Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (460)

Search Parameters:
Keywords = tree health monitoring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 9514 KiB  
Article
Kennaugh Elements Allow Early Detection of Bark Beetle Infestation in Temperate Forests Using Sentinel-1 Data
by Christine Hechtl, Sarah Hauser, Andreas Schmitt, Marco Heurich and Anna Wendleder
Forests 2025, 16(8), 1272; https://doi.org/10.3390/f16081272 - 3 Aug 2025
Viewed by 174
Abstract
Climate change is generally having a negative impact on forest health by inducing drought stress and favouring the spread of pest species, such as bark beetles. The terrestrial monitoring of bark beetle infestation is very time-consuming, especially in the early stages, and therefore [...] Read more.
Climate change is generally having a negative impact on forest health by inducing drought stress and favouring the spread of pest species, such as bark beetles. The terrestrial monitoring of bark beetle infestation is very time-consuming, especially in the early stages, and therefore not feasible for extensive areas, emphasising the need for a comprehensive approach based on remote sensing. Although numerous studies have researched the use of optical data for this task, radar data remains comparatively underexplored. Therefore, this study uses the weekly and cloud-free acquisitions of Sentinel-1 in the Bavarian Forest National Park. Time series analysis within a Multi-SAR framework using Random Forest enables the monitoring of moisture content loss and, consequently, the assessment of tree vitality, which is crucial for the detection of stress conditions conducive to bark beetle outbreaks. High accuracies are achieved in predicting future bark beetle infestation (R2 of 0.83–0.89). These results demonstrate that forest vitality trends ranging from healthy to bark beetle-affected states can be mapped, supporting early intervention strategies. The standard deviation of 0.44 to 0.76 years indicates that the model deviates on average by half a year, mainly due to the uncertainty in the reference data. This temporal uncertainty is acceptable, as half a year provides a sufficient window to identify stressed forest areas and implement targeted management actions before bark beetle damage occurs. The successful application of this technique to extensive test sites in the state of North Rhine-Westphalia proves its transferability. For the first time, the results clearly demonstrate the expected relationship between radar backscatter expressed in the Kennaugh elements K0 and K1 and bark beetle infestation, thereby providing an opportunity for the continuous and cost-effective monitoring of forest health from space. Full article
(This article belongs to the Section Forest Health)
Show Figures

Graphical abstract

22 pages, 4300 KiB  
Article
Optimised DNN-Based Agricultural Land Mapping Using Sentinel-2 and Landsat-8 with Google Earth Engine
by Nisha Sharma, Sartajvir Singh and Kawaljit Kaur
Land 2025, 14(8), 1578; https://doi.org/10.3390/land14081578 - 1 Aug 2025
Viewed by 280
Abstract
Agriculture is the backbone of Punjab’s economy, and with much of India’s population dependent on agriculture, the requirement for accurate and timely monitoring of land has become even more crucial. Blending remote sensing with state-of-the-art machine learning algorithms enables the detailed classification of [...] Read more.
Agriculture is the backbone of Punjab’s economy, and with much of India’s population dependent on agriculture, the requirement for accurate and timely monitoring of land has become even more crucial. Blending remote sensing with state-of-the-art machine learning algorithms enables the detailed classification of agricultural lands through thematic mapping, which is critical for crop monitoring, land management, and sustainable development. Here, a Hyper-tuned Deep Neural Network (Hy-DNN) model was created and used for land use and land cover (LULC) classification into four classes: agricultural land, vegetation, water bodies, and built-up areas. The technique made use of multispectral data from Sentinel-2 and Landsat-8, processed on the Google Earth Engine (GEE) platform. To measure classification performance, Hy-DNN was contrasted with traditional classifiers—Convolutional Neural Network (CNN), Random Forest (RF), Classification and Regression Tree (CART), Minimum Distance Classifier (MDC), and Naive Bayes (NB)—using performance metrics including producer’s and consumer’s accuracy, Kappa coefficient, and overall accuracy. Hy-DNN performed the best, with overall accuracy being 97.60% using Sentinel-2 and 91.10% using Landsat-8, outperforming all base models. These results further highlight the superiority of the optimised Hy-DNN in agricultural land mapping and its potential use in crop health monitoring, disease diagnosis, and strategic agricultural planning. Full article
Show Figures

