Physiological Responses of Olive Cultivars Under Water Deficit
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material, Experimental Design and Growth Measurements
2.2. Pressure–Volume Curves
2.3. Gas-Exchange and Chlorophyll Fluorescence Parameters
2.4. Stomata
2.5. Statistical Analyses
3. Results
3.1. Characterization of Individual Traits
3.2. Multivariate Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MS | mild stress |
SS | severe stress |
A | light-saturated net photosynthesis |
WUE | water-use efficiency |
Fm′ | light-adapted maximal fluorescence |
ETR | electron transport rate |
ΦPSII | quantum yield of PSII |
PCA | Principal components analysis |
P-V | Pressure–volume |
RWCTLP | relative water content at the turgor loss point |
Af | apoplastic fraction |
ε | modulus of elasticity |
References
- Moriana, A.; Orgaz, F.; Pastor, M.; Fereres, E. Yield Responses of a Mature Olive Orchard to Water Deficits. J. Am. Soc. Hortic. Sci. 2003, 128, 425–431. [Google Scholar] [CrossRef]
- Fernandes-Silva, A.A.; Ferreira, T.C.; Correia, C.M.; Malheiro, A.C.; Villalobos, F.J. Influence of Different Irrigation Regimes on Crop Yield and Water Use Efficiency of Olive. Plant Soil 2010, 333, 35–47. [Google Scholar] [CrossRef]
- Economic Affairs & Promotion Unit. Available online: https://www.internationaloliveoil.org/what-we-do/economic-affairs-promotion-unit/ (accessed on 30 May 2025).
- Nabuurs, G.-J.; Mrabet, R.; Abu Hatab, A.; Bustamante, M.; Clark, H.; Havlík, P.; House, J.I.; Mbow, C.; Ninan, K.N.; Popp, A.; et al. Agriculture, Forestry and Other Land Uses (AFOLU). In Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Shukla, P.R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 747–860. [Google Scholar]
- León, L.; De La Rosa, R.; Arriaza, M. Prioritization of Olive Breeding Objectives in Spain: Analysis of a Producers and Researchers Survey. Span. J. Agric. Res. 2021, 19, e0701. [Google Scholar] [CrossRef]
- Brito, C.; Dinis, L.-T.; Moutinho-Pereira, J.; Correia, C.M. Drought Stress Effects and Olive Tree Acclimation under a Changing Climate. Plants 2019, 8, 232. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Xiong, L. General Mechanisms of Drought Response and Their Application in Drought Resistance Improvement in Plants. Cell. Mol. Life Sci. 2015, 72, 673–689. [Google Scholar] [CrossRef] [PubMed]
- Bacelar, E.A.; Moutinho-Pereira, J.M.; Gonçalves, B.C.; Lopes, J.I.; Correia, C.M. Physiological Responses of Different Olive Genotypes to Drought Conditions. Acta Physiol. Plant 2009, 31, 611–621. [Google Scholar] [CrossRef]
- Boussadia, O.; Omri, A.; Mzid, N. Eco-Physiological Behavior of Five Tunisian Olive Tree Cultivars under Drought Stress. Agronomy 2023, 13, 720. [Google Scholar] [CrossRef]
- Parri, S.; Romi, M.; Hoshika, Y.; Giovannelli, A.; Dias, M.C.; Piritore, F.C.; Cai, G.; Cantini, C. Morpho-Physiological Responses of Three Italian Olive Tree (Olea europaea L.) Cultivars to Drought Stress. Horticulturae 2023, 9, 830. [Google Scholar] [CrossRef]
- Bartlett, M.K.; Scoffoni, C.; Sack, L. The Determinants of Leaf Turgor Loss Point and Prediction of Drought Tolerance of Species and Biomes: A Global Meta-Analysis. Ecol. Lett. 2012, 15, 393–405. [Google Scholar] [CrossRef]
- Rico, E.I.; De La Fuente, G.C.M.; Morillas, A.O.; Ocaña, A.M.F. Physiological and Biochemical Study of the Drought Tolerance of 14 Main Olive Cultivars in the Mediterranean Basin. Photosynth. Res. 2024, 159, 1–16. [Google Scholar] [CrossRef]
- Martos De La Fuente, G.C.; Viñegla, B.; Illana Rico, E.; Fernández Ocaña, A.M. Study of the Photosynthesis Response during the Gradual Lack of Water for 14 Olea europaea L. Subsp Europaea Cultivars and Their Adaptation to Climate Change. Plants 2023, 12, 4136. [Google Scholar] [CrossRef]
- Leaf Pressure-Volume Curve Parameters. Available online: https://prometheusprotocols.net/function/water-relations/pressure-volume-curves/leaf-pressure-volume-curve-parameters/ (accessed on 30 May 2025).
