Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (38,991)

Search Parameters:
Keywords = treatment applications

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 5680 KB  
Review
Recent Advances in the Applications of Biomaterials in Ovarian Cancer
by A M U B Mahfuz, Amol V. Janorkar, Rodney P. Rocconi and Yuanyuan Duan
Biomimetics 2025, 10(11), 768; https://doi.org/10.3390/biomimetics10110768 (registering DOI) - 12 Nov 2025
Abstract
Among the gynecological cancers, ovarian cancer is the most fatal. Despite advancements in modern medicine, the survival rate is abysmally low among ovarian cancer patients. Ovarian cancer poses several unique challenges, like late diagnosis due to the initial vagueness of the symptoms and [...] Read more.
Among the gynecological cancers, ovarian cancer is the most fatal. Despite advancements in modern medicine, the survival rate is abysmally low among ovarian cancer patients. Ovarian cancer poses several unique challenges, like late diagnosis due to the initial vagueness of the symptoms and lack of effective screening protocols. Recently, biomaterials have been explored and utilized extensively for the diagnosis, treatment, and screening of ovarian malignancies. Biomaterials can help bypass the obstacles of traditional chemotherapy and enhance imaging capabilities. They are also indispensable for next-generation biosensors and tumor organoids. Biomaterials inspired by biomimetic strategies that replicate the structural, chemical, and functional properties of natural biological systems have proven to have better functionalities. While numerous review articles have examined biomaterials in oncology, there is a lack of reviews dedicated specifically to their applications in ovarian cancer. This review aims to address this critical gap by providing the first comprehensive overview of the current biomaterial research on ovarian cancer and highlighting key challenges, opportunities, and future directions in this evolving interdisciplinary field. Full article
Show Figures

