Multi-Dimensional Estimation of Leaf Loss Rate from Larch Caterpillar Under Insect Pest Stress Using UAV-Based Multi-Source Remote Sensing
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Ground Survey Data
2.3. Drone Data Acquisition
2.4. Research Methods
2.4.1. Optical Indices Calculation and Preprocessing
2.4.2. LiDAR Indices Calculation and Preprocessing
2.4.3. Sensitive Feature Selection Method
2.4.4. Regression Model Construction
2.4.5. The LLR Estimation Results Are Fused with the LiDAR Point Cloud
2.4.6. Evaluation of Model Accuracy
3. Results
3.1. Smoothing and Extraction of Sensitive Indices
3.1.1. S–G Smoothing Results for Different Combinations of Parameters
3.1.2. Results of RFE-Based Sensitive Indices Extraction
3.2. Model Results for LLR Estimation in the Horizontal Orientation
3.3. Model Results for LLR Estimation in the Vertical Direction
3.3.1. Results of Vertical LLR Estimation and Modeling
3.3.2. The 3D Visualization of LLR Estimates at Different Canopy Levels in the Vertical Direction
4. Discussion
4.1. Performance of Multi-Source Remote Sensing Features for LLR Estimation
4.2. Application of Multidimensional Estimation of LLR to Forest Management
5. Conclusions
- (1)
- The S–G smoothing of different parameter combinations shows completely opposite conclusions on the optical features (W11P3) and the LiDAR features (W5P2), which is due to the characteristics of the data.
- (2)
- Combined with the RFE algorithm, 13 HSIs and 16 MSIs were extracted horizontally, and the analysis found that the HSI had higher importance scores than MSI, especially NDVI and ARI. Six LIs were extracted from layer I, nine from layer II, and eleven from layer III at different vertical levels, and the same analysis found that PER90, PER1, and PER10 had the highest importance scores respectively.
- (3)
- The MPI ranking of the horizontal model constructed based on sensitive optical features is CNNRHSI > RFRHSI > RFRMSI > CNNRMSI, where CNNRHSI achieves the best accuracy (MPI = 0.9383).
- (4)
- The combination of CNNRHSI and sensitive LI constructs a vertically different level LLR estimation model. It was found that the accuracy of the CNNRHSI+LI model reached more than 0.8 (layer I: MPI = 0.8956, layer II: MPI = 0.8424, layer III: MPI = 0.8346), and the accuracy was reliable. Finally, the estimation results of the single tree scale were fused with the LiDAR point cloud to realize the three-dimensional visualization of LLR. The results showed that the mildly damaged sample trees were gradually damaged from the II and III layers; the severely damaged sample trees were severely damaged on the I layer; and the moderately damaged sample trees did not show obvious patterns.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
HSI | Formula | MSI | Formula |
---|---|---|---|
NPCI [62] | (670 − 460)/(670 + 460) | GNDVI [33] | (B5 − B2)/(B5 + B2) |
SR [63] | 750/550 | DVI [63] | B5 − B3 |
MRENDVI [64] | (752 − 702)/(752 + 702) | RVI [63] | B5/B3 |
PSRI [64] | (680 − 500)/750 | GOSAVI [65] | (B5 − B2)/(B5 + B2 + 0.16) |
PBI [66] | 810/560 | OSAVIREG [65] | (B5 − B4)/(B5 + B4 + 0.16) |
PRI [66] | (531 − 570)/(531 + 570) | AR [67] | 1/B2 − 1/B4 |
LCI [68] | (850 − 710)/(850 + 710) | GDVI [69] | B5 − B2 |
RARS [70] | 760/500 | TVI [71] | 0.5(120(B5 − B2) − 200(B3 − B2)) |
CSRI [70] | (760/500) | CIREG [71] | B5/B4 − 1 |
NDVI [72] | (800 − 670)/(800 + 670) | CIGREEN [71] | B5/B2 − 1 |
