Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,828)

Search Parameters:
Keywords = treatment modification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1712 KB  
Article
Effects of Exogenous Phosphorus and Hydrogen Peroxide on Wheat Root Architecture
by Lei Chen, Lei Zhou, Yuwei Zhang and Hong Wang
Plants 2026, 15(2), 253; https://doi.org/10.3390/plants15020253 - 13 Jan 2026
Abstract
Plant root growth and architectural modifications are well-documented responses to phosphorous (P) starvation. The spatiotemporal dynamics of hydrogen peroxide (H2O2) in mediating root development under P deficiency, especially in cereal crops like wheat, remain insufficiently understood. A nutrient solution [...] Read more.
Plant root growth and architectural modifications are well-documented responses to phosphorous (P) starvation. The spatiotemporal dynamics of hydrogen peroxide (H2O2) in mediating root development under P deficiency, especially in cereal crops like wheat, remain insufficiently understood. A nutrient solution experiment was conducted to grow two varieties of wheat, including SM15 and HG35, with the treatments of 0.005 and 0.25 mmol/L P supply. Exogenous H2O2 and its scavenger ascorbic acid (AsA), and a NADPH oxidase inhibitor diphenylene iodonium (DPI) were added. The distribution of reactive oxygen species (ROS) in roots were detected by chemical staining and fluorescent probe technology. Low P supply did not change the root dry weight and total root length, while it decreased the lateral root density. The increase in the primary root and lateral root growth in P-starved wheat coincided with more ROS in the cell wall of the elongation zone. ROS production and oxidative enzyme activity of P-starved roots increased significantly. Low H2O2 induced the formation of lateral roots and significantly increased lateral root density under low P conditions. High H2O2 significantly reduced lateral root density but stimulated the nodal root formation. Exogenous AsA or DPI addition reversed the promotion of root growth imposed under the low P treatment or H2O2 addition. Furthermore, exogenous H2O2 treatment reduced the inhibitory effect of the DPI treatment on nodal root formation. It is suggested that the involvement of ROS in the regulation of wheat root system architecture under low P supply. Full article
Show Figures

Figure 1

20 pages, 3530 KB  
Article
The Effect of CO2 Laser Treatment on the Composition of Cotton/Polyester/Metal Fabric
by Andris Skromulis, Inga Lasenko, Imants Adijāns, Ilze Liepiņlauska, Maido Merisalu, Uno Mäeorg, Svetlana Sokolova, Sandra Vasilevska, Sai Pavan Kanukuntla and Jaymin Vrajlal Sanchaniya
Polymers 2026, 18(2), 215; https://doi.org/10.3390/polym18020215 - 13 Jan 2026
Abstract
The effect of CO2 laser treatment on the surface composition and properties of a woven fabric (polyester (PET) fiber (59 wt%)/cotton (CO) fiber (31 wt%)/stainless-steel (SS) metal fibers (10 wt%)) was investigated across a range of laser intensities (19.1 × 106 [...] Read more.
The effect of CO2 laser treatment on the surface composition and properties of a woven fabric (polyester (PET) fiber (59 wt%)/cotton (CO) fiber (31 wt%)/stainless-steel (SS) metal fibers (10 wt%)) was investigated across a range of laser intensities (19.1 × 106 to 615.0 × 106 W/m2). Elemental analysis using wavelength-dispersive X-ray fluorescence (WD-XRF) revealed that for an intensity up to 225.4 × 106 W/m2, the carbon content on the fabric surface increased while the oxygen content decreased, indicating thermally induced surface modification. Fourier transform infrared (FT-IR) spectroscopy confirmed that no new chemical bonds were formed, suggesting that the changes observed were predominantly physical in nature. High-resolution scanning electron microscopy (HR-SEM) showed progressive fiber fusion and surface smoothing with increasing laser intensity, consistent with polyester melting. Tensile testing demonstrated a significant decline in peak load and elongation at peak load with rising laser fluence, indicating mechanical embrittlement. Overall, CO2 laser treatment alters the morphology and elemental composition of the fabric surface without inducing major chemical decomposition, markedly reducing its mechanical strength. Full article
(This article belongs to the Special Issue Environmentally Friendly Textiles, Fibers and Their Composites)
Show Figures