Figure 1

24 pages, 1408 KiB  
Systematic Review
Fear Detection Using Electroencephalogram and Artificial Intelligence: A Systematic Review
by Bladimir Serna, Ricardo Salazar, Gustavo A. Alonso-Silverio, Rosario Baltazar, Elías Ventura-Molina and Antonio Alarcón-Paredes
Brain Sci. 2025, 15(8), 815; https://doi.org/10.3390/brainsci15080815 - 29 Jul 2025
Viewed by 373
Abstract
Background/Objectives: Fear detection through EEG signals has gained increasing attention due to its applications in affective computing, mental health monitoring, and intelligent safety systems. This systematic review aimed to identify the most effective methods, algorithms, and configurations reported in the literature for detecting [...] Read more.
Background/Objectives: Fear detection through EEG signals has gained increasing attention due to its applications in affective computing, mental health monitoring, and intelligent safety systems. This systematic review aimed to identify the most effective methods, algorithms, and configurations reported in the literature for detecting fear from EEG signals using artificial intelligence (AI). Methods: Following the PRISMA 2020 methodology, a structured search was conducted using the string (“fear detection” AND “artificial intelligence” OR “machine learning” AND NOT “fnirs OR mri OR ct OR pet OR image”). After applying inclusion and exclusion criteria, 11 relevant studies were selected. Results: The review examined key methodological aspects such as algorithms (e.g., SVM, CNN, Decision Trees), EEG devices (Emotiv, Biosemi), experimental paradigms (videos, interactive games), dominant brainwave bands (beta, gamma, alpha), and electrode placement. Non-linear models, particularly when combined with immersive stimulation, achieved the highest classification accuracy (up to 92%). Beta and gamma frequencies were consistently associated with fear states, while frontotemporal electrode positioning and proprietary datasets further enhanced model performance. Conclusions: EEG-based fear detection using AI demonstrates high potential and rapid growth, offering significant interdisciplinary applications in healthcare, safety systems, and affective computing. Full article
(This article belongs to the Special Issue Neuropeptides, Behavior and Psychiatric Disorders)
Show Figures

Figure 1

26 pages, 11912 KiB  
Article
Multi-Dimensional Estimation of Leaf Loss Rate from Larch Caterpillar Under Insect Pest Stress Using UAV-Based Multi-Source Remote Sensing
by He-Ya Sa, Xiaojun Huang, Li Ling, Debao Zhou, Junsheng Zhang, Gang Bao, Siqin Tong, Yuhai Bao, Dashzebeg Ganbat, Mungunkhuyag Ariunaa, Dorjsuren Altanchimeg and Davaadorj Enkhnasan
Drones 2025, 9(8), 529; https://doi.org/10.3390/drones9080529 - 28 Jul 2025
Viewed by 322
Abstract
Leaf loss caused by pest infestations poses a serious threat to forest health. The leaf loss rate (LLR) refers to the percentage of the overall tree-crown leaf loss per unit area and is an important indicator for evaluating forest health. Therefore, rapid and [...] Read more.
Leaf loss caused by pest infestations poses a serious threat to forest health. The leaf loss rate (LLR) refers to the percentage of the overall tree-crown leaf loss per unit area and is an important indicator for evaluating forest health. Therefore, rapid and accurate acquisition of the LLR via remote sensing monitoring is crucial. This study is based on drone hyperspectral and LiDAR data as well as ground survey data, calculating hyperspectral indices (HSI), multispectral indices (MSI), and LiDAR indices (LI). It employs Savitzky–Golay (S–G) smoothing with different window sizes (W) and polynomial orders (P) combined with recursive feature elimination (RFE) to select sensitive features. Using Random Forest Regression (RFR) and Convolutional Neural Network Regression (CNNR) to construct a multidimensional (horizontal and vertical) estimation model for LLR, combined with LiDAR point cloud data, achieved a three-dimensional visualization of the leaf loss rate of trees. The results of the study showed: (1) The optimal combination of HSI and MSI was determined to be W11P3, and the LI was W5P2. (2) The optimal combination of the number of sensitive features extracted by the RFE algorithm was 13 HSI, 16 MSI, and hierarchical LI (2 in layer I, 9 in layer II, and 11 in layer III). (3) In terms of the horizontal estimation of the defoliation rate, the model performance index of the CNNRHSI model (MPI = 0.9383) was significantly better than that of RFRMSI (MPI = 0.8817), indicating that the continuous bands of hyperspectral could better monitor the subtle changes of LLR. (4) The I-CNNRHSI+LI, II-CNNRHSI+LI, and III-CNNRHSI+LI vertical estimation models were constructed by combining the CNNRHSI model with the best accuracy and the LI sensitive to different vertical levels, respectively, and their MPIs reached more than 0.8, indicating that the LLR estimation of different vertical levels had high accuracy. According to the model, the pixel-level LLR of the sample tree was estimated, and the three-dimensional display of the LLR for forest trees under the pest stress of larch caterpillars was generated, providing a high-precision research scheme for LLR estimation under pest stress. Full article
(This article belongs to the Section Drones in Agriculture and Forestry)
Show Figures