GI [73] | 554/677 | CI [71] | B5/B2 − 1 |
REP [74] | 700 + 40 × (((670 + 780)/2) − 700)/(740 − 700) | RCI [75] | B5/B3 − 1 |
NVI [76] | (777 − 747)/673 | NDVI [77] | (B5 − B3)/(B5 + B3) |
ARI [78] | (1/550) − (1/700) | SAVI [79] | 1.5(B5 − B3)/(B5 + B3 + 0.5) |
CARI [80] | (700 − 670) − 0.2 × (700 − 550) | GSAVI [81] | 1.5(B5 − B2)/(B5 + B2 + 0.5) |
EVI [82] | 2.5 × ((830 − 660)/(1 + 830 + 6 × 660 − 7.5∗465)) | OSAV [83] | (B5 − B3)/(B5 + B3 + 0.16) |
MCARI [84] | ((700 − 670) − 0.2∗(700 − 550))∗(700/670) | EVI [85] | 2.5(B5 − B3)/(B5 + 6 × B3 − 7.5 × B1 + 1) |
NGRDI [86] | (550 − 660)/(550 + 660) | NDGI [87] | (B2 − B3)/(B2 + B3) |
RCI1 [88] | 750/710 | GMSR [89] | (B5/B2 − 1)/(B5/B2 + 1)0.5 |
RCI2 [90] | 850/710 | DVIREG [91] | B5 − B4 |
RECI [92] | (760/725) − 1 | EVIREG [91] | 2.5(B5 − B4)/(B5 + 6 × B4 − 7.5 × B1 + 1) |
CIGREEN [92] | (1/750–1/550)/550 | RVIREG [93] | B5/B4 |
TCARI [94] | 3 × ((700 − 670) − 0.2 × (700 − 550) × (700 − 670)) | MSRREG [95] | (B5/B4 − 1)/(B5/B4 + 1)0.5 |
CIREG [94] | ((1/750) − (1/700))/700 | NDVI* [96] | (B4 − B3)/(B4 + B3) |
CRI1 [65] | (1/508) − (1/549) | DVI* [97] | (B4 − B3) |
CRI2 [65] | (1/508) − (1/702) | INT* [93] | (B4 + B3)/2 |
RECRI [98] | ((1/510) − (1/710)) × 790 | NDSI* [99] | (B3 − B4)/(B3 + B4) |
GRVI [100] | (872/559) | RVI* [101] | B4/B3 |
MTCI [102] | (742 − 702)/(702 + 661) | LCI [103] | (B5 − B2)/(B5 + B2) |
MTCI2 [104] | (742 − 712)/(712 + 661) | InRE [105] | 100 × (B5 − B3) |
NDRSR [106] | (872 − 712)/(872 + 712) | INT2* [93] | (B2 + B3 + B4)/2 |
RSR [107] | 872/712 | MSR [108] | (B5/B3 − 1)/(B5/B3)0.5 + 1) |
References
- Wang, Y.-H.; Zhou, G.-S.; Jing, Y.-L.; Yang, Z.-Y. Estimating Biomass and NPP of Larix Forests using forest inventory data. Chin. J. Plant Ecol. 2001, 25, 420–425. [Google Scholar]
- Li, W.; Shu, L.; Wang, M.; Li, W.; Yuan, S.; Si, L.; Zhao, F.; Song, J.; Wang, Y. Temporal and Spatial Distribution and Dynamic Characteristics of Lightning Fires in the Daxing’anling Mountains from 1980 to 2021. Sci. Silvae Sin. 2023, 59, 22–31. [Google Scholar]
- Cong, J.X.; Wang, G.P.; Han, D.X.; Gao, C. Organic matter sources in permafrost peatlands changed by high-intensity fire during the last 150years in the northern Great Khingan Mountains, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2023, 631, 111821. [Google Scholar] [CrossRef]
- Zhang, J.; Hao, L. Occurence of Dendrolimus superans in Daxing’anling of Inner Mongolia and Its Management. For. Sci. Technol. 2002, 27, 26–28. [Google Scholar] [CrossRef]
- Zhu, H.; Lin, C.; Liu, G.; Wang, D.; Qin, S.; Li, A.; Xu, J.-L.; He, Y. Intelligent agriculture: Deep learning in UAV-based remote sensing imagery for crop diseases and pests detection. Front. Plant Sci. 2024, 15, 1435016. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Qu, C.; Xiao, N.; Chen, G.; Tang, W.; Wang, Y. A Study on Spectral Characteristics and Chlorophyll Content in Rice. Acta Laser Biol. Sin. 2017, 26, 326–333. [Google Scholar] [CrossRef]
- Liu, L.; Peng, Z.; Zhang, B.; Han, Y.; Wei, Z.; Han, N. Monitoring of Summer Corn Canopy SPAD Values Based on Hyperspectrum. J. Soil Water Conserv. 2019, 33, 353–360. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, X.; Yang, G.; Zhu, C.; Huo, L.; Feng, H. Assessment of defoliation during the Dendrolimus tabulaeformis Tsai et Liu disaster outbreak using UAV-based hyperspectral images. Remote Sens. Environ. 2018, 217, 323–339. [Google Scholar] [CrossRef]