Figure 1

31 pages, 4380 KB  
Article
Nitrogen-Enriched Nanobiochar Enhances Spinach Growth via Improved Nitrogen Retention and Uptake Mechanisms
by Kashaf, Sumera Anwar, Fahad Shafiq, Abida Kausar, Shahbaz Khan, Muhammad Ashraf and Syed Ahmed Shah
Nitrogen 2026, 7(1), 11; https://doi.org/10.3390/nitrogen7010011 - 13 Jan 2026
Abstract
The increasing demand for sustainable agriculture requires innovative strategies to enhance nitrogen use efficiency while minimizing environmental losses associated with conventional fertilizers. This study aimed to develop and compare ammonium chloride- and ammonium nitrate-modified nanobiochar as controlled-release nitrogen carriers and to elucidate their [...] Read more.
The increasing demand for sustainable agriculture requires innovative strategies to enhance nitrogen use efficiency while minimizing environmental losses associated with conventional fertilizers. This study aimed to develop and compare ammonium chloride- and ammonium nitrate-modified nanobiochar as controlled-release nitrogen carriers and to elucidate their effects on nitrogen retention, soil properties, and physiological nitrogen utilization in spinach (Spinacia oleracea L.). Nitrogen-modified nanobiochar was synthesized using ammonium chloride (NB-AC) and ammonium nitrate (NB-AN) at three nitrogen rates (0.03, 0.06, and 0.12 g N g−1 NB) and applied to soil at 1% (w/w). Soil properties, nutrient dynamics, and plant growth and physiological traits were analyzed after 15 and 30 days. Nitrogen modification significantly improved soil nitrogen retention and nutrient availability compared with unmodified nanobiochar. The highest nitrogen loading treatments (NB-AC3 and NB-AN3) notably improved spinach growth, photosynthetic efficiency, pigment content, nitrogen metabolism enzymatic activities, and accumulation of key metabolites (soluble sugars, flavonoids). Nitrogen-release assessments indicated a pronounced controlled-release with reduced nitrogen leaching and greater retention, particularly under NB-AN3. Overall, this study demonstrates that nitrogen-modified nanobiochar functions as an effective nitrogen carrier that enhances nitrogen utilization and growth. These findings provide mechanistic insights into its potential as a sustainable alternative to conventional nitrogen fertilizers. Full article
Show Figures

Figure 1

14 pages, 426 KB  
Review
Genetic Basis of Familial Cancer Risk: A Narrative Review
by Eman Fares Sabik
DNA 2026, 6(1), 5; https://doi.org/10.3390/dna6010005 - 13 Jan 2026
Abstract
Familial cancers are caused by inherited mutations in specific genes that regulate cell growth, division, and repair. Approximately 5–10% of all cancer cases have a hereditary component, where germline mutations in certain genes increase an individual’s susceptibility to developing cancer. Two major categories [...] Read more.
Familial cancers are caused by inherited mutations in specific genes that regulate cell growth, division, and repair. Approximately 5–10% of all cancer cases have a hereditary component, where germline mutations in certain genes increase an individual’s susceptibility to developing cancer. Two major categories of genes are involved in cancer development: tumour suppressor genes and oncogenes. Both play critical roles in regulating normal cell behaviour, and when mutated, they can contribute to uncontrolled cell proliferation and tumour formation. In addition to genetic mutations, epigenetic alterations also play a significant role in familial cancer. Epigenetics refers to changes in gene expression due to DNA methylation, histone modifications, and the dysregulation of non-coding RNAs without alter the underlying DNA sequence. Familial cancer syndromes follow various inheritance patterns, including autosomal dominant, autosomal recessive, X-linked, and mitochondrial inheritance, each with distinct characteristics. Identifying genetic mutations associated with familial cancers is a cornerstone of genetic counselling, which helps individuals and families navigate the complex intersection of genetics, cancer risk, and prevention. Early identification of mutations enables personalized strategies for risk reduction, early detection, and, when applicable, targeted treatment options, ultimately improving patient outcomes. Full article
Show Figures