- Liu, Y.; Ning, K.; Chen, S.; Moshelion, M.; Xu, P. Potential Breeding Target Genes for Enhancing Agronomic Drought Resistance: A Yield-survival Balance Perspective. Plant Breed. 2023, 142, 721–731. [Google Scholar] [CrossRef]
- Dichio, B.; Romano, M.; Nuzzo, V.; Xiloyannis, C. Soil Water Availability and Relationship Between Canopy and Roots in Young Olive Trees (cv. Coratina). Acta Hortic. 2002, 586, 255–258. [Google Scholar] [CrossRef]
- Di Vaio, C.; Marra, F.P.; Scaglione, G.; La Mantia, M.; Caruso, T. The Effect of Different Vigour Olive Clones on Growth, Dry Matter Partitioning and Gas Exchange under Water Deficit. Sci. Hortic. 2012, 134, 72–78. [Google Scholar] [CrossRef]
- Tognetti, R.; Costagli, G.; Minnocci, A.; Gucci, R. Stomatal behaviour and water use efficiency in two cultivars of Olea europaea L. Agric. Mediterr. 2002, 132, 90–97. [Google Scholar]
- Bartlett, M.K.; Scoffoni, C.; Ardy, R.; Zhang, Y.; Sun, S.; Cao, K.; Sack, L. Rapid Determination of Comparative Drought Tolerance Traits: Using an Osmometer to Predict Turgor Loss Point. Methods Ecol. Evol. 2012, 3, 880–888. [Google Scholar] [CrossRef]
- Lenz, T.I.; Wright, I.J.; Westoby, M. Interrelations among Pressure–Volume Curve Traits across Species and Water Availability Gradients. Physiol. Plant. 2006, 127, 423–433. [Google Scholar] [CrossRef]
- Dichio, B.; Xiloyannis, C.; Angelopoulos, K.; Nuzzo, V.; Bufo, S.A.; Celano, G. Drought-Induced Variations of Water Relations Parameters in Olea europaea. Plant Soil 2003, 257, 381–389. [Google Scholar] [CrossRef]
- Fernandes, R.D.M.; Cuevas, M.V.; Diaz-Espejo, A.; Hernandez-Santana, V. Effects of Water Stress on Fruit Growth and Water Relations between Fruits and Leaves in a Hedgerow Olive Orchard. Agric. Water Manag. 2018, 210, 32–40. [Google Scholar] [CrossRef]
- Hernandez-Santana, V.; Diaz-Rueda, P.; Diaz-Espejo, A.; Raya-Sereno, M.D.; Gutiérrez-Gordillo, S.; Montero, A.; Perez-Martin, A.; Colmenero-Flores, J.M.; Rodriguez-Dominguez, C.M. Hydraulic Traits Emerge as Relevant Determinants of Growth Patterns in Wild Olive Genotypes Under Water Stress. Front. Plant Sci. 2019, 10, 291. [Google Scholar] [CrossRef]
- Fernández, J.-E. Understanding Olive Adaptation to Abiotic Stresses as a Tool to Increase Crop Performance. Environ. Exp. Bot. 2014, 103, 158–179. [Google Scholar] [CrossRef]
- Bosabalidis, A.M.; Kofidis, G. Comparative Effects of Drought Stress on Leaf Anatomy of Two Olive Cultivars. Plant Sci. 2002, 163, 375–379. [Google Scholar] [CrossRef]
- Petridis, A.; Therios, I.; Samouris, G.; Koundouras, S.; Giannakoula, A. Effect of Water Deficit on Leaf Phenolic Composition, Gas Exchange, Oxidative Damage and Antioxidant Activity of Four Greek Olive (Olea europaea L.) Cultivars. Plant Physiol. Biochem. 2012, 60, 1–11. [Google Scholar] [CrossRef]
- Dias, M.C.; Correia, S.; Serôdio, J.; Silva, A.M.S.; Freitas, H.; Santos, C. Chlorophyll Fluorescence and Oxidative Stress Endpoints to Discriminate Olive Cultivars Tolerance to Drought and Heat Episodes. Sci. Hortic. 2018, 231, 31–35. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, P.; Liu, S.; Wang, C.; Liu, J. Evaluation of the Methods for Estimating Leaf Chlorophyll Content with SPAD Chlorophyll Meters. Remote Sens. 2022, 14, 5144. [Google Scholar] [CrossRef]
- Fernández, J.E.; Moreno, F.; Girón, I.F.; Blázquez, O.M. Stomatal Control of Water Use in Olive Tree Leaves. Plant Soil 1997, 190, 179–192. [Google Scholar] [CrossRef]
Cultivar | ΨTLP 1 (MPa) | RWCTLP (%) | af (%) | ε (MPa) | ||||
---|---|---|---|---|---|---|---|---|
ILI | −2.5 | a 2 | 87.7 | c | 54.6 | c | 15.7 | abc |
URG | −2.6 | a | 91.5 | ab | 69.9 | ab | 21.6 | ab |
CAS | −2.6 | a | 92.3 | a | 77.2 | a | 21.4 | ab |
ARB | −2.6 | a | 89.7 | abc | 65.3 | abc | 17.3 | abc |
FRA | −2.5 | a | 89.0 | bc | 68.7 | ab | 14.4 | bc |
MAR | −2.6 | a | 91.5 | ab | 68.9 | ab | 22.7 | a |
PIC | −2.5 | a | 86.9 | c | 62.7 | bc | 12.2 | c |
SIK | −2.6 | a | 88.3 | c | 59.9 | bc | 15.4 | abc |
SI2 | −2.6 | a | 88.2 | c | 63.1 | bc | 15.2 | abc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
León, L.; Goossens, W.; Clauw, H.; Leroux, O.; Steppe, K. Physiological Responses of Olive Cultivars Under Water Deficit. Horticulturae 2025, 11, 745. https://doi.org/10.3390/horticulturae11070745
León L, Goossens W, Clauw H, Leroux O, Steppe K. Physiological Responses of Olive Cultivars Under Water Deficit. Horticulturae. 2025; 11(7):745. https://doi.org/10.3390/horticulturae11070745
Chicago/Turabian StyleLeón, Lorenzo, Willem Goossens, Helena Clauw, Olivier Leroux, and Kathy Steppe. 2025. "Physiological Responses of Olive Cultivars Under Water Deficit" Horticulturae 11, no. 7: 745. https://doi.org/10.3390/horticulturae11070745
APA StyleLeón, L., Goossens, W., Clauw, H., Leroux, O., & Steppe, K. (2025). Physiological Responses of Olive Cultivars Under Water Deficit. Horticulturae, 11(7), 745. https://doi.org/10.3390/horticulturae11070745