Graphical abstract

23 pages, 1619 KB  
Review
Recent Advances in Multimodal Nanostructured Bioaerogels for Smart Drug Delivery
by Muhanad A. Abdulsamad, Lujin A. Essa, Rabia Alghazeer, Norah Alkhayyal, Rawan Altalhi, Randah Alghamdi and Esam Bashir Yahya
Polymers 2025, 17(22), 3012; https://doi.org/10.3390/polym17223012 (registering DOI) - 12 Nov 2025
Abstract
The convergence of nanotechnology and bioaerogels has paved the way for the development of multimodal nanostructured bioaerogels with remarkable potential in smart drug delivery systems. These advanced biomaterials integrate multiple functionalities, including sensing, targeting, and therapeutic actions, to enhance drug efficacy, minimize systemic [...] Read more.
The convergence of nanotechnology and bioaerogels has paved the way for the development of multimodal nanostructured bioaerogels with remarkable potential in smart drug delivery systems. These advanced biomaterials integrate multiple functionalities, including sensing, targeting, and therapeutic actions, to enhance drug efficacy, minimize systemic side effects, and enable real-time monitoring of therapeutic responses. This review provides a comprehensive analysis of the structural design, physicochemical properties, and fabrication strategies of multimodal bioaerogels. It further explores their role in responsive drug delivery, emphasizing stimuli-responsive mechanisms such as pH, temperature, and enzymatic triggers. The incorporation of nanomaterials, including metallic nanoparticles, carbon-based nanostructures, and polymeric nanocarriers, has endowed bioaerogels with tunable porosity, controlled drug release, and bioactive functionalities. Additionally, their application in precision medicine, particularly for cancer therapy, antimicrobial treatments, and tissue engineering, is critically examined. Challenges related to scalability, biocompatibility, and regulatory compliance are also discussed, alongside future perspectives on advancing these bioaerogels toward clinical translation. By integrating interdisciplinary insights, this review underscores the transformative potential of multimodal nanostructured bioaerogels in the next generation of intelligent drug delivery systems. Full article
(This article belongs to the Special Issue Polymers for Drug/Gene Delivery and Controlled Release)
18 pages, 4664 KB  
Article
Transcriptomic and Metabolomic Mechanisms Underlying Adaptive Differentiation of Black Soldier Fly Larvae Induced by Regional Food Waste Domestication
by Bin Zhang, Rencan Yang, Zaimei Yuan, Hongren Su, Jingyi Shi, Shichun He, Sifan Dai, Dawei Sun, Zhiyong Zhao, Qingquan Hu and Dongwang Wu
Biology 2025, 14(11), 1584; https://doi.org/10.3390/biology14111584 (registering DOI) - 12 Nov 2025
Abstract
Black soldier flies (Hermetia illucens) are widely used in organic waste bioconversion, and their adaptive capacity to region-specific food waste is critical for efficient application. This study aimed to explore the molecular mechanisms underlying the adaptation of black soldier fly larvae [...] Read more.
Black soldier flies (Hermetia illucens) are widely used in organic waste bioconversion, and their adaptive capacity to region-specific food waste is critical for efficient application. This study aimed to explore the molecular mechanisms underlying the adaptation of black soldier fly larvae to long-term domestication on regional food waste from Kunming and Qujing. Integrated transcriptomic and metabolomic analyses were performed to identify differences in gene expression and metabolite profiles between the two groups of larvae. The results showed significant divergence in gene expression networks, with key differences in cytochrome P450 detoxification pathways, TOR nutrient-sensing pathways, and zf-C2H2 zinc finger transcription factor families. Metabolomic analysis revealed region-specific metabolic reprogramming, including enhanced branched-chain amino acid degradation in one group and activated sphingolipid signaling pathways with accumulated indole derivatives in the other. Additionally, 13.86% of unannotated metabolites in the metabolome exhibited high connectivity in metabolic networks, suggesting potential roles as “bridge metabolites” in adaptation. These findings demonstrate that long-term domestication on regional food waste drives adaptive differentiation in black soldier fly larvae through regulatory network remodeling, metabolic reprogramming, and activation of hidden metabolic reserves. The study provides a theoretical basis for optimizing the application of black soldier flies in waste treatment and strain breeding and establishes a “substrate-gene-metabolism” multi-omics framework for understanding insect adaptive evolution. Full article
(This article belongs to the Section Ecology)
16 pages, 3862 KB  
Article
Flexible Sensor Foil Based on Polymer Optical Waveguide for Haptic Assessment
by Zhenyu Zhang, Abu Bakar Dawood, Georgios Violakis, Ahmad Abdalwareth, Günter Flachenecker, Panagiotis Polygerinos, Kaspar Althoefer, Martin Angelmahr and Wolfgang Schade
Sensors 2025, 25(22), 6915; https://doi.org/10.3390/s25226915 (registering DOI) - 12 Nov 2025
Abstract
Minimally Invasive Surgery is often limited by the lack of tactile feedback. Indeed, surgeons have traditionally relied heavily on tactile feedback to estimate tissue stiffness - a critical factor in both diagnostics and treatment. With this in mind we present in this paper [...] Read more.
Minimally Invasive Surgery is often limited by the lack of tactile feedback. Indeed, surgeons have traditionally relied heavily on tactile feedback to estimate tissue stiffness - a critical factor in both diagnostics and treatment. With this in mind we present in this paper a flexible sensor foil, based on polymer optical waveguide. This sensor has been applied for real-time contact force measurement, material stiffness differentiation and surface texture reconstruction. Interrogated by a commercially available optoelectronic device, the sensor foil offers precise and reproducible feedback of contact forces up to 5 N, with a minimal detectable limit of 0.1 N. It also demonstrates distinct optical attenuation responses when indenting silicone samples of varying stiffnesses under controlled displacement. When integrated onto a 3D-printed module resembling an endoscopic camera and manipulated by a robotic arm, the sensor successfully generated spatial stiffness mapsof a phantom. Moreover, by sliding over structures with varying surface textures, the sensor foil was able to reconstruct surface profiles based on the light attenuation responses. The results demonstrate that the presented sensor foil possesses great potential for surgical applications by providing additional haptic information to surgeons. Full article
(This article belongs to the Special Issue Waveguide-Based Sensors and Applications)
Show Figures