Figure 1

16 pages, 2827 KB  
Article
Preparation and Characterization of PVDF/PVPylated-TiO2 Composite Membrane with Enhanced Antifouling Performance
by Jie Zhang, Shiying Bo, Chunhua Wang, Qiancheng Xiong, Bingqiong Tan, Zicong Jian, Feiyan Xie, Jianpeng Li, Zicheng Xiao and Guocong Liu
Nanomaterials 2026, 16(2), 104; https://doi.org/10.3390/nano16020104 - 13 Jan 2026
Abstract
Hydrophilic modification of polymeric membranes by employing TiO2 nanoparticles has attracted much attention in enhancing antifouling performance. Micelles of PVPylated-TiO2 nanoparticles were designed to alleviate the agglomeration of TiO2 nanoparticles via steric hindrance and electrostatic stabilization effect. Herein, Poly(vinyl pyrrolidone) [...] Read more.
Hydrophilic modification of polymeric membranes by employing TiO2 nanoparticles has attracted much attention in enhancing antifouling performance. Micelles of PVPylated-TiO2 nanoparticles were designed to alleviate the agglomeration of TiO2 nanoparticles via steric hindrance and electrostatic stabilization effect. Herein, Poly(vinyl pyrrolidone) (PVP) was used as a surfactant to mitigate the thorny agglomeration of nanoparticles in the casting solution and simultaneously as a pore-forming additive during the membrane preparation process. The lowest backscattering (BS) peak and turbiscan stability index (TSI) of the composite casting solution indicated the effective dispersion and stabilization under the steric interaction of 4 wt.% PVP. Properties such as the fully developed finger-like structure of cross-sectional morphologies, water permeability, negative Zeta potential, and hydrophilicity were enhanced evidently by the optimal modification of PVPylated-TiO2 materials. High interaction energy indicated by classic extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) theory as well as the high relative flux during the filtration of various model foulants demonstrated the effective antifouling modification. The results of critical flux and fouling rate in 30 min also verified the enhancement of the antifouling performance of PVDF/PVPylated-TiO2 composite membrane. This work provides a feasible strategy to construct composite membranes with high antifouling performance for wastewater treatment. Full article
Show Figures

Graphical abstract

21 pages, 3874 KB  
Article
Polystyrene Nanoplastic Exposure Causes Reprogramming of Anti-Oxidative Genes Hmox1 and Sod3 by Inhibiting Nuclear Receptor RORγ in the Mouse Liver
by Pingyun Ding, Madesh Muniyappan, Chuyang Zhu, Chenhui Li, Saber Y. Adam, Yu Wang, Thobela Louis Tyasi, Peng Yuan, Ping Hu, Haoyu Liu and Demin Cai
Biology 2026, 15(2), 135; https://doi.org/10.3390/biology15020135 - 13 Jan 2026
Abstract
Plastic pollution is acknowledged as a serious problem for ecosystems. Among these plastics, polystyrene nanoplastics (PS-NPs) are emerging environmental pollutants, and their biological effects on hepatotoxicity are the least explored. Therefore, the present work examined the effect of PS-NPs on the hepatic transcription [...] Read more.
Plastic pollution is acknowledged as a serious problem for ecosystems. Among these plastics, polystyrene nanoplastics (PS-NPs) are emerging environmental pollutants, and their biological effects on hepatotoxicity are the least explored. Therefore, the present work examined the effect of PS-NPs on the hepatic transcription of the antioxidant genes Hmox1 and Sod3 in mice (n = 6, treatment (PS-NPs) vs. vehicle group (Veh)), mediated by RORγ and epigenetic modifications. The results show that PS-NP mice had significantly reduced body weight; increased activity of adenosine triphosphate (ATP), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH), and Complexes I, III, and V in the liver; and increased Alanine Transaminase (ALT), Aspartate Transaminase (ASP), Alkaline Phosphatase (ALP), malondialdehyde (MDA) and reactive oxygen species (ROS) compared to the Veh group. Furthermore, PS-NPs resulted in considerably lower relative mRNA expression of Hmox1, Sod3, and RORγ in the liver than the Veh group. Likewise, when compared to Veh, PS-NPs significantly reduced the enrichment of RORγ, as well as the occupancies of the key components of the transcriptional activation pathway (P300, SRC1, Pol II, Ser5-Pol II, and Ser2-Pol II) at the loci of Hmox1 and Sod3. In comparison to Veh, PS-NPs showed downregulated occupancies of the histone active marks H3K9ac and H3K18ac, while H3K4me3 and H3K27me3 were higher at the target loci of Hmox1 and Sod3. In conclusion, the present study highlights that PS-NPs induce oxidative stress by modifying Hmox1 and Sod3 in mice’s livers through histone changes and nuclear receptor RORγ modulation. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

