Comparison of Acoustic Tomography and Drilling Resistance for the Internal Assessment of Urban Trees in Madrid
Abstract
1. Introduction
2. Materials and Methods
2.1. Ultrasound and Stress Wave Tests
2.2. Drilling Resistance Tests
2.3. Laboratory Tests
2.4. Obtaining Tomographic Images
3. Results
3.1. Transverse Velocities
3.2. Ultrasonic Tomography in Standing Trees and Logs in the Laboratory
3.3. Relative Velocity Decrease
3.4. Drilling Resistance Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Ponce, D.M.; Vallejos, B.Ó. Valoración de árboles urbanos, comparación de fórmulas. Rev. Fac. Cienc. Agric. 2016, 48, 195–208. [Google Scholar]
- Calaza, P.; Iglesias, M. Evaluación de Riesgo de Arbolado Peligroso: Principios, Indicadores y Métodos; Asociación Española de Arboricultura: Valencia, Spain, 2012. [Google Scholar]
- Brashaw, B.K.; Bucur, V.; Divos, F.; Goncalves, R.; Lu, J.; Meder, R.; Pellerin, R.F.; Potter, S.; Ross, R.J.; Wang, X.; et al. Nondestructive testing and evaluation of wood: A worldwide research update. For. Prod. J. 2009, 59, 7–14. [Google Scholar]
- Arciniegas, A.; Prieto, F.; Brancheriau, L.; Lasaugues, P. Literature review of acoustic and ultrasonic tomography in standing trees. Trees 2014, 28, 1559–1567. [Google Scholar] [CrossRef]
- Proto, A.R.; Cataldo, M.F.; Costa, C.; Papandrea, S.F.; Zimbalatti, G. A tomographic approach to assessing the possibility of ring shake presence in standing chestnut trees. Eur. J. Wood Prod. 2020, 78, 1137–1148. [Google Scholar] [CrossRef]
- Wang, X.; Allison, R. Decay detection in red oak trees using a combination of visual inspection, acoustic testing, and resistance microdrilling. Arboric. Urban For. 2008, 34, 1–4. [Google Scholar] [CrossRef]
- Bucur, V. Acoustics of Wood, 2nd ed.; Springer: New York, NY, USA, 2006; 393p. [Google Scholar]
- Bucur, V. Ultrasonic techniques for nondestructive testing of standing trees. Ultrasonics 2005, 43, 237–239. [Google Scholar] [CrossRef]
- Allison, R.B.; Wang, X.; Senalik, C.A. Methods for Nondestructive Testing of Urban Trees. Forests 2020, 11, 1341. [Google Scholar] [CrossRef]
- Deflorio, G.; Fink, S.; Schwarze, F.W.M.R. Detection of incipient decay in tree stems with sonic tomography after wounding and fungal inoculation. Wood Sci. Technol. 2007, 42, 117–132. [Google Scholar] [CrossRef]
- Brancheriau, L.; Lasaygues, P.; Debieu, E.; Lefebvre, J.P. Ultrasonic tomography of green wood using non-parametric imaging algorithm with reflected waves. Ann. For. Sci. 2008, 65, 712–718. [Google Scholar] [CrossRef]
- Wang, X.; Wiedenbeck, J.; Liang, S. Acoustic tomography for decay detection in black cherry trees. Wood Fiber Sci. 2009, 41, 127–137. [Google Scholar]
- Gonçalves, R.; Trinca, A.J.; dos Santos Ferreira, G.C. Effect of coupling media on velocity and attenuation of ultrasonic waves in Brazilian wood. J. Wood Sci. 2011, 57, 282–287. [Google Scholar] [CrossRef]
- Brancheriau, L.; Ghodrati, A.; Gallet, P.; Thaunay, P.; Lasaygues, P. Application of ultrasonic tomography to characterize the mechanical state of standing trees (Picea abies). J. Phys. Conf. 2012, 353, 012007. [Google Scholar] [CrossRef]