Figure 1

32 pages, 19195 KB  
Article
Suitability of Mg-Nd and Mg-Zn Alloys to Obtain Biodegradable Structures for Bone Defects
by Veronica Manescu (Paltanea), Aurora Antoniac, Maria Cristina Moraru, Iulian Antoniac, Cosmin Mihai Cotrut, Sebastian Gradinaru, Alexandra Iulia Dreanca, Bogdan Sevastre, Romelia Pop, Flaviu Alexandru Tabaran, George Mihail Vlasceanu, Mariana Ionita and Marius Manole
J. Funct. Biomater. 2025, 16(11), 423; https://doi.org/10.3390/jfb16110423 (registering DOI) - 12 Nov 2025
Abstract
Mg-based alloys are one of the most promising materials used in regenerative medicine for bone tissue engineering. Considering the increasing prevalence of a continuously aging population, as well as the high incidence of accidents and bone cancers, it is crucial to explore biomaterials [...] Read more.
Mg-based alloys are one of the most promising materials used in regenerative medicine for bone tissue engineering. Considering the increasing prevalence of a continuously aging population, as well as the high incidence of accidents and bone cancers, it is crucial to explore biomaterials that can serve as bone substitutes. After carefully analyzing the literature in the introduction section, we proposed two Mg-based alloys as suitable for obtaining biodegradable structures for bone defect treatment. To achieve trustworthy results, the alloys’ microstructure was investigated using microscopic techniques coupled with energy-dispersive spectroscopy and X-ray diffraction. The obtained results were comparable with those described in references on similar Mg alloys. Then, the mechanical compression properties were highlighted, and the in vitro corrosion behavior proved that Mg-Zn exhibited a reduced corrosion rate compared to the Mg-Nd alloy, as tested using electrochemical methods. However, the in vivo tests showed good biocompatibility for both magnesium alloys. In conclusion, both alloys are suitable for use as potential bone substitute applications, but it must be taken into consideration that Mg-Zn alloys present lower biodegradation and mechanical properties. For future investigations, we aim to develop bone substitutes made from these materials, specifically designed for small bone defect treatment and with patient-adapted geometry. Due to the differences mentioned above, various designs will be tested. Full article
Show Figures

Figure 1

32 pages, 2730 KB  
Review
Imatinib in Targeted Therapy: Advances in Biomedical Applications and Drug Delivery Systems
by Yana Gvozdeva, Petya Georgieva and Plamen Katsarov
Hemato 2025, 6(4), 40; https://doi.org/10.3390/hemato6040040 (registering DOI) - 12 Nov 2025
Abstract
Imatinib (IMT) is a small-molecule tyrosine kinase inhibitor that primarily targets platelet-derived growth factor receptor-β and related kinases. Beyond its established efficacy in chronic myeloid leukemia, IMT has also demonstrated therapeutic benefits in gastrointestinal stromal tumors, dermatofibrosarcoma, acute lymphoblastic leukemia, and as a [...] Read more.
Imatinib (IMT) is a small-molecule tyrosine kinase inhibitor that primarily targets platelet-derived growth factor receptor-β and related kinases. Beyond its established efficacy in chronic myeloid leukemia, IMT has also demonstrated therapeutic benefits in gastrointestinal stromal tumors, dermatofibrosarcoma, acute lymphoblastic leukemia, and as a second-line treatment for aggressive systemic mastocytosis or as an anti-Mycobacterium agent. From a physicochemical perspective, IMT exhibits poor aqueous solubility but high membrane permeability, classifying it as a Biopharmaceutics Classification System Class II compound. Pharmacokinetically, IMT shows variable oral absorption and a prolonged terminal half-life, resulting in dose-dependent systemic exposure. Despite relatively high oral bioavailability, its clinical use requires large doses to achieve therapeutic efficacy, underscoring the need for advanced drug delivery strategies. Nano- and microscale delivery systems offer promising approaches to enhance tumor-specific accumulation through the enhanced permeability and retention effect while mitigating resistance mechanisms. However, achieving high drug loading introduces formulation challenges, such as controlling particle size distribution, polydispersity, and scalability. Moreover, designing carriers capable of controlled release without premature leakage remains crucial for maintaining systemic bioavailability and therapeutic performance. Emerging delivery platforms—including polymeric, lipid-based, carbon-derived, and stimuli-responsive nanocarriers—have shown significant potential in overcoming these limitations. Such systems can enhance IMT’s bioavailability, improve selective tumor targeting, and minimize systemic toxicity, thereby advancing its translