, and Response to Climate Change
by Robin Wilgan
Int. J. Mol. Sci. 2025, 26(14), 6866; https://doi.org/10.3390/ijms26146866 - 17 Jul 2025
Viewed by 227
Abstract
Dual mycorrhizal symbiosis, i.e., the association with both arbuscular and ectomycorrhizal fungal symbionts, is an ambiguous phenomenon concurrently considered as common among various genetic lineages of trees and a result of bias in data analyses. Recent studies have shown that the ability to [...] Read more.
Dual mycorrhizal symbiosis, i.e., the association with both arbuscular and ectomycorrhizal fungal symbionts, is an ambiguous phenomenon concurrently considered as common among various genetic lineages of trees and a result of bias in data analyses. Recent studies have shown that the ability to form dual mycorrhizal associations is a distinguishing factor for the continental-scale invasion of alien tree species. However, the phylogenetic mechanisms that drive it remain unclear. In this study, all the evidence on root-associated symbionts of Juglandaceae from South and North America, Asia, and Europe was combined and re-analysed following current knowledge and modern molecular-based identification methods. The Juglandaceae family was revealed to represent a specific pattern of symbiotic interactions that are rare among deciduous trees and absent among conifers. Closely related phylogenetic lineages of trees usually share the same type of symbiosis, but Juglandaceae contains several possible ones concurrently. The hyperdiversity of root symbionts of Juglandaceae, unlike other tree families, was concurrently found in Central and North America, Asia, and Europe, indicating its phylogenetic determinants, which endured geographical isolation. However, for many Juglandaceae, including the invasive Juglans and Pterocarya species, this was never studied or was studied only with outdated methods. Further molecular research on root symbionts of Juglandaceae, providing long sequences and high taxonomic resolutions, is required to explain their ecological roles. Full article
(This article belongs to the Collection Advances in Molecular Plant Sciences)
Show Figures

Figure 1

22 pages, 9940 KiB  
Article
Developing a Novel Method for Vegetation Mapping in Temperate Forests Using Airborne LiDAR and Hyperspectral Imaging
by Nam Shin Kim and Chi Hong Lim
Forests 2025, 16(7), 1158; https://doi.org/10.3390/f16071158 - 14 Jul 2025
Viewed by 316
Abstract
This study advances vegetation and forest mapping in temperate mixed forests by integrating airborne hyperspectral imagery (HSI) and light detection and ranging (LiDAR) data, overcoming the limitations of conventional multispectral imaging. Employing a Digital Canopy Height Model (DCHM) derived from LiDAR, our approach [...] Read more.
This study advances vegetation and forest mapping in temperate mixed forests by integrating airborne hyperspectral imagery (HSI) and light detection and ranging (LiDAR) data, overcoming the limitations of conventional multispectral imaging. Employing a Digital Canopy Height Model (DCHM) derived from LiDAR, our approach integrates these structural metrics with hyperspectral spectral information, alongside detailed remote sensing data extraction. Through machine learning-based clustering, which combines both structural and spectral features, we successfully classified eight specific tree species, community boundaries, identified dominant species, and quantified their abundance, contributing to precise vegetation and forest type mapping based on predominant species and detailed attributes such as diameter at breast height, age, and canopy density. Field validation indicated the methodology’s high mapping precision, achieving overall accuracies of approximately 98.0% for individual species identification and 93.1% for community-level mapping. Demonstrating robust performance compared to conventional methods, this novel approach offers a valuable foundation for National Forest Ecology Inventory development and significantly enhances ecological research and forest management practices by providing new insights for improving our understanding and management of forest ecosystems and various forestry applications. Full article
Show Figures

Figure 1

16 pages, 3262 KiB  
Article
Comparison of Acoustic Tomography and Drilling Resistance for the Internal Assessment of Urban Trees in Madrid
by Miguel Esteban, Guadalupe Olvera-Licona, Gabriel Humberto Virgen-Cobos and Ignacio Bobadilla
Forests 2025, 16(7), 1125; https://doi.org/10.3390/f16071125 - 8 Jul 2025
Viewed by 225
Abstract
Acoustic tomography is a non-destructive technique used in the internal assessment of standing trees. Various researchers have focused on developing analytical tools using this technique, demonstrating that they can detect internal biodeterioration in cross-sections with good accuracy. This study evaluates the use of [...] Read more.
Acoustic tomography is a non-destructive technique used in the internal assessment of standing trees. Various researchers have focused on developing analytical tools using this technique, demonstrating that they can detect internal biodeterioration in cross-sections with good accuracy. This study evaluates the use of two ultrasonic wave devices with different frequencies (USLab and Sylvatest Duo) and a stress wave device (Microsecond Timer) to generate acoustic tomography using ImageWood VC1 software. The tests were carried out on 12 cross-sections of urban trees in the city of Madrid of the species Robinia pseudoacacia L., Platanus × hybrida Brot., Ulmus pumila L., and Populus alba L. Velocity measurements were made, forming a diffraction mesh in both standing trees and logs after cutting them down. An inspection was carried out with a perforation resistance drill (IML RESI F-400S) in the radial direction in each section, which allowed for more precise identification of defects and differentiating between holes and cracks. The various defects were determined with greater accuracy in the tomographic images taken with the higher-frequency equipment (45 kHz), and the combination of ultrasonic tomography and the use of the inspection drill can provide a more accurate representation of the defects. Full article
(This article belongs to the Special Issue Wood Properties: Measurement, Modeling, and Future Needs)
Show Figures