- Zhao, R.; Zhang, B.; Zhang, C.; Chen, Z.; Chang, N.; Zhou, B.; Ke, K.; Tang, F. Goji Disease and Pest Monitoring Model Based on Unmanned Aerial Vehicle Hyperspectral Images. Sensors 2024, 24, 6739. [Google Scholar] [CrossRef]
- He, R.; Li, H.; Qiao, X.; Jiang, J. Using wavelet analysis of hyperspectral remote-sensing data to estimate canopy chlorophyll content of winter wheat under stripe rust stress. Int. J. Remote Sens. 2018, 39, 4059–4076. [Google Scholar] [CrossRef]
- Liu, W.; Li, Y.; Tomasetto, F.; Yan, W.; Tan, Z.; Liu, J.; Jiang, J. Non-destructive Measurementsof Toona sinensis Chlorophylland Nitrogen Content Under Drought Stress Using Near Infrared Spectroscopy. Front. Plant Sci. 2022, 12, 809828. [Google Scholar] [CrossRef]
- Li, M.; Zhu, X.; Li, W.; Tang, X.; Yu, X.; Jiang, Y. Retrieval of Nitrogen Content in Apple Canopy Based on Unmanned Aerial Vehicle Hyperspectral Images Using a Modified Correlation Coefficient Method. Sustainability 2022, 14, 1992. [Google Scholar] [CrossRef]
- Johari, S.N.A.M.; Khairunniza-Bejo, S.; Shariff, A.R.M.; Husin, N.A.; Masri, M.M.M.; Kamarudin, N. Detection of Bagworm Infestation Area in Oil Palm Plantation Based on UAV Remote Sensing Using Machine Learning Approach. Agriculture 2023, 13, 1886. [Google Scholar] [CrossRef]
- Yin, D.; Wang, L.; Lu, Y.; Shi, C. Mangrove tree height growth monitoring from multi-temporal UAV-LiDAR. Remote Sens. Environ. 2024, 303, 114002. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, R.; Zhang, L.; Yi, T.; Zhang, D.; Zhu, A. Research on Individual Tree Canopy Segmentation of Camellia oleifera Based on a UAV-LiDAR System. Agriculture 2024, 14, 364. [Google Scholar] [CrossRef]
- Brede, B.; Calders, K.; Lau, A.; Raumonen, P.; Bartholomeus, H.M.; Herold, M.; Kooistra, L. Non-destructive tree volume estimation through quantitative structure modelling: Comparing UAV laser scanning with terrestrial LIDAR. Remote Sens. Environ. 2019, 233, 111355. [Google Scholar] [CrossRef]
- He-Ya, S.; Huang, X.; Zhou, D.; Zhang, J.; Bao, G.; Tong, S.; Bao, Y.; Ganbat, D.; Tsagaantsooj, N.; Altanchimeg, D.; et al. Identification of Larch Caterpillar Infestation Severity Based on Unmanned Aerial Vehicle Multispectral and LiDAR Features. Forests 2024, 15, 191. [Google Scholar] [CrossRef]
- Lin, Q.; Huang, H.; Wang, J.; Chen, L.; Du, H.; Zhou, G. Early detection of pine shoot beetle attack using vertical profile of plant traits through UAV-based hyperspectral, thermal, and LiDAR data fusion. Int. J. Appl. Earth Obs. Geoinf. 2023, 125, 103549. [Google Scholar] [CrossRef]
- Hakala, T.; Suomalainen, J.; Kaasalainen, S.; Chen, Y. Full waveform hyperspectral LiDAR for terrestrial laser scanning. Opt. Express 2012, 20, 7119–7127. [Google Scholar] [CrossRef]
- Bi, K.; Xiao, S.; Gao, S.; Zhang, C.; Huang, N.; Niu, Z. Estimating vertical chlorophyll concentrations in maize in different health states using hyperspectral LiDAR. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8125–8133. [Google Scholar] [CrossRef]
- Hao, Y.-S.; Niu, Y.-F.; Wang, L.; Bi, K.-Y. Exploring the Capability of Airborne Hyperspectral LiDAR Based on Radiative Transfer Models for Detecting the Vertical Distribution of Vegetation Biochemical Components. Spectrosc. Spectr. Anal. 2024, 44, 2083–2092. [Google Scholar] [CrossRef]