- Feng, H.; Li, G.; Fu, S.; Wang, X. Tomographic Image Reconstruction Using an Interpolation Method for Tree Decay Detection. BioResources 2014, 9, 3248–3263. [Google Scholar] [CrossRef]
- Du, X.; Li, S.; Li, G.; Feng, H.; Chen, S. Stress Wave Tomography of Wood Internal Defects using Ellipse-Based Spatial Interpolation and Velocity Compensation. BioResources 2015, 10, 3948–3962. [Google Scholar] [CrossRef]
- Koeser, A.K.; Hauer, R.J.; Klein, R.W.; Miesbauer, J.W. Assessment of likelihood of failure using limited visual, basic, and advanced assessment techniques. Urban For. Urban Green. 2017, 24, 71–79. [Google Scholar] [CrossRef]
- Palma, S.S.; Gonçalves, R.; Trinca, A.; Costa, C.; Nagle, M.; Martins, G. Interference from knots, wave propagation direction and effect of juvenile and reaction wood on velocities in ultrasound tomography. BioResources 2018, 13, 2834–2845. [Google Scholar] [CrossRef]
- Wu, X.; Li, G.; Jiao, Z.; Wang, X. Reliability of acoustic tomography and ground-penetrating radar for tree decay detection. Appl. Plant Sci. 2018, 6, e1187. [Google Scholar] [CrossRef]
- Papandrea, S.F.; Cataldo, M.F.; Zimbalatti, G.; Proto, A.R. Comparative evaluation of inspection techniques for decay detection in urban trees. Sens. Actuators A 2022, 340, 113544. [Google Scholar] [CrossRef]
- Divos, F.; Divos, P. Resolution of stress wave based acoustic tomography. In Proceedings of the 14th International Symposium on Non-Destructive Testing of Wood, Eberswalde, Germany, 2–4 May 2005; pp. 309–314. [Google Scholar]
- Espinosa, L.; Arciniegas, A.; Cortes, Y.; Prieto, F.; Brancheriau, L. Automatic segmentation of acoustic tomography images for the measurement of wood decay. Wood Sci. Technol. 2017, 51, 69–84. [Google Scholar] [CrossRef]
- Du, X.; Li, J.; Feng, H.; Chen, S. Image Reconstruction of Internal Defects in Wood Based on Segmented Propagation Rays of Stress Waves. Appl. Sci. 2018, 8, 1778. [Google Scholar] [CrossRef]
- Espinosa, L.; Prieto, F.; Brancheriau, L.; Lasaygues, P. Quantitative parametric imaging by ultrasound computed tomography of trees under anisotropic conditions: Numerical case study. Ultrasonics 2020, 102, 106060. [Google Scholar] [CrossRef] [PubMed]
- Wang, X. Partial Resistance Drilling to Assess Wood Density in Trees. In Proceedings of the 20th International Nondestructive Testing and Evaluation of Wood Symposium, Madison, WI, USA, 12–15 September 2017. [Google Scholar]
- Yang, Z.; Jiang, Z.; Hse, C.Y.; Liu, R. Assessing the impact of wood decay fungi on the modulus of elasticity of slash pine (Pinus elliottii) by stress wave non-destructive testing. Int. Biodeterior. Biodegrad. 2017, 117, 123–127. [Google Scholar] [CrossRef]
- Virgen-Cobos, G.H.; Olvera-Licona, G.; Hermoso, E.; Esteban, M. Nondestructive Techniques for Determination of Wood Mechanical Properties of Urban Trees in Madrid. Forests 2022, 13, 1381. [Google Scholar] [CrossRef]
- Palma, S.S.A.; Gonçalves, R. Tomographic images of the trunks generated using ultrasound and post-processed images: Influence of the number of measurement points. BioResources 2022, 17, 6638–6655. [Google Scholar] [CrossRef]
- Fakopp Enterprise Bt. 2022. Microsecond Timer Manual. Available online: https://files.fakopp.com/mstimer/mstimer_manual.pdf (accessed on 1 December 2024).