Figure 1

10 pages, 757 KiB  
Article
Environmental Sensitivity in AI Tree Bark Detection: Identifying Key Factors for Improving Classification Accuracy
by Charles Warner, Fanyou Wu, Rado Gazo, Bedrich Benes and Songlin Fei
Algorithms 2025, 18(7), 417; https://doi.org/10.3390/a18070417 - 8 Jul 2025
Viewed by 275
Abstract
Accurate tree species identification through bark characteristics is essential for effective forest management, but traditionally requires extensive expertise. This study leverages artificial intelligence (AI), specifically the EfficientNet-B3 convolutional neural network, to enhance AI-based tree bark identification, focusing on northern red oak (Quercus [...] Read more.
Accurate tree species identification through bark characteristics is essential for effective forest management, but traditionally requires extensive expertise. This study leverages artificial intelligence (AI), specifically the EfficientNet-B3 convolutional neural network, to enhance AI-based tree bark identification, focusing on northern red oak (Quercus rubra), hackberry (Celtis occidentalis), and bitternut hickory (Carya cordiformis) using the CentralBark dataset. We investigated three environmental variables—time of day (lighting conditions), bark moisture content (wet or dry), and cardinal direction of observation—to identify sources of classification inaccuracies. Results revealed that bark moisture significantly reduced accuracy by 8.19% in wet conditions (89.32% dry vs. 81.13% wet). In comparison, the time of day had a significant impact on hackberry (95.56% evening) and northern red oak (80.80% afternoon), with notable chi-squared associations (p < 0.05). Cardinal direction had minimal effect (4.72% variation). Bitternut hickory detection consistently underperformed (26.76%), highlighting morphological challenges. These findings underscore the need for targeted dataset augmentation with wet and afternoon images, alongside preprocessing techniques like illumination normalization, to improve model robustness. Enhanced AI tools will streamline forest inventories, support biodiversity monitoring, and bolster conservation in dynamic forest ecosystems. Full article
(This article belongs to the Special Issue Machine Learning Models and Algorithms for Image Processing)
Show Figures

Figure 1

15 pages, 8861 KiB  
Article
The Complete Chloroplast Genome of Purdom’s Rhododendron (Rhododendron purdomii Rehder & E. H. Wilson): Genome Structure and Phylogenetic Analysis
by Lu Yuan, Ningning Zhang, Shixin Zhu and Yang Lu
Forests 2025, 16(7), 1120; https://doi.org/10.3390/f16071120 - 7 Jul 2025
Viewed by 321
Abstract
Rhododendron purdomii Rehder & E. H. Wilson (Ericaceae) is a threatened ornamental and medicinal shrub or small tree species primarily distributed in the Qinling-Daba Mountains of Central China. To facilitate its conservation and utilization, the complete chloroplast genome of Rh. purdomii was sequenced, [...] Read more.
Rhododendron purdomii Rehder & E. H. Wilson (Ericaceae) is a threatened ornamental and medicinal shrub or small tree species primarily distributed in the Qinling-Daba Mountains of Central China. To facilitate its conservation and utilization, the complete chloroplast genome of Rh. purdomii was sequenced, assembled, and characterized. The cp genome exhibited a typical quadripartite structure with a total length of 208,062 bp, comprising a large single copy (LSC) region of 110,618 bp, a small single copy (SSC) region of 2606 bp, and two inverted repeat (IR) regions of 47,419 bp each. The overall GC content was 35.81%. The genome contained 146 genes, including 96 protein-coding genes, 42 transfer RNA genes, and 8 ribosomal RNA genes. Structure analysis identified 67,354 codons, 96 long repetitive sequences, and 171 simple sequence repeats. Comparative genomic analysis across Rhododendron species revealed hypervariable coding regions (accD, rps9) and non-coding regions (trnK-UUU-ycf3, trnI-CAU-rpoB, trnT-GGU-accD, rpoA-psbL, rpl20-trnC-GCA, trnI-CAU-rrn16, and trnI-CAU-rps16), which may serve as potential molecular markers for genetic identification. Phylogenetic reconstruction confirmed the monophyly of Rhododendron species and highlighted a close relationship between Rh. purdomii and Rh. henanense subsp. lingbaoense. These results provide essential genomic resources for advancing taxonomic, evolutionary, conservation, and breeding studies of Rh. purdomii and other species within the genus Rhododendron. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