- Shen, X.; Cao, L.; Coops, N.C.; Fan, H.; Wu, X.; Liu, H.; Wang, G.; Cao, F. Quantifying vertical profiles of biochemical traits for forest plantation species using advanced remote sensing approaches. Remote Sens. Environ. 2020, 250, 112041. [Google Scholar] [CrossRef]
- Yang, T.; Yu, Y.; Yang, X.; Du, H. UAV hyperspectral combined with LiDAR to estimate chlorophyll content at the stand and individual tree scales. Chin. J. Appl. Ecol. 2023, 3, 2101–2112. [Google Scholar] [CrossRef]
- Lu, J.; Chen, J.; Li, W.; Zhou, M.; Hu, J.; Tian, W.; Li, C. Research on Classification of Pest and Disease Tree Samples Based on Hyperspectral LiDAR. Laser Optoelectron. Prog. 2021, 58, 519–525. [Google Scholar] [CrossRef]
- Wang, G.; Aierken, N.; Chai, G.; Yan, X.; Chen, L.; Jia, X.; Wang, J.; Huang, W.; Zhang, X. A novel BH3DNet method for identifying pine wilt disease in Masson pine fusing UAS hyperspectral imagery and LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2024, 134, 104177. [Google Scholar] [CrossRef]
- Huo, L. Research on Pine Tree Defoliation Estimation Using Single-scan Terrestrail Laser Scanning Data. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2019. [Google Scholar] [CrossRef]
- Huang, X.-J.; Xie, Y.-W.; Bao, Y.-H.; Bao, G.; Qing, S.; Bao, Y.-L. Estimation of Leaf Loss Rate in Larch Infested with Erannis jacobsoni Djak Based on Differential Spectral Continuous Wavelet Coefficient. Spectrosc. Spectr. Anal. 2019, 39, 2732–2738. [Google Scholar] [CrossRef]
- Huang, X.-J.; Xie, Y.-W.; Bao, Y.-H. Spectral Detection of Damaged Level Affected by Jas, s Larch Inchworm. Spectrosc. Spectr. Anal. 2018, 38, 905–911. [Google Scholar] [CrossRef]
- Yang, L.; Huang, X.; Bao, Y.; Bao, G.; Tong, S. Sudubilig. Effects of UAV flight altitude on the accuracy of monitoring Dendrolimus superans pests by remote sensing. J. Nanjing For. Univ. 2023, 47, 13–22. [Google Scholar] [CrossRef]
- Sun, G.; Huang, X.; Dashzebeg, G.; Ariunaa, M.; Bao, Y.; Bao, G.; Tong, S.; Dorjsuren, A.; Davaadorj, E. Discrimination of Larch Needle Pest Severity Based on Sentinel-2 Super-Resolution and Spectral Derivatives—A Case Study of Erannis jacobsoni Djak. Forests 2025, 16, 88. [Google Scholar] [CrossRef]
- Bai, X.-Q.; Zhang, X.-L.; Zhang, N.; Zhang, L.-S.; Ma, Y.-B. Monitoring model of dendrolimus tabulaeformis disaster using hyperspectral remote sensing technology. J. Beijing For. Univ. 2016, 38, 16–22. [Google Scholar] [CrossRef]
- Bai, X.-Q. Disaster Degree Retrieval of Dendrolimus Tabulae Based on Hyperspectral Remote Sensing Technology. Master’s Thesis, Beijing Forestry University, Beijing, China, 2017. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Zelinski, M.; Mastin, A.; Castillo, V.; Yoxall, B. Optimal band selection for target detection with a LWIR multispectral imager. J. Appl. Remote Sens. 2022, 16, 026505. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, G.J.; Song, X.Y.; Li, Z.H.; Xu, X.G.; Feng, H.K.; Zhao, C.J. Improved estimation of winter wheat aboveground biomass using multiscale textures extracted from UAV-based digital images and hyperspectral feature analysis. Remote Sens. 2021, 13, 581. [Google Scholar] [CrossRef]
- Chen, J.M.; Black, T.A. Measuring leaf area index of plant canopies with branch architecture. Agric. For. Meteorol. 1991, 57, 1–12. [Google Scholar] [CrossRef]
- Jennings, S.B.; Brown, N.D.; Sheil, D. Assessing forest canopies and understorey illumination: Canopy closure, canopy cover and other measures. Forestry 1999, 72, 59–73. [Google Scholar] [CrossRef]