17 pages, 3918 KB  
Article
ORY-1001 Delays Retinal Photoreceptor Degeneration in rd10 Mice by Inhibiting H3K4me2 Demethylation
by Xin Lu and Guang-Hua Peng
Biology 2026, 15(2), 132; https://doi.org/10.3390/biology15020132 - 13 Jan 2026
Abstract
(1) Background: Modifications of histone methylation could alter chromatin structure and thereby have an impact on gene expressions. (2) Methods: To investigate whether ORY-1001 delay retinal photoreceptor degeneration, rd10 mice were intraperitoneally injected with ORY-1001 (0.075 mg/kg) every second day from the 14th [...] Read more.
(1) Background: Modifications of histone methylation could alter chromatin structure and thereby have an impact on gene expressions. (2) Methods: To investigate whether ORY-1001 delay retinal photoreceptor degeneration, rd10 mice were intraperitoneally injected with ORY-1001 (0.075 mg/kg) every second day from the 14th to the 24th day after birth. Full-field electroretinogram detection (ff ERG), optical coherence tomography (OCT), visual behavioral testing, retinal tissue morphology observation, and protein expression detection experiments were performed on the 25th day. Simultaneously, ATAC-seq and RNA-seq were used to test the mice’s retinal tissues, and metabolomics detection and quantitative real-time polymerase chain reaction (qRT-PCR) were carried out. (3) Results: Compared with the rd10 group, in the treatment group, the function in the electroretinogram response and the visual behavioral responses were improved, the nuclear layer morphology of retinal tissue was reserved more, and the protein expression of H3K4me2 and CoREST was increased. Conjoint analysis of our ATAC-seq and RNA-seq results showed that chromatin accessibility was changed, as was gene expression which was involved in metabolism changes. In addition, the effector gene in the retina was Gnat1. (4) Conclusions: ORY-1001 delays retinal photoreceptor degeneration by inhibiting H3K4me2 demethylation in rd10 mice, which suggests that ORY-1001, as a novel epigenetic modifier, has potential for treating RP. Full article
Show Figures