10 pages, 1814 KiB  
Article
First Molecular Identification of Cotylophoron cotylophorum in Ecuador and Its Phylogenetic Relationship with Fasciola hepatica
by Geanella Barragán-López, Fausto Bedoya-Páez, María Lugo-Almarza, Carolina Fonseca-Restrepo, Francisco Angulo-Cubillán, Edison J. Romero, Jacobus H. de Waard and Armando Reyna-Bello
Pathogens 2025, 14(7), 659; https://doi.org/10.3390/pathogens14070659 - 4 Jul 2025
Viewed by 476
Abstract
Trematode infections caused by Fasciolidae and Paramphistomidae remain widespread in livestock, resulting in substantial economic losses. The two distinct fluke families are difficult to distinguish morphologically, and molecular identification provides the most reliable means of accurate diagnosis. In Ecuador, however, molecular data on [...] Read more.
Trematode infections caused by Fasciolidae and Paramphistomidae remain widespread in livestock, resulting in substantial economic losses. The two distinct fluke families are difficult to distinguish morphologically, and molecular identification provides the most reliable means of accurate diagnosis. In Ecuador, however, molecular data on these parasites are scarce. In this study, we collected trematodes from cattle rumen and bile ducts, molecularly identified them, and assessed their phylogenetic relationship to Fasciola hepatica to determine their introduction pathways into South America. Genomic DNA was extracted, and PCR was used to amplify the ITS2 (~500 bp) and COXI (~266 bp) regions; all amplicons were Sanger-sequenced. Phylogenetic trees for both markers were constructed using a Maximum Likelihood approach with 1000 bootstrap replicates in CIPRES v3.3. The rumen fluke exhibited 99% ITS2 and COXI similarity to an Indian Cotylophoron cotylophorum strain, while the bile-duct fluke showed 99% ITS2 and 100% COXI similarity to F. hepatica isolates from Australia and Nigeria, respectively. Distinct single-nucleotide polymorphisms (SNPs) in the ITS2 chromatograms suggest a diploid genome structure in both trematode species. This is the first report of C. cotylophorum in Ecuador, and its presence may be linked to the late 19th-century introduction of Zebu cattle (Bos taurus indicus) from India. Full article
Show Figures

Figure 1

16 pages, 2462 KiB  
Article
Potential of LP as a Biocontrol Agent for Vibriosis in Abalone Farming
by Ling Ke, Chenyu Huang, Song Peng, Mengshi Zhao, Fengqiang Lin and Zhaolong Li
Microorganisms 2025, 13(7), 1554; https://doi.org/10.3390/microorganisms13071554 - 2 Jul 2025
Viewed by 299
Abstract
Vibrio species are among the primary pathogenic bacteria affecting abalone aquaculture, posing significant threats to farming practices. Current clinical control predominantly relies on antibiotics, which can result in antibiotic residues in both abalone and the surrounding marine environments. Lactobacillus plantarum (LP) [...] Read more.
Vibrio species are among the primary pathogenic bacteria affecting abalone aquaculture, posing significant threats to farming practices. Current clinical control predominantly relies on antibiotics, which can result in antibiotic residues in both abalone and the surrounding marine environments. Lactobacillus plantarum (LP) has been shown to release bioactive antagonistic substances and exhibits potent inhibitory effects against marine pathogenic bacteria. This study aimed to screen and characterize the probiotic properties of LP strains isolated from rice wine lees to develop a novel biocontrol strategy against Vibriosis in abalone. The methods employed included selective media cultivation, streak plate isolation, and single-colony purification for strain screening, followed by Gram staining, 16S rDNA sequencing, and phylogenetic tree construction using MEGA11 for identification. The resilience, antimicrobial activity, and in vivo antagonistic efficacy of the strains were evaluated through stress tolerance assays, agar diffusion tests, and animal experiments. The results demonstrated the successful isolation and purification of four LP strains (NDMJ-1 to NDMJ-4). Phylogenetic analysis revealed closer genetic relationships between NDMJ-3 and NDMJ-4, while NDMJ-1 and NDMJ-2 were found to be more distantly related. All strains exhibited γ-hemolytic activity, bile salt tolerance (0.3–3.0%), and resistance to both acid (pH 2.5) and alkali (pH 8.5), although they were temperature sensitive (inactivated above 45 °C). The strains showed susceptibility to most of the 20 tested antibiotics, with marked variations in hydrophobicity (1.91–93.15%) and auto-aggregation (13.29–60.63%). In vitro antibacterial assays revealed that cell-free supernatants of the strains significantly inhibited Vibrio parahaemolyticus, V. alginolyticus, and V. natriegens, with NDMJ-4 displaying the strongest inhibitory activity. In vivo experiments confirmed that NDMJ-4 significantly reduced mortality in abalone infected with V. parahaemolyticus. In conclusion, the LP strains isolated from rice wine lees (NDMJ-1 to NDMJ-4) possess robust stress resistance, adhesion capabilities, and broad antibiotic susceptibility. Their metabolites exhibit significant inhibition against abalone-pathogenic Vibrios, particularly NDMJ-4, which demonstrates exceptional potential as a candidate strain for developing eco-friendly biocontrol agents against Vibriosis in abalone aquaculture. Full article
(This article belongs to the Special Issue Microbiome in Fish and Their Living Environment)
Show Figures