- Richardson, J.J.; Moskal, L.M.; Kim, S.H. Modeling approaches to estimate effective leaf area index form aerial discrete-return LIDAR. Agric. For. Meteorol. 2009, 149, 1152–1160. [Google Scholar] [CrossRef]
- Varin, M.; Chalghaf, B.; Joanisse, G. Object-Based Approach Using Very High Spatial Resolution 16-Band WorldView-3 and LiDAR Data for Tree Species Classification in a Broadleaf Forest in Quebec, Canada. Remote Sens. 2020, 12, 3092. [Google Scholar] [CrossRef]
- Chen, X.; Sun, Y.; Guo, S.; Duan, Y.; Tang, A.; Ye, Z.; Zhang, H. Urban Tree Species Classification by UAV Visible Light Imagery and OBIA-RF Model. J. Northeast For. Univ. 2024, 52, 48–59. [Google Scholar] [CrossRef]
- Yu, K.; Yao, X.; Qiu, Q.; Liu, J. Landslide Spatial Prediction Based on Random Forest Model. Trans. Chin. Soc. Agric. Mach. 2016, 47, 338–345. [Google Scholar] [CrossRef]
- Ahmadm, W.; Reynolds, J.; Rezgui, Y. Predictive modelling for solar thermal energy systems: A comparison of supportvector regression, random forest, extra trees and regression trees. J. Clean. Prod. 2018, 203, 810–821. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cacciari, I.; Ranfagni, A. Hands-On Fundamentals of 1D Convolutional Neural Networks—A Tutorial for Beginner Users. Appl. Sci. 2024, 14, 8500. [Google Scholar] [CrossRef]
- Huang, X.-J. Remote Sensing Identification and Monitoring of Larch Needle Pests Based on Ground Hyperspectral Data. Ph.D. Thesis, Lanzhou University, Gansu, China, 2019. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef]
- Saaty, R.W. The analytic hierarchy process-what it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Vaidya, O.S.; Kumar, S. Analytic hierarchy process: An overview of applications. Eur. J. Oper. Res. 2006, 169, 1–29. [Google Scholar] [CrossRef]
- Yin, C.; Wang, Z.; Lv, X.; Qin, S.; Ma, L.; Zhang, Z.; Tang, Q. Reducing soil and leaf shadow interference in UAV imagery for cotton nitrogen monitoring. Front. Plant Sci. 2024, 15, 1380306. [Google Scholar] [CrossRef]
- Wang, D.; Sun, X.; Zhang, Y.; Xia, H.; Lu, M.; Zhou, L. Spectral Characteristics of Water Stress in Chili Pepper Leaves. Trans. Chin. Soc. Agric. Mach. 2024, 55, 336–344. [Google Scholar] [CrossRef]
- Gao, A.; Qiao, F.; Zhu, W.; Zhong, X.; Deng, Y. Prediction of moisture content of hummus peach based on multi-burr hyperspectral data. Food Mach. 2023, 39, 123–129. [Google Scholar] [CrossRef]
- Cai, Z.; Jönsson, P.; Jin, H.; Eklundh, L. Performance of Smoothing Methods for Reconstructing NDVI Time-Series and Estimating Vegetation Phenology from MODIS Data. Remote Sens. 2017, 9, 1271. [Google Scholar] [CrossRef]
- Liu, Z.-Y.; Feng, S.; Zhao, D.-X.; Li, J.-P.; Guan, Q.; Xu, T.-Y. Research on Spectral Feature Extraction and Detection Method of Rice Leaf Blast by UAV Hyperspectral Remote Sensing. Spectrosc. Spectr. Anal. 2024, 44, 1457–1463. [Google Scholar] [CrossRef]
- Guo, J.; Huang, X.; Zhou, D.; Zhang, J.; Bao, G.; Tong, S.; Bao, Y.; Ganbat, D.; Altanchimeg, D.; Enkhnasan, D.; et al. Estimation of the water content of needles under stress by Erannis jacobsoni Djak. via Sentinel-2 satellite remote sensing. Front. Plant Sci. 2025, 16, 1540604. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Liang, J.; Wang, W.; Li, C. Random Forest Algorithm Based on Recursive Feature Elimination. Stat. Decis. 2017, 21, 60–63. [Google Scholar] [CrossRef]