Graphical abstract

22 pages, 367 KB  
Review
Nutritional Interventions in Osteoarthritis: Mechanisms, Clinical Evidence, and Translational Opportunities
by Milan Patel, Gabriela Betanzos, Marco Troka, Jay Modi, George Nageeb, Alan D. Kaye and Alaa Abd-Elsayed
Nutrients 2026, 18(2), 244; https://doi.org/10.3390/nu18020244 - 13 Jan 2026
Abstract
Osteoarthritis (OA) is a leading cause of chronic pain worldwide. This is driven by progressive cartilage degradation, inflammation, oxidative stress, and metabolic dysfunction. Current pharmacologic interventions mostly lead to symptomatic relief without actually affecting disease progression. Thus, there is a growing interest in [...] Read more.
Osteoarthritis (OA) is a leading cause of chronic pain worldwide. This is driven by progressive cartilage degradation, inflammation, oxidative stress, and metabolic dysfunction. Current pharmacologic interventions mostly lead to symptomatic relief without actually affecting disease progression. Thus, there is a growing interest in the development of new interventional methods. Our review seeks to synthesize preclinical, translational, and clinical evidence on the impact nutritional methods have on OA management. Whole-diet approaches, such as Mediterranean and plant-based, have been linked to reduced pain, increased physical function, and positive biomarker changes. Bioactive compounds, including curcumin, polyphenols, omega-3 fatty acids, and select herbal extracts, have shown anti-inflammatory, antioxidant, and chondroprotective effects via NF-κB, Nrf2, AMPK, and SIRT1 pathways. This review particularly focuses on plant-derived substances. Emerging nanoparticle technology with regard to advanced delivery systems shows initial promise in nutraceutical pharmacokinetics and tissue targeting. Overall, nutritional interventions are adjunct interventions to OA management. Although these are not full treatment replacements, dietary modifications and targeted nutraceutical strategies with improved delivery systems may lead to more preventive, personalized, and holistic OA management and care. Full article
29 pages, 2741 KB  
Review
Production Techniques for Antibacterial Fabrics and Their Emerging Applications in Wearable Technology
by Azam Ali, Muhammad Zaman Khan, Sana Rasheed and Rimsha Imtiaz
Micro 2026, 6(1), 5; https://doi.org/10.3390/micro6010005 - 13 Jan 2026
Abstract
Integrating antibacterial fabrics into wearable technology represents a transformative advancement in healthcare, fashion, and personal hygiene. Antibacterial fabrics, designed to inhibit microbial growth, are gaining prominence due to their potential to reduce infections, enhance durability, and maintain cleanliness in wearable devices. These fabrics [...] Read more.
Integrating antibacterial fabrics into wearable technology represents a transformative advancement in healthcare, fashion, and personal hygiene. Antibacterial fabrics, designed to inhibit microbial growth, are gaining prominence due to their potential to reduce infections, enhance durability, and maintain cleanliness in wearable devices. These fabrics offer effective antimicrobial properties while retaining comfort and functionality by incorporating nanotechnology and advanced materials, such as silver nanoparticles, zinc oxide, titanium dioxide, and graphene. The production techniques for antibacterial textiles range from chemical and physical surface modifications to biological treatments, each tailored to achieve long-lasting antibacterial performance while preserving fabric comfort and breathability. Advanced methods such as nanoparticle embedding, sol–gel coating, electrospinning, and green synthesis approaches have shown significant promise in enhancing antibacterial efficacy and material compatibility. Wearable technology, including fitness trackers, smart clothing, and medical monitoring devices, relies on prolonged skin contact, making the prevention of bacterial colonization essential for user safety and product longevity. Antibacterial fabrics address these concerns by reducing odor, preventing skin irritation, and minimizing the risk of infection, especially in medical applications such as wound dressings and patient monitoring systems. Despite their potential, integrating antibacterial fabrics into wearable technology presents several challenges. This review provides a comprehensive overview of the key antibacterial agents, the production strategies used to fabricate antibacterial textiles, and their emerging applications in wearable technologies. It also highlights the need for interdisciplinary research to overcome current limitations and promote the development of sustainable, safe, and functional antibacterial fabrics for next-generation wearable. Full article
Show Figures

Figure 1

18 pages, 2552 KB  
Article
Transgenic Citrus sinensis Expressing the Pepper Bs2 R-Gene Shows Broad Transcriptional Activation of Defense Responses to Citrus Canker
by Lorena Noelia Sendín, Verónica Andrea Ledesma, Rocío Liliana Gómez, Qibin Yu, Frederick G. Gmitter, Patricia Albornoz, Esteban Mariano Pardo, Ramón Enrique, Atilio Pedro Castagnaro and María Paula Filippone
Agronomy 2026, 16(2), 187; https://doi.org/10.3390/agronomy16020187 - 12 Jan 2026
Viewed by 26
Abstract
The pepper Bs2 resistance gene confers resistance to susceptible Solanaceae plants against pathogenic strains of Xanthomonas campestris pv. vesicatoria carrying the avrBs2 avirulence gene. Previously, we generated Bs2-transgenic Citrus sinensis plants that exhibited enhanced resistance to citrus canker caused by Xanthomonas citri [...] Read more.
The pepper Bs2 resistance gene confers resistance to susceptible Solanaceae plants against pathogenic strains of Xanthomonas campestris pv. vesicatoria carrying the avrBs2 avirulence gene. Previously, we generated Bs2-transgenic Citrus sinensis plants that exhibited enhanced resistance to citrus canker caused by Xanthomonas citri subsp. citri (Xcc), although the underlying mechanisms remained unknown. To elucidate the molecular basis of the early defense response, we performed a comparative transcriptomic analysis of Bs2-expressing and non-transgenic plants 48 h after Xcc inoculation. A total of 2022 differentially expressed genes (DEGs) were identified, including 1356 up-regulated and 666 down-regulated genes. In Bs2-plants, 36.8% of the up-regulated DEGs were associated with defense responses and biotic stress. Functional annotation revealed major changes in genes encoding receptor-like kinases, transcription factors, hormone biosynthesis enzymes, pathogenesis-related proteins, secondary metabolism, and cell wall modification. Among hormone-related pathways, genes linked to ethylene biosynthesis and signaling were the most strongly regulated. Consistently, endogenous ethylene levels increased in Bs2-plants following Xcc infection, and treatment with an ethylene-releasing compound enhanced resistance in non-transgenic plants. Overall, our results indicate the Bs2 expression activates a complex defense network in citrus and may represent a valuable strategy for controlling canker and other Xanthomonas-induced diseases. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