- Palma, S.S.; dos Reis, M.N.; Gonçalves, R. Tomographic Images Generated from Measurements in Standing Trees Using Ultrasound and Postprocessed Images: Methodological Proposals for Cutting Velocity, Interpolation Algorithm and Confusion Matrix Metrics Focusing on Image Quality. Forests 2022, 13, 1935. [Google Scholar] [CrossRef]
- Rinn, F.; Schweingruber, F.H.; Schar, E. Resistograph and X-ray density charts of wood: Comparative evaluation of drill resistance profiles and X-ray density charts of different wood species. Holzforschung 1996, 50, 303–311. [Google Scholar] [CrossRef]
- Mattheck, C.; Bethge, K.; Albrecht, W. How to read the results of Resistograph M. Arboric. J. 1997, 21, 331–346. [Google Scholar] [CrossRef]
- Rinn, F. Basics of typical resistance-drilling profiles. Western Arborist Winter 2012, 17, 30–36. [Google Scholar]
- Johnstone, D.M.; Ades, P.K.; Moore, G.M.; Smith, I.W. Predicting Wood Decay in Eucalypts Using an Expert System and the IML-Resistograph Drill. Arboric. Urban For. 2007, 33, 76–82. [Google Scholar] [CrossRef]
- Tannert, T.; Anthony, B.; Kasal, M.; Kloiber, M.; Piazza, M.; Riggio, M.; Rinn, F.; Widmann, R.; Yamaguachi, N. In situ assessment of structural timber using semi-destructive techniques. Mater. Struct. 2013, 47, 767–785. [Google Scholar] [CrossRef]
- Nagle, M.; Gonçalves, R.; Lopes-Garcia, G.H.; Manes, L. Profiles of a Non-Calibrated Resistance Drill Compared with Deteriorated Stem Cross Sections. Arboric. Urban For. 2019, 45, 1–9. [Google Scholar] [CrossRef]
- Lin, C.J.; Kao, Y.C.; Lin, T.T.; Tsai, M.J.; Wang, S.Y.; Lin, L.D.; Chan, M.H. Application of an ultrasonic tomographic technique for detecting defects in standing trees. Int. Biodeterior. Biodegrad. 2008, 62, 434–441. [Google Scholar] [CrossRef]
- Nagle, M. Association of Nondestructive Tools for Tree Inspection. Master’s Thesis, State University of Campinas, Brazil, South America, 2017. [Google Scholar]
- Nicolotti, G.; Socco, L.V.; Martinis, R.; Godio, A.; Sambuelli, L. Application and comparison of three tomographic techniques for detection of decay in trees. J. Arboric. 2003, 29, 66–78. [Google Scholar] [CrossRef]
- Kazemi-Najafi, S.K.; Shalbafan, A.; Ebrahimi, G. Internal decay assessment in standing beech trees using ultrasonic velocity measurement. Eur. J. For. Res. 2009, 128, 345–350. [Google Scholar] [CrossRef]
Tree | Relative Age | Diameter (cm) | Main State | Soil Condition | Standing Moisture Content (%) | Green Density (kg/m) |
---|---|---|---|---|---|---|
Robinia pseudoacacia L. | Mature | 27.0 | Inclined | Pavement over roots | 46.5 | 842.2 |
Platanus × hybrida Brot. | Mature | 41.1 | Inclined | Pavement over roots | 95.2 | 951.0 |
Ulmus pumila L. 1 | Mature | 44.2 | Inclined | Pavement over roots | 111.6 | 908.8 |