- Wei, W.; Jing, X.-L.; Ge, X.-Y.; Sun, L.; Lu, Z. Long-Short NDVI Time Series Method for Detecting Local Mutation Characteristics of Vegetation. Adm. Tech. Environ. Monit. 2023, 35, 28–34. [Google Scholar] [CrossRef]
- Mo, K.; Chen, Q.; Chen, C.; Zhang, J.; Wang, L.; Bao, Z. Spatiotemporal variation of correlation between vegetation cover and precipitation in an arid mountain-oasis river basin in northwest China. J. Hydrol. 2019, 574, 138–147. [Google Scholar] [CrossRef]
- Sytar, O.; Bruckova, K.; Kovar, M.; Zivcak, M.; Hemmerich, L.; Brestic, M. Nondestructive detection and biochemical quantification of buckwheat leaves using visible (VIS) and near–infrared (NIR) hyperspectral reflectance imaging. J. Cent. Eur. Agric. 2017, 18, 864–878. [Google Scholar] [CrossRef]
- Wu, C.-Y.; Niu, Z. Review of retrieval light use efficiency using photochemical reflectance index (PRI). Chin. J. Plant Ecol. 2008, 32, 734–740. [Google Scholar] [CrossRef]
- Park, T. Potential Lidar Height, Intensity, and Ratio Parameters for Plot Dominant Species Discrimination and Volume Estimation. Remote Sens. 2020, 12, 3266. [Google Scholar] [CrossRef]
- Patrick, A.; Pelham, S.; Culbreath, A.; Holbrook, C.C.; De Godoy, I.J.; Li, C. High throughput phenotyping of tomato spot wilt disease in peanuts using unmanned aerial systems and multispectral imaging. IEEE Instrum. Meas. Mag. 2017, 20, 4–12. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Gamon, J.; Serrano, L.; Surfus, J. The photochemical reflectance index: An optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 1997, 112, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A.; Merzlyak, M.N. Remote estimation of chlorophyll content in higher plant leaves. Int. J. Remote Sens. 1997, 18, 2691–2697. [Google Scholar] [CrossRef]
- Datt, B. A new reflectance index for remote sensing of chlorophyll content in higher plants: Tests using Eucalyptus leaves. J. Plant Physiol. 1999, 154, 30–36. [Google Scholar] [CrossRef]
- Main, R.; Cho, M.A.; Mathieu, R.; O’Kennedy, M.M.; Ramoelo, A.; Koch, S. An investigation into robust spectral indices for leaf chlorophyll estimation. Isprs J. Photogramm. Remote Sens. 2011, 66, 751–761. [Google Scholar] [CrossRef]
- Chappelle, E.W.; Kim, M.S.; Iii, M.M. Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves. Remote Sens. Environ. 1992, 39, 239–247. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30, 1248. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- le Maire, G.; François, C.; Dufrêne, E. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sens. Environ. 2004, 89, 1–28. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W. Imaging Spectrometry in Agriculture—Plant Vitality And Yield Indicators. In Imaging Spectrometry—A Tool for Environmental Observations; Eurocourses: Remote Sensing, Volume 4; Hill, J., Mégier, J., Eds.; Springer: Dordrecht, The Netherlands, 1994. [Google Scholar] [CrossRef]
- Soukhovolsky, V.G.; Krasnoperova, P.A.; Palnikova, E.N.; Sviderskaya, I.V.; Tarasova, O.V. Differences in the Dynamics of Radial Tree Increment in the Pine Looper Outbreak Area and in Undamaged Stands and Assessment of the Risk of Pests’ Attack. Contemp. Probl. Ecol. 2019, 12, 753–759. [Google Scholar] [CrossRef]
- Gupta, R.K.; Vijayan, D.; Prasad, T.S. New hyperspectral vegetation characterization parameters. Adv. Space Res. 2001, 28, 201–206. [Google Scholar] [CrossRef]