21 pages, 785 KB  
Review
Phosphatidylinositol-3-Kinase (PI3K) and Histone Deacetylase (HDAC) Multitarget Inhibitors: An Update on Clinical and Preclinical Candidates
by Alef Lima and Lídia Lima
Pharmaceuticals 2026, 19(1), 130; https://doi.org/10.3390/ph19010130 - 12 Jan 2026
Viewed by 24
Abstract
Phosphatidylinositol-3-kinases (PI3Ks) constitute an important validated therapeutic class involved in crucial cellular processes, and their dysregulation is associated with cancer initiation and progression. Nonetheless, intrinsic and acquired resistance mechanisms associated with PI3K pathway modulation have underscored the need for alternative therapeutic strategies. In [...] Read more.
Phosphatidylinositol-3-kinases (PI3Ks) constitute an important validated therapeutic class involved in crucial cellular processes, and their dysregulation is associated with cancer initiation and progression. Nonetheless, intrinsic and acquired resistance mechanisms associated with PI3K pathway modulation have underscored the need for alternative therapeutic strategies. In this context, recent studies have shown that simultaneous inhibition of PI3K and histone deacetylases (HDAC) promotes synergistic antitumor effects in different cancer cell lines. HDACs are validated epigenetic targets that are extensively explored in clinical practice and have a pharmacophore with versatility for structural modifications, which facilitates the design of multitarget inhibitors. This review examines the rational design and synthetic evolution of dual PI3K/HDAC inhibitors, an area catalyzed by the development of fimepinostat, the first clinically evaluated agent exhibiting potent and balanced inhibition of both targets. We provide a critical overview of PI3K/HDAC multitarget inhibitors reported in recent years that have progressed to preclinical or clinical investigation, discussing the structural frameworks employed, medicinal chemistry strategies adopted, and structure–activity relationships established. Particular attention is given to advantageous molecular features as well as challenges related to toxicity, pharmacokinetic behavior, and pharmacodynamic modulation. From this comprehensive analysis, we outline key considerations and emerging design principles that may inform the next generation of PI3K/HDAC multitarget drug candidates. Insights derived from the diversity of chemical scaffolds, activity profiles, and selectivity patterns described herein may support the development of innovative therapeutic agents capable of overcoming current limitations in anticancer treatment. Full article
17 pages, 2282 KB  
Article
Fisetin Suppresses the Proliferative and Migratory Behavior of HeLa Cells by Modulating Aberrant Epigenetic Marks (Writers and Erasers)
by Nazia Afroze, Reham I. Alagal, Lujain A. Almousa, Ritu Raina, Prathap Bava, Lizna Mohamed Ali, Tarique Noorul Hasan and Arif Hussain
Epigenomes 2026, 10(1), 3; https://doi.org/10.3390/epigenomes10010003 - 12 Jan 2026
Viewed by 31
Abstract
Purpose: The reversible deviant in epigenomic modulations is the highlight of developing new anti-cancer drugs, necessitating the use of fisetin as an epigenetic modifier in the study. Methods: In silico and molecular studies were performed to analyze the modulatory effect of fisetin on [...] Read more.
Purpose: The reversible deviant in epigenomic modulations is the highlight of developing new anti-cancer drugs, necessitating the use of fisetin as an epigenetic modifier in the study. Methods: In silico and molecular studies were performed to analyze the modulatory effect of fisetin on various writers and erasers. Further, whole genome DNA methylation sequencing and expression studies were performed. Global DNA methylation-LINE 1 kit was used to check global DNA methylation. Additionally, the effect of fisetin on migration was evaluated by colony, scratch, and invasion assays and qPCR and protein expression studies of migration-related genes were carried out on HeLa cells. Results: In silico studies have supported that fisetin interacts with writers and erasers in their catalytic site and the simulation studies showed minimum fluctuations in energy and temperature over a 10 ns timescale indicating that these complexes are likely to remain stable. Fisetin (20–50 µM) dose-dependently inhibited DNA methyltransferases (DNMT), histone deacetyl transferases (HDAC), histone acetyl transferases (HAT), and histone methyltransferases (HMT) activities at 48 h, with inhibition ranging from 24 to 72% compared to the control. The expression and enzymatic activity of these proteins, along with various H4 and H3 modification marks, were observed to be altered following fisetin treatment at 48 h. Fisetin treatment reduced promoter methylation in various tumor suppressor genes ranging from 15.29% to 76.23% and leading to the corresponding reactivation of important tumor suppressor genes; however, it did not lead to any alteration in the global DNA methylation compared to untreated controls linked with the anti-migratory properties of fisetin as the percentage of migrated cells dropped from ~40% to ~8%. Conclusions: This study gives a mechanistic insight of fisetin as a potential epigenetic modifier in HeLa cells. Full article
(This article belongs to the Collection Epigenetic Regulation of Cellular Differentiation)
Show Figures