Figure 1

14 pages, 3991 KiB  
Article
Detection of Pestalotiopsis abbreviata sp. nov., the Causal Agent of Pestalotiopsis Leaf Blight on Camellia japonica Based on Metagenomic Analysis
by Sung-Eun Cho, Ki Hyeong Park, Keumchul Shin and Dong-Hyeon Lee
J. Fungi 2025, 11(8), 553; https://doi.org/10.3390/jof11080553 - 25 Jul 2025
Viewed by 291
Abstract
Tree diseases affecting Camellia japonica have emerged as a significant threat to the health and longevity of this ornamental tree, particularly in countries where this tree species is widely distributed and cultivated. Among these, Pestalotiopsis spp. have been frequently reported and are considered [...] Read more.
Tree diseases affecting Camellia japonica have emerged as a significant threat to the health and longevity of this ornamental tree, particularly in countries where this tree species is widely distributed and cultivated. Among these, Pestalotiopsis spp. have been frequently reported and are considered one of the most impactful fungal pathogens, causing leaf blight or leaf spot, in multiple countries. Understanding the etiology and distribution of these diseases is essential for effective management and conservation of C. japonica populations. The traditional methods based on pathogen isolation and pure culture cultivation for diagnosis of tree diseases are labor intensive and time-consuming. In addition, the frequent coexistence of the major pathogens with other endophytes within a single C. japonica tree, coupled with inconsistent symptom expression and the occurrence of pathogens in asymptomatic hosts, further complicates disease diagnosis. These challenges highlight the urgent need to develop more rapid, accurate, and efficient diagnostic or monitoring tools to improve disease monitoring and management on trees, including C. japonica. To address these challenges, we applied a metagenomic approach to screen fungal communities within C. japonica trees. This method enabled comprehensive detection and characterization of fungal taxa present in symptomatic and asymptomatic tissues. By analyzing the correlation between fungal dominance and symptom expression, we identified key pathogenic taxa associated with disease manifestation. To validate the metagenomic approach, we employed a combined strategy integrating metagenomic screening and traditional fungal isolation to monitor foliar diseases in C. japonica. The correlation between dominant taxa and symptom expression was confirmed. Simultaneously, traditional isolation enabled the identification of a novel species, Pestalotiopsis, as the causal agent of leaf spot disease on C. japonica. In addition to confirming previously known pathogens, our study led to the discovery and preliminary characterization of a novel fungal taxon with pathogenic potential. Our findings provide critical insights into the fungal community of C. japonica and lay the groundwork for developing improved, rapid diagnostic tools for effective disease monitoring and management of tree diseases. Full article
Show Figures