Ulmus pumila L. 2 | Mature | 39.7 | Basal rot | Pavement over roots | 137.4 | 1019.9 |
Ulmus pumila L. 3 | Mature | 33.4 | Inclined | Pavement over roots | 128.4 | 1024.5 |
Populus alba L. | Mature | 55.5 | Rot on the stem | Compact lawn | 143.2 | 865.0 |
Robinia pseudoacacia L. | Platanus × hybrida Brot. | Ulmus pumila L. 1 | Ulmus pumila L. 2 | Ulmus pumila L. 3 | Populus alba L. | |||
---|---|---|---|---|---|---|---|---|
USLab | S.T. | 2425.26 | 2110.85 | 1697.61 | 1754.06 | 1766.46 | s.n. | |
σ | 309.16 | 133.63 | 315.03 | 229.67 | 188.83 | s.n. | ||
CV | 0.12 | 0.06 | 0.18 | 0.13 | 0.10 | s.n. | ||
Log | 2322.28 | 1911.53 | 1666.39 | 1683.49 | 1780.23 | 798.51 | ||
σ | 281.73 | 123.48 | 303.69 | 214.49 | 208.68 | 413.42 | ||
CV | 0.12 | 0.06 | 0.18 | 0.12 | 0.11 | 0.51 | ||
Sylvatest Duo | S.T. | 1917.87 | 1873.51 | 611.75 | 1282.7 | 1560.28 | s.n. | |
σ | 223.09 | 243.66 | 347.24 | 311.74 | 185.40 | s.n. | ||
CV | 0.11 | 0.13 | 0.56 | 0.24 | 0.11 | s.n. | ||
Log | 1737.99 | 1575.75 | 1043.52 | 1273.42 | 1484.35 | 640.52 | ||
σ | 179.14 | 135.48 | 312.82 | 194.95 | 183.19 | 344.58 | ||
CV | 0.10 | 0.08 | 0.29 | 0.15 | 0.12 | 0.53 | ||
MST | S.T. | 1489.04 | 1230.54 | 1161.12 | 1193.33 | 1311.21 | 2429.02 | |
σ | 214.32 | 149.06 | 167.67 | 114.57 | 166.90 | 317.85 | ||
CV | 0.14 | 0.12 | 0.14 | 0.09 | 0.12 | 0.13 | ||
Log | 1398.72 | 1213.26 | 1139.39 | 1134.03 | 1288.91 | 985.14 | ||
σ | 154.43 | 110.40 | 101.31 | 127.33 | 167.37 | 132.34 | ||
CV | 0.11 | 0.09 | 0.08 | 0.11 | 0.12 | 0.13 |
Species | Vmax (m/s) USLab | Vmax (m/s) Sylvatest Duo | Vmax (m/s) MST | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SA | SB | SA | SB | SA | SB | |||||||
S.T. | Log | S.T. | Log | S.T. | Log | S.T. | Log | S.T. | Log | S.T. | Log | |
Robinia pseudoacacia L. | 3349.7 | 3267.6 | 3105.5 | 3084.8 | 2507.9 | 2068.2 | 2341.8 | 2074.3 | 1985.4 | 1615.9 | 2028.1 | 1655.1 |
Platanus × hybrida Brot. | 2406.8 | 2030.9 | 2372.7 | 2085.5 | 2072.9 | 1763.9 | 2564.8 | 1833.4 | 1455.3 | 1332.8 | 1483.3 | 1380.5 |
Ulmus pumila L. 1 | 2271.3 | 2219.0 | 2291.6 | 1971.4 | 1454.5 | 1661.6 | 1427.8 | 1289.1 | 1413.5 | 1347.9 | 1483.9 | 1225.7 |
Ulmus pumila L. 2 | 2209.5 | 1937.7 | 2372.3 | 2277.9 | 1758.3 | 1514.2 | 1831.1 | 1695.6 | 1376.4 | 1192.8 | 1415.5 | 1478.7 |
Ulmus pumila L. 3 | 2157.5 | 1978.1 | 2205.9 | 2364.9 | 1939.7 | 1725.2 | 2046.9 | 2128.2 | 1755.8 | 1397.8 | 1670.3 | 1706.6 |
Populus alba L. | s.n. | 1625.1 | s.n. | 1753.4 | s.n. | 1260.8 | s.n. | 1394.4 | 1515.3 | 1266.0 | 1291.1 | 1120.5 |
Tree | Section | Defect | Defect in the Real Image (%) | Defect in USLab Tomography (%) | Defect in Sylvatest Duo Tomography (%) | Defect in MST Tomography (%) | |||
---|---|---|---|---|---|---|---|---|---|