Figure 1

18 pages, 2424 KB  
Article
Surface Activation Using Atmospheric Plasma to Improve PHB Coating Adhesion and Corrosion Resistance of AZ91D Magnesium Alloys
by Arturo Valenzo, María del Pilar Rodríguez-Rojas, Horacio Martínez, Victoria Bustos-Terrones, Alvaro Torres-Islas, Socorro Valdez and Arturo Molina-Ocampo
Polymers 2026, 18(2), 205; https://doi.org/10.3390/polym18020205 - 12 Jan 2026
Viewed by 48
Abstract
Polyhydroxybutyrate (PHB) is considered a coating material capable of limiting the corrosion of biodegradable metallic implants due to its biocompatibility and ability to form a physical barrier. In this study, PHB was deposited on commercial AZ91D magnesium alloy using the spin coating technique. [...] Read more.
Polyhydroxybutyrate (PHB) is considered a coating material capable of limiting the corrosion of biodegradable metallic implants due to its biocompatibility and ability to form a physical barrier. In this study, PHB was deposited on commercial AZ91D magnesium alloy using the spin coating technique. To improve adhesion at the polymer–substrate interface, the magnesium substrates were subjected to atmospheric pressure plasma treatment for different exposure times (5, 10, or 15 min) before coating. The optimal treatment time of 5 min significantly increased substrate wettability and surface free energy, facilitating stronger PHB adhesion. In addition, the PHB coatings were subjected to atmospheric pressure plasma treatment for 5, 10, or 15 s to evaluate potential surface modifications. Corrosion behavior under simulated physiological conditions was assessed via potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in HANK’s solution at 37 °C. Pull-off tests were used to evaluate the adhesion strength between the coating and the substrate under each treatment condition. The results showed a significant decrease in the corrosion rate (Vcorr), from 4.083 mm/year for bare Mg-AZ91D to 0.001 mm/year when both the substrate and the polymer received plasma treatment. This indicates that the treatment modifies surfaces and improves interfacial bonding, enhancing polymer–metal interaction and producing durable, biocompatible coatings for medical implants. Full article
(This article belongs to the Special Issue Plasma Processing of Polymers, 2nd Edition)
Show Figures