Figure 1

14 pages, 8566 KiB  
Article
An Evaluation of Mercury Accumulation Dynamics in Tree Leaves Growing in a Contaminated Area as Part of the Ecosystem Services: A Case Study of Turda, Romania
by Marin Senila, Cerasel Varaticeanu, Simona Costiug and Otto Todor-Boer
Land 2025, 14(8), 1529; https://doi.org/10.3390/land14081529 - 24 Jul 2025
Viewed by 267
Abstract
Mercury (Hg) poses a significant threat to human health and ecosystems, garnering increased attention in environmental studies. This paper evaluates the dynamics of Hg accumulation in various common tree leaves, specifically white poplar, linden, and cherry plum, throughout their growing season. The findings [...] Read more.
Mercury (Hg) poses a significant threat to human health and ecosystems, garnering increased attention in environmental studies. This paper evaluates the dynamics of Hg accumulation in various common tree leaves, specifically white poplar, linden, and cherry plum, throughout their growing season. The findings offer valuable insights into air quality and the ability of urban vegetation to mitigate mercury pollution in urban areas. A case study was conducted in Turda, a town in northwestern Romania, where a former chlor-alkali plant operated throughout the last century. Although the plant ceased its electrolysis activities over 25 years ago, the surrounding soil remains contaminated with mercury (Hg) due to the significant amounts released during its operation. The results indicated that the Hg concentration varied between 2.4 and 7.3 mg kg−1 dry weight (dw), exceeding the intervention threshold for soil of 2.0 mg kg−1. Additionally, the Hg content in the leaf samples consistently increased over time, influenced by leaf age and tree species. The Hg content increased in the following order: cherry plum < white poplar < linden. On average, white poplar leaves accumulated 72 ng Hg g−1 dw, linden leaves 128 ng Hg g−1 dw, and cherry plum leaves 47 ng Hg g−1 dw during the six-month monitored period from April to September. The results obtained can be used to evaluate the potential of different tree species for mitigating atmospheric Hg contamination and to elaborate on the suitable management of fallen leaves in the autumn. Full article
Show Figures

Figure 1

17 pages, 3823 KiB  
Article
Lightweight UAV-Based System for Early Fire-Risk Identification in Wild Forests
by Akmalbek Abdusalomov, Sabina Umirzakova, Alpamis Kutlimuratov, Dilshod Mirzaev, Adilbek Dauletov, Tulkin Botirov, Madina Zakirova, Mukhriddin Mukhiddinov and Young Im Cho
Fire 2025, 8(8), 288; https://doi.org/10.3390/fire8080288 - 23 Jul 2025
Viewed by 394
Abstract
The escalating impacts and occurrence of wildfires threaten the public, economies, and global ecosystems. Physiologically declining or dead trees are a great portion of the fires because these trees are prone to higher ignition and have lower moisture content. To prevent wildfires, hazardous [...] Read more.
The escalating impacts and occurrence of wildfires threaten the public, economies, and global ecosystems. Physiologically declining or dead trees are a great portion of the fires because these trees are prone to higher ignition and have lower moisture content. To prevent wildfires, hazardous vegetation needs to be removed, and the vegetation should be identified early on. This work proposes a real-time fire risk tree detection framework using UAV images, which is based on lightweight object detection. The model uses the MobileNetV3-Small spine, which is optimized for edge deployment, combined with an SSD head. This configuration results in a highly optimized and fast UAV-based inference pipeline. The dataset used in this study comprises over 3000 annotated RGB UAV images of trees in healthy, partially dead, and fully dead conditions, collected from mixed real-world forest scenes and public drone imagery repositories. Thorough evaluation shows that the proposed model outperforms conventional SSD and recent YOLOs on Precision (94.1%), Recall (93.7%), mAP (90.7%), F1 (91.0%) while being light-weight (8.7 MB) and fast (62.5 FPS on Jetson Xavier NX). These findings strongly support the model’s effectiveness for large-scale continuous forest monitoring to detect health degradations and mitigate wildfire risks proactively. The framework UAV-based environmental monitoring systems differentiates itself by incorporating a balance between detection accuracy, speed, and resource efficiency as fundamental principles. Full article
Show Figures