- Tucker, C.J.; Elgin, J.H.; Mcmurtrey, J.E.; Fan, C. Monitoring corn and soybean crop development with hand-held radiometer spectral data. Remote Sens. Environ. 1979, 8, 237–248. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N.; Chivkunova, O.B. Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochem. Photobiol. 2001, 74, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Huete, A.R. A Soil-Adjusted Vegetation Index (Savi). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Kim, M.S. The Use of Narrow Spectral Bands for Improving Remote Sensing Estimation of Fractionally Absorbed Photosynthetically Active Radiation (fAPAR). Master’s Thesis, University of Maryland, College Park, MD, USA, 1994. [Google Scholar] [CrossRef]
- Yang, M.D.; Tseng, H.H.; Hsu, Y.C.; Tsai, H.P. Semantic Segmentation Using Deep Learning with Vegetation Indices for Rice Lodging Identification in Multi-date UAV Visible Images. Remote Sens. 2020, 12, 633. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.D.; Baret, F. Optimized of Soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Daughtry, C.; Walthall, C.; Kim, M.; De Colstoun, E.B.; McMurtrey, J., III. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Huete, A.R.; Didan, K.; Miura, T. Development of a Two-Band Enhanced Vegetation Index without a Blue Band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Hunt, E.R.; Cavigelli, M.; Daughtry, C.S.T.; McMurtrey, J.E.; Walthall, C.L. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precis. Agric. 2005, 6, 359–378. [Google Scholar] [CrossRef]
- Mirik, M.; Ansley, R.J.; Michels, G.J.; Elliott, N.C. Spectral vegetation indices selected for quantifying Russian wheat aphid (Diuraphis noxia) feeding damage in wheat (Triticum aestivum L.). Precis. Agric. 2012, 13, 501–516. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Miller, J.R.; Noland, T.L.; Mohammed, G.H.; Sampson, P.H. Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1491–1507. [Google Scholar] [CrossRef]
- Knyazikhin, Y.; Martonchik, J.V.; Myneni, R.B.; Diner, D.J.; Running, S.W. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. J. Geophys. Res. Atmos. 1998, 103, 32257–32275. [Google Scholar] [CrossRef]
- Coops, N.C.; Stone, C.; Culvenor, D.S.; Chisholm, L.A.; Merton, R.N. Chlorophyll content in eucalypt vegetation at the leaf and canopy scales as derived from high resolution spectral data. Tree Physiol. 2003, 23, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 2006, 33, 2–6. [Google Scholar] [CrossRef]
- Yang, N.; Cui, W.; Zhang, Z.; Zhang, J.; Chen, J.; Du, R.; Lao, C.; Zhou, Y. Soil salinity inversion at different depths using improved spectral index with UAV multispectral remote sensing. Trans. Chin. Soc. Agric. Eng. 2020, 36, 13–21. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal Applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B Biol. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Richardsons, A.J.; Wiegand, A. Distinguishing vegetation from soil background information. Photogramm. Eng. Remote Sens. 1977, 43, 1541–1552. [Google Scholar]
- Jacquemoud, S.; Ustin, S.L.; Verdebout, J.; Schmuck, G.; Andreoli, G.; Hosgood, B. Estimating leaf biochemistry using the PROSPECT leaf optical properties model. Remote Sens. Environ. 1996, 56, 194–202. [Google Scholar] [CrossRef]
- Richardson, A.D.; Duigan, S.P.; Berlyn, G.P. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol. 2002, 153, 185–194. [Google Scholar] [CrossRef]