S.T. | Log | S.T. | Log | S.T. | Log | ||||
Robinia pseudoacacia L. | SA | Hole | 4.5 | 1.9 | 4.2 | 0 | 0 | 0 | 0 |
SB | Hole | 3.2 | 0 | 1.1 | 0 | 0 | 0 | 0 | |
Platanus × hybrida Brot. | SA | Healthy | |||||||
SB | Healthy | ||||||||
Ulmus pumila L. 1 | SA | Crack | 0.5 | 0.2 | 6.3 | 14.2 | 2.1 | 0 | 0 |
SB | Crack | 0.9 | 3.8 | 7.5 | 14.9 | 7.6 | 0 | 0 | |
Ulmus pumila L. 2 | SA | Crack | 0.4 | 1.2 | 2.4 | 7.7 | 2.1 | 0 | 0 |
SB | Crack | 0.5 | 7.7 | 3.1 | 14.5 | 8.9 | 0.2 | 0.1 | |
Ulmus pumila L. 3 | SA | Crack | 0.2 | 0 | 0 | 0 | 0 | 0 | 0 |
SB | Crack | 0.3 | 0.5 | 13.8 | 3.5 | 16.3 | 0.5 | 5.4 | |
Populus alba L. | SA | Healthy | |||||||
SB | Decay | 23.9 | s.n. | 34.6 | s.n. | 40.8 | 7.3 | 9.71 |
Tree | Reference Radial Velocity (m/s) | Section | Measured Radial Velocity (m/s) | RVD (%) | Estimation of the Degraded Area (%) 2 | |||
---|---|---|---|---|---|---|---|---|
S.T. | Log | S.T. | Log | S.T. | Log | |||
Robinia pseudoacacia | 2000 | SA | 1579 | 1498 | 21.1 | 25.1 | 10–20 | 10–20 |
SB | 1645 | 1447 | 17.8 | 27.7 | 10–20 | 10–20 | ||
Platanus × hybrida | 1650 | SA | 1293 | 1311 | 21.6 | 20.5 | 10–20 | 10–20 |
SB | 1356 | 1283 | 17.8 | 22.2 | 10–20 | 10–20 | ||
Ulmus pumila 1 | 1750 1 | SA | 1118 | 1127 | 36.1 | 35.6 | 20–40 | 20–40 |
SB | 1005 | 1008 | 42.6 | 42.4 | 30–50 | 30–50 | ||
Ulmus pumila 2 | 1750 1 | SA | 1156 | 1054 | 33.9 | 39.8 | 20–40 | 20–40 |
SB | 1106 | 1109 | 36.8 | 36.6 | 20–40 | 20–40 | ||
Ulmus pumila 3 | 1750 1 | SA | 1230 | 1228 | 29.7 | 29.8 | 20–30 | 20–30 |
SB | 1333 | 1319 | 23.8 | 24.6 | 20–30 | 20–30 | ||
Populus alba | 1400 | SA | 1373 | 1219 | 1.9 | 12.9 | 0–10 | 10–20 |
SB | 884 | 821 | 36.9 | 41.3 | 30–50 | 30–50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esteban, M.; Olvera-Licona, G.; Virgen-Cobos, G.H.; Bobadilla, I. Comparison of Acoustic Tomography and Drilling Resistance for the Internal Assessment of Urban Trees in Madrid. Forests 2025, 16, 1125. https://doi.org/10.3390/f16071125
Esteban M, Olvera-Licona G, Virgen-Cobos GH, Bobadilla I. Comparison of Acoustic Tomography and Drilling Resistance for the Internal Assessment of Urban Trees in Madrid. Forests. 2025; 16(7):1125. https://doi.org/10.3390/f16071125
Chicago/Turabian StyleEsteban, Miguel, Guadalupe Olvera-Licona, Gabriel Humberto Virgen-Cobos, and Ignacio Bobadilla. 2025. "Comparison of Acoustic Tomography and Drilling Resistance for the Internal Assessment of Urban Trees in Madrid" Forests 16, no. 7: 1125. https://doi.org/10.3390/f16071125
APA StyleEsteban, M., Olvera-Licona, G., Virgen-Cobos, G. H., & Bobadilla, I. (2025). Comparison of Acoustic Tomography and Drilling Resistance for the Internal Assessment of Urban Trees in Madrid. Forests, 16(7), 1125. https://doi.org/10.3390/f16071125