Figure 1

26 pages, 2177 KiB  
Article
Explaining and Predicting Microbiological Water Quality for Sustainable Management of Drinking Water Treatment Facilities
by Goran Volf, Ivana Sušanj Čule, Nataša Atanasova, Sonja Zorko and Nevenka Ožanić
Sustainability 2025, 17(15), 6659; https://doi.org/10.3390/su17156659 - 22 Jul 2025
Viewed by 420
Abstract
The continuous variability in the microbiological quality of surface waters presents significant challenges for ensuring the production of safe drinking water in compliance with public health regulations. Inadequate treatment of surface waters can lead to the presence of pathogenic microorganisms in the drinking [...] Read more.
The continuous variability in the microbiological quality of surface waters presents significant challenges for ensuring the production of safe drinking water in compliance with public health regulations. Inadequate treatment of surface waters can lead to the presence of pathogenic microorganisms in the drinking water supply, posing serious risks to public health. This research presents an in-depth data analysis using machine learning tools for the induction of models to describe and predict microbiological water quality for the sustainable management of the Butoniga drinking water treatment facility in Istria (Croatia). Specifically, descriptive and predictive models for total coliforms and E. coli bacteria (i.e., classes), which are recognized as key sanitary indicators of microbiological contamination under both EU and Croatian water quality legislation, were developed. The descriptive models provided useful information about the main environmental factors that influence the microbiological water quality. The most significant influential factors were found to be pH, water temperature, and water turbidity. On the other hand, the predictive models were developed to estimate the concentrations of total coliforms and E. coli bacteria seven days in advance using several machine learning methods, including model trees, random forests, multi-layer perceptron, bagging, and XGBoost. Among these, model trees were selected for their interpretability and potential integration into decision support systems. The predictive models demonstrated satisfactory performance, with a correlation coefficient of 0.72 for total coliforms, and moderate predictive accuracy for E. coli bacteria, with a correlation coefficient of 0.48. The resulting models offer actionable insights for optimizing operational responses in water treatment processes based on real-time and predicted microbiological conditions in the Butoniga reservoir. Moreover, this research contributes to the development of predictive frameworks for microbiological water quality management and highlights the importance of further research and monitoring of this key aspect of the preservation of the environment and public health. Full article
Show Figures

Graphical abstract

32 pages, 6622 KiB  
Article
Health Monitoring of Abies nebrodensis Combining UAV Remote Sensing Data, Climatological and Weather Observations, and Phytosanitary Inspections
by Lorenzo Arcidiaco, Manuela Corongiu, Gianni Della Rocca, Sara Barberini, Giovanni Emiliani, Rosario Schicchi, Peppuccio Bonomo, David Pellegrini and Roberto Danti
Forests 2025, 16(7), 1200; https://doi.org/10.3390/f16071200 - 21 Jul 2025
Viewed by 308
Abstract
Abies nebrodensis L. is a critically endangered conifer endemic to Sicily (Italy). Its residual population is confined to the Madonie mountain range under challenging climatological conditions. Despite the good adaptation shown by the relict population to the environmental conditions occurring in its habitat, [...] Read more.
Abies nebrodensis L. is a critically endangered conifer endemic to Sicily (Italy). Its residual population is confined to the Madonie mountain range under challenging climatological conditions. Despite the good adaptation shown by the relict population to the environmental conditions occurring in its habitat, Abies nebrodensis is subject to a series of threats, including climate change. Effective conservation strategies require reliable and versatile methods for monitoring its health status. Combining high-resolution remote sensing data with reanalysis of climatological datasets, this study aimed to identify correlations between vegetation indices (NDVI, GreenDVI, and EVI) and key climatological variables (temperature and precipitation) using advanced machine learning techniques. High-resolution RGB (Red, Green, Blue) and IrRG (infrared, Red, Green) maps were used to delineate tree crowns and extract statistics related to the selected vegetation indices. The results of phytosanitary inspections and multispectral analyses showed that the microclimatic conditions at the site level influence both the impact of crown disorders and tree physiology in terms of water content and photosynthetic activity. Hence, the correlation between the phytosanitary inspection results and vegetation indices suggests that multispectral techniques with drones can provide reliable indications of the health status of Abies nebrodensis trees. The findings of this study provide significant insights into the influence of environmental stress on Abies nebrodensis and offer a basis for developing new monitoring procedures that could assist in managing conservation measures. Full article
Show Figures