Figure 1

14 pages, 3332 KiB  
Article
Physiological Responses of Olive Cultivars Under Water Deficit
by Lorenzo León, Willem Goossens, Helena Clauw, Olivier Leroux and Kathy Steppe
Horticulturae 2025, 11(7), 745; https://doi.org/10.3390/horticulturae11070745 - 27 Jun 2025
Viewed by 294
Abstract
Olive trees are generally considered a species well-adapted to drought, but the impact of water shortage is of critical importance on olive production. For this reason, developing tolerant cultivars could be an effective strategy to mitigate the impact of drought in the future. [...] Read more.
Olive trees are generally considered a species well-adapted to drought, but the impact of water shortage is of critical importance on olive production. For this reason, developing tolerant cultivars could be an effective strategy to mitigate the impact of drought in the future. Characterizing drought stress tolerance in olive is a complex task due to the numerous traits involved in this response. In this study, plant growth, pressure–volume curves, gas-exchange and chlorophyll fluorescence traits, and stomata characteristics were monitored in nine cultivars to assess the effects of mild and severe drought stress conditions induced by withholding water for 7 and 21 days, respectively, and were compared to a well-watered control treatment. The plant materials evaluated included traditional cultivars, as well as new developed cultivars suited for high-density hedgerow olive orchards or resistant to verticillium wilt. Significant differences between cultivars were observed for most evaluated traits, with more pronounced differences under severe drought conditions. A multivariate analysis of the complete dataset recorded throughout the evaluation period allowed for the identification of promising cultivars under stress conditions (‘Sikitita’, ‘Sikitita-2’, and ‘Martina’) as well as highly discriminative traits that could serve as key selection parameters in future breeding programs. Full article
(This article belongs to the Special Issue Strategies of Producing Horticultural Crops Under Climate Change)
Show Figures

Figure 1

11 pages, 1288 KiB  
Communication
First Record of Dioryctria simplicella (Lepidoptera: Pyralidae) in China: Morphology, Molecular Identification, and Phylogenetic Position
by Niya Jia, Xiyao Ding, Dan Xie, Huanwen Chen, Defu Chi and Jia Yu
Insects 2025, 16(7), 664; https://doi.org/10.3390/insects16070664 - 26 Jun 2025
Viewed by 621
Abstract
Dioryctria Zeller, 1846 (Lepidoptera: Pyralidae) is a significant genus whose species primarily infest coniferous trees and are predominantly distributed across the Northern Hemisphere. To date, 17 species within this genus have been recorded in China. This study reports the discovery of Dioryctria simplicella [...] Read more.
Dioryctria Zeller, 1846 (Lepidoptera: Pyralidae) is a significant genus whose species primarily infest coniferous trees and are predominantly distributed across the Northern Hemisphere. To date, 17 species within this genus have been recorded in China. This study reports the discovery of Dioryctria simplicella (Heinemann, 1863) in China. During field surveys in forests of Heilongjiang Province, D. simplicella was observed infesting the cones and trunks of Pinus sylvestris var. mongolica Litv. as larvae. Comprehensive morphological descriptions and diagnostic characteristics of the adult, larva, pupa, and egg stages of D. simplicella are provided herein to facilitate accurate species identification within the genus. Molecular phylogenetic analysis based on mitochondrial cytochrome c oxidase subunit I (COI) DNA barcoding sequences was conducted to assess the phylogenetic position of D. simplicella within Dioryctria. These results strongly support its species identity and clarify its phylogenetic relationships with congeners. This discovery not only expands the known diversity of Lepidoptera in China but also provides new data supporting taxonomic and phylogenetic studies of the genus Dioryctria. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

Back to TopTop