Figure 1

25 pages, 5863 KB  
Systematic Review
AI-Enhanced CBCT for Quantifying Orthodontic Root Resorption: Evidence from a Systematic Review and a Clinical Case of Severe Bilateral Canine Impaction
by Teresa Pinho, Letícia Costa and João Pedro Carvalho
Appl. Sci. 2026, 16(2), 771; https://doi.org/10.3390/app16020771 - 12 Jan 2026
Viewed by 34
Abstract
Background: Artificial intelligence (AI) integrated with cone-beam computed tomography (CBCT) has rapidly advanced the diagnostic capability of orthodontics, particularly for quantifying external root resorption (ERR). High-risk scenarios such as bilateral maxillary canine impaction require objective tools to guide treatment decisions and prevent irreversible [...] Read more.
Background: Artificial intelligence (AI) integrated with cone-beam computed tomography (CBCT) has rapidly advanced the diagnostic capability of orthodontics, particularly for quantifying external root resorption (ERR). High-risk scenarios such as bilateral maxillary canine impaction require objective tools to guide treatment decisions and prevent irreversible damage. Objectives: To evaluate the diagnostic accuracy and clinical applicability of AI-assisted CBCT for orthodontically induced ERR, and to demonstrate its value in a complex clinical case where decision-making regarding canine traction versus extraction required precise risk quantification and definition of biological limits. Methods: A systematic review following PRISMA 2020 guidelines was conducted in PubMed, ScienceDirect, and Cochrane Library (2015–September 2025). Eligible studies applied AI-enhanced CBCT to assess ERR in orthodontic patients. Additionally, a clinical case with bilaterally impacted maxillary canines was evaluated using CBCT with automated AI segmentation and manual refinement to quantify root volume changes and determine prognostic thresholds for treatment modification. Results: Nine studies met the inclusion criteria. AI-based imaging, predominantly convolutional neural networks, showed high diagnostic accuracy (up to 94%), improving reproducibility and reducing operator dependency. In the clinical case, volumetric monitoring showed rapid progression of ERR in the lateral incisors (LI) associated with a persistent unfavorable 3D spatial relationship between the canines and incisor roots, despite controlled distal traction with skeletal anchorage, leading to a timely change in the treatment plan and extraction of the severely compromised incisors with substitution by the canines. AI-generated data provided objective evidence supporting safer decision-making and prevented further structural deterioration. Conclusions: AI-enhanced CBCT enables early, objective, and quantifiable ERR assessment, strengthening prognosis-based decisions in orthodontics. Findings of this review and the clinical case highlight the translational relevance of AI for managing high-risk cases, such as maxillary canine impaction with extensive LI resorption, supporting future predictive AI models for safer canine traction. Full article
(This article belongs to the Special Issue Advancements and Updates in Digital Dentistry)
Show Figures

Figure 1

20 pages, 4718 KB  
Article
Forward Osmosis for Produced Water Treatment: Comparative Performance Evaluation of Fabricated and Commercial Membranes
by Sunith B. Madduri and Raghava R. Kommalapati
Polymers 2026, 18(2), 197; https://doi.org/10.3390/polym18020197 - 10 Jan 2026
Viewed by 154
Abstract
Produced water (PW) generated from oil and gas operations poses a significant environmental challenge due to its high salinity and complex organic–inorganic composition. This study evaluates forward osmosis (FO) as an energy-efficient approach for PW treatment by comparing a commercial cellulose triacetate (CTA) [...] Read more.
Produced water (PW) generated from oil and gas operations poses a significant environmental challenge due to its high salinity and complex organic–inorganic composition. This study evaluates forward osmosis (FO) as an energy-efficient approach for PW treatment by comparing a commercial cellulose triacetate (CTA) membrane and a fabricated electrospun nanofibrous membrane, both modified with a zwitterionic sulfobetaine methacrylate/polydopamine (SBMA/PDA) coating. Fourier Transform Infrared Spectroscopy (FTIR) spectra verified the successful incorporation of SBMA and PDA through the appearance of characteristic sulfonate, quaternary ammonium, and catechol/amine-related vibrations. Scanning electron microscopy (SEM) imaging revealed the intrinsic dense surface of the CTA membrane and the highly porous nanofibrous architecture of the electrospun membrane, with both materials showing uniform coating coverage after modification. Complementary analyses supported these observations: X-ray Photoelectron Spectroscopy (XPS) confirmed the presence of nitrogen, sulfur, and chlorine containing functionalities associated with the zwitterionic layer; Thermogravimetric Analysis (TGA) demonstrated that surface modification did not compromise the thermal stability of either membrane; and contact-angle measurements showed substantial increases in surface hydrophilicity following modification. Gas chromatography–mass spectrometry (GC–MS) analysis of the Permian Basin PW revealed a chemically complex mixture dominated by light hydrocarbons, alkylated aromatics, and heavy semi-volatile organic compounds. FO experiments using hypersaline PW demonstrated that the fabricated membrane consistently outperformed the commercial membrane under both MgCl2 and Na3PO4 draw conditions, achieving up to ~40% higher initial water flux and total solids rejection as high as ~62% when operated with 2.5 M Na3PO4. The improved performance is attributed to the nanofibrous architecture and zwitterionic surface chemistry, which together reduced fouling and reverse solute transport. These findings highlight the potential of engineered zwitterionic nanofibrous membranes as robust alternatives to commercial FO membranes for sustainable produced water treatment. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Graphical abstract

Back to TopTop