Figure 1

31 pages, 4435 KiB  
Article
A Low-Cost IoT Sensor and Preliminary Machine-Learning Feasibility Study for Monitoring In-Cabin Air Quality: A Pilot Case from Almaty
by Nurdaulet Tasmurzayev, Bibars Amangeldy, Gaukhar Smagulova, Zhanel Baigarayeva and Aigerim Imash
Sensors 2025, 25(14), 4521; https://doi.org/10.3390/s25144521 - 21 Jul 2025
Viewed by 501
Abstract
The air quality within urban public transport is a critical determinant of passenger health. In the crowded and poorly ventilated cabins of Almaty’s metro, buses, and trolleybuses, concentrations of CO2 and PM2.5 often accumulate, elevating the risk of respiratory and cardiovascular [...] Read more.
The air quality within urban public transport is a critical determinant of passenger health. In the crowded and poorly ventilated cabins of Almaty’s metro, buses, and trolleybuses, concentrations of CO2 and PM2.5 often accumulate, elevating the risk of respiratory and cardiovascular diseases. This study investigates the air quality along three of the city’s busiest transport corridors, analyzing how the concentrations of CO2, PM2.5, and PM10, as well as the temperature and relative humidity, fluctuate with the passenger density and time of day. Continuous measurements were collected using the Tynys mobile IoT device, which was bench-calibrated against a commercial reference sensor. Several machine learning models (logistic regression, decision tree, XGBoost, and random forest) were trained on synchronized environmental and occupancy data, with the XGBoost model achieving the highest predictive accuracy at 91.25%. Our analysis confirms that passenger occupancy is the primary driver of in-cabin pollution and that these machine learning models effectively capture the nonlinear relationships among environmental variables. Since the surveyed routes serve Almaty’s most densely populated districts, improving the ventilation on these lines is of immediate importance to public health. Furthermore, the high-temporal-resolution data revealed short-term pollution spikes that correspond with peak ridership, advancing the current understanding of exposure risks in transit. These findings highlight the urgent need to combine real-time monitoring with ventilation upgrades. They also demonstrate the practical value of using low-cost IoT technologies and data-driven analytics to safeguard public health in urban mobility systems. Full article
(This article belongs to the Special Issue IoT-Based Sensing Systems for Urban Air Quality Forecasting)
Show Figures

Figure 1

25 pages, 9183 KiB  
Article
Development and Evaluation of the Forest Drought Response Index (ForDRI): An Integrated Tool for Monitoring Drought Stress Across Forest Ecosystems in the Contiguous United States
by Tsegaye Tadesse, Stephanie Connolly, Brian Wardlow, Mark Svoboda, Beichen Zhang, Brian A. Fuchs, Hasnat Aslam, Christopher Asaro, Frank H. Koch, Tonya Bernadt, Calvin Poulsen, Jeff Wisner, Jeffrey Nothwehr, Ian Ratcliffe, Kelsey Varisco, Lindsay Johnson and Curtis Riganti
Forests 2025, 16(7), 1187; https://doi.org/10.3390/f16071187 - 18 Jul 2025
Viewed by 358
Abstract
Forest drought monitoring tools are crucial for managing tree water stress and enhancing ecosystem resilience. The Forest Drought Response Index (ForDRI) was developed to monitor drought conditions in forested areas across the contiguous United States (CONUS), integrating vegetation health, climate data, groundwater, and [...] Read more.
Forest drought monitoring tools are crucial for managing tree water stress and enhancing ecosystem resilience. The Forest Drought Response Index (ForDRI) was developed to monitor drought conditions in forested areas across the contiguous United States (CONUS), integrating vegetation health, climate data, groundwater, and soil moisture content. This study evaluated ForDRI using Pearson correlations with the Bowen Ratio (BR) at 24 AmeriFlux sites and Spearman correlations with the Tree-Ring Growth Index (TRSGI) at 135 sites, along with feedback from 58 stakeholders. CONUS was divided into four forest subgroups: (1) the West/Pacific Northwest, (2) Rocky Mountains/Southwest, (3) East/Northeast, and (4) South/Central/Southeast Forest regions. Strong positive ForDRI-TRSGI correlations (ρ > 0.7, p < 0.05) were observed in the western regions, where drought significantly impacts growth, while moderate alignment with BR (R = 0.35–0.65, p < 0.05) was noted. In contrast, correlations in Eastern and Southern forests were weak to moderate (ρ = 0.4–0.6 for TRSGI and R = 0.1–0.3 for BR). Stakeholders’ feedback indicated that ForDRI realistically maps historical drought years and recent trends, though suggestions for improvements, including trend maps and enhanced visualizations, were made. ForDRI is a valuable complementary tool for monitoring forest droughts and informing management decisions. Full article
(This article belongs to the Special Issue Impacts of Climate Extremes on Forests)
Show Figures