- Sripada, R.P.; Heiniger, R.W.; White, J.G.; Meijer, A.D. Aerial Color Infrared Photography for Determining Early In-Season Nitrogen Requirements in Corn. Agron. J. 2006, 98, 968–977. [Google Scholar] [CrossRef]
- Major, D.J.; Baret, F.; Guyot, G. A ratio vegetation index adjusted for soil brightness. Int. J. Remote Sens. 1990, 11, 727–740. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Anchorage, AK, USA, 20–24 September 2004; pp. 1–257. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. Evaluation of the meris terrestrial chlorophyll index (mtci). Adv. Space Res. 2007, 39, 100–104. [Google Scholar] [CrossRef]
- Gong, P.; Pu, R.; Biging, G.S.; Larrieu, M.R. Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1355–1362. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Vina, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, L08403. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Chivkunova, O.B.; Merzlyak, M.N. Nondestructive estimation of anthocyanins and chlorophylls in anthocyanic leaves. Am. J. Bot. 2009, 96, 1861–1868. [Google Scholar] [CrossRef]
- Slater, P.N.; Jackson, R.D. Atmospheric effects on radiation reflected from soil and vegetation as measured by orbital sensors using various scanning directions. Appl. Opt. 1982, 21, 3923–3931. [Google Scholar] [CrossRef]
Project | Parameters |
---|---|
Spectral Range | 350–100 nm + 905 nm-LiDAR + 8–14 μm-IR |
Hyperspectral images | 1886∗1886 pixels/cube |
Number of spectral channels | 164/325(scalable) |
Sensor | 20 MP Hyperspectral CMOS + LiDAR + VoxIR + 5MP panchromatic all-in-one design |
Imaging mode | Framed hyperspectral imaging, solid-state LiDAR and simultaneous measurements with panchromatic cameras |
Hyperspectral imaging speed | ≥2 Cubes/s (1886∗1886 pixels/cube) |
Lidar | 905 nm Solid State LiDAR, Level 1 Human Eye Safety |
Measurement distance | 450 nm@80% reflectance |
Attitude Accuracy | 0.008° |
Acquisition control storage | Built-in acquisition control system, SSD 8 G/512 G |
Indicator | Formula |
---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sa, H.-Y.; Huang, X.; Ling, L.; Zhou, D.; Zhang, J.; Bao, G.; Tong, S.; Bao, Y.; Ganbat, D.; Ariunaa, M.; et al. Multi-Dimensional Estimation of Leaf Loss Rate from Larch Caterpillar Under Insect Pest Stress Using UAV-Based Multi-Source Remote Sensing. Drones 2025, 9, 529. https://doi.org/10.3390/drones9080529
Sa H-Y, Huang X, Ling L, Zhou D, Zhang J, Bao G, Tong S, Bao Y, Ganbat D, Ariunaa M, et al. Multi-Dimensional Estimation of Leaf Loss Rate from Larch Caterpillar Under Insect Pest Stress Using UAV-Based Multi-Source Remote Sensing. Drones. 2025; 9(8):529. https://doi.org/10.3390/drones9080529
Chicago/Turabian StyleSa, He-Ya, Xiaojun Huang, Li Ling, Debao Zhou, Junsheng Zhang, Gang Bao, Siqin Tong, Yuhai Bao, Dashzebeg Ganbat, Mungunkhuyag Ariunaa, and et al. 2025. "Multi-Dimensional Estimation of Leaf Loss Rate from Larch Caterpillar Under Insect Pest Stress Using UAV-Based Multi-Source Remote Sensing" Drones 9, no. 8: 529. https://doi.org/10.3390/drones9080529
APA StyleSa, H.-Y., Huang, X., Ling, L., Zhou, D., Zhang, J., Bao, G., Tong, S., Bao, Y., Ganbat, D., Ariunaa, M., Altanchimeg, D., & Enkhnasan, D. (2025). Multi-Dimensional Estimation of Leaf Loss Rate from Larch Caterpillar Under Insect Pest Stress Using UAV-Based Multi-Source Remote Sensing. Drones, 9(8), 529. https://doi.org/10.3390/drones9080529