Figure 1

15 pages, 1794 KiB  
Article
Lightweight Dual-Attention Network for Concrete Crack Segmentation
by Min Feng and Juncai Xu
Sensors 2025, 25(14), 4436; https://doi.org/10.3390/s25144436 - 16 Jul 2025
Viewed by 323
Abstract
Structural health monitoring in resource-constrained environments demands crack segmentation models that match the accuracy of heavyweight convolutional networks while conforming to the power, memory, and latency limits of watt-level edge devices. This study presents a lightweight dual-attention network, which is a four-stage U-Net [...] Read more.
Structural health monitoring in resource-constrained environments demands crack segmentation models that match the accuracy of heavyweight convolutional networks while conforming to the power, memory, and latency limits of watt-level edge devices. This study presents a lightweight dual-attention network, which is a four-stage U-Net compressed to one-quarter of the channel depth and augmented—exclusively at the deepest layer—with a compact dual-attention block that couples channel excitation with spatial self-attention. The added mechanism increases computation by only 19%, limits the weight budget to 7.4 MB, and remains fully compatible with post-training INT8 quantization. On a pixel-labelled concrete crack benchmark, the proposed network achieves an intersection over union of 0.827 and an F1 score of 0.905, thus outperforming CrackTree, Hybrid 2020, MobileNetV3, and ESPNetv2. While refined weight initialization and Dice-augmented loss provide slight improvements, ablation experiments show that the dual-attention module is the main factor influencing accuracy. With 110 frames per second on a 10 W Jetson Nano and 220 frames per second on a 5 W Coral TPU achieved without observable accuracy loss, hardware-in-the-loop tests validate real-time viability. Thus, the proposed network offers cutting-edge crack segmentation at the kiloflop scale, thus facilitating ongoing, on-device civil infrastructure inspection. Full article
Show Figures

Figure 1

16 pages, 860 KiB  
Article
Cost–Effectiveness of Newborn Screening for X-Linked Adrenoleukodystrophy in the Netherlands: A Health-Economic Modelling Study
by Rosalie C. Martens, Hana M. Broulikova, Marc Engelen, Stephan Kemp, Anita Boelen, Robert de Jonge, Judith E. Bosmans and Annemieke C. Heijboer
Int. J. Neonatal Screen. 2025, 11(3), 53; https://doi.org/10.3390/ijns11030053 - 16 Jul 2025
Viewed by 366
Abstract
X-linked adrenoleukodystrophy (ALD) is an inherited metabolic disorder that can cause adrenal insufficiency and cerebral ALD (cALD) in childhood. Early detection prevents adverse health outcomes and can be achieved by newborn screening (NBS) followed by monitoring disease progression. However, monitoring is associated with [...] Read more.
X-linked adrenoleukodystrophy (ALD) is an inherited metabolic disorder that can cause adrenal insufficiency and cerebral ALD (cALD) in childhood. Early detection prevents adverse health outcomes and can be achieved by newborn screening (NBS) followed by monitoring disease progression. However, monitoring is associated with high costs. This study evaluates the cost–effectiveness of NBS for ALD in The Netherlands compared to no screening using a health economic model. A decision tree combined with a Markov model was developed to estimate societal costs, including screening costs, healthcare costs, and productivity losses of parents, and health outcomes over an 18-year time horizon. Model parameters were derived from the literature and expert opinion. A probabilistic sensitivity analysis (PSA) was performed to assess uncertainty. The screening costs of detecting one ALD case by NBS was EUR 40,630. Until the age of 18 years, the total societal cost per ALD case was EUR 120,779 for screening and EUR 62,914 for no screening. Screening gained an average of 1.7 QALYs compared with no screening. This resulted in an incremental cost–effectiveness ratio (ICER) of EUR 34,084 per QALY gained for screening compared to no screening. Although the results are sensitive to uncertainty surrounding costs and effectiveness due to limited data, NBS for ALD is likely to be cost–effective using a willingness-to-pay (WTP) threshold of EUR 50,000– EUR 80,000 per QALY gained. Full article
Show Figures

Graphical abstract

20 pages, 5767 KiB  
Article
Accurate Evaluation of Urban Mangrove Forest Health Considering Stand Structure Indicators Based on UAVs
by Chaoyang Zhai, Yiteng Zhang, Yifan Wu and Xiaoxue Shen
Forests 2025, 16(7), 1168; https://doi.org/10.3390/f16071168 - 16 Jul 2025
Viewed by 290
Abstract
Stand structural configuration dictates ecosystem functional performance. Mangrove ecosystems, located in ecologically sensitive coastal ecotones, require efficient acquisition of stand structure parameters and health assessments based on these parameters for practical applications. Effective assessment of mangrove ecosystem health, crucial for their functional performance [...] Read more.
Stand structural configuration dictates ecosystem functional performance. Mangrove ecosystems, located in ecologically sensitive coastal ecotones, require efficient acquisition of stand structure parameters and health assessments based on these parameters for practical applications. Effective assessment of mangrove ecosystem health, crucial for their functional performance in ecologically sensitive coastal ecotones, relies on efficient acquisition of stand structure parameters. This study developed a UAV (Unmanned Aerial Vehicle)-based framework for mangrove health evaluation integrating stand structure parameters, utilizing UAV visible-light imagery, field plot surveys, and computer vision techniques, and applied it to the assessment of a national nature reserve. We obtained the following results: (1) A deep neural network, combining UAV visible-light data with tree height constraints, achieved 88.29% overall accuracy in simultaneously identifying six dominant mangrove species; (2) Stand structure parameters were derived based on individual tree extraction results in seedling zones along forest edges (with canopy individual tree segmentation accuracy ≥ 78.57%), and a stand health evaluation model was constructed; (3) Health assessment revealed that the core zone exhibited significantly superior stand health compared to non-core zones. This method demonstrates high efficiency, significantly reducing the time and effort for monitoring, and offers robust support for future mangrove forest health assessments and adaptive conservation strategies. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

20 pages, 351 KiB  
Article
Multi-Level Depression Severity Detection with Deep Transformers and Enhanced Machine Learning Techniques
by Nisar Hussain, Amna Qasim, Gull Mehak, Muhammad Zain, Grigori Sidorov, Alexander Gelbukh and Olga Kolesnikova
AI 2025, 6(7), 157; https://doi.org/10.3390/ai6070157 - 15 Jul 2025
Viewed by 704
Abstract
Depression is now one of the most common mental health concerns in the digital era, calling for powerful computational tools for its detection and its level of severity estimation. A multi-level depression severity detection framework in the Reddit social media network is proposed [...] Read more.
Depression is now one of the most common mental health concerns in the digital era, calling for powerful computational tools for its detection and its level of severity estimation. A multi-level depression severity detection framework in the Reddit social media network is proposed in this study, and posts are classified into four levels: minimum, mild, moderate, and severe. We take a dual approach using classical machine learning (ML) algorithms and recent Transformer-based architectures. For the ML track, we build ten classifiers, including Logistic Regression, SVM, Naive Bayes, Random Forest, XGBoost, Gradient Boosting, K-NN, Decision Tree, AdaBoost, and Extra Trees, with two recently proposed embedding methods, Word2Vec and GloVe embeddings, and we fine-tune them for mental health text classification. Of these, XGBoost yields the highest F1-score of 94.01 using GloVe embeddings. For the deep learning track, we fine-tune ten Transformer models, covering BERT, RoBERTa, XLM-RoBERTa, MentalBERT, BioBERT, RoBERTa-large, DistilBERT, DeBERTa, Longformer, and ALBERT. The highest performance was achieved by the MentalBERT model, with an F1-score of 97.31, followed by RoBERTa (96.27) and RoBERTa-large (96.14). Our results demonstrate that, to the best of the authors’ knowledge, domain-transferred Transformers outperform non-Transformer-based ML methods in capturing subtle linguistic cues indicative of different levels of depression, thereby highlighting their potential for fine-grained mental health monitoring in online settings. Full article
(This article belongs to the Special Issue AI in Bio and Healthcare Informatics)
Show Figures

Figure 1

Back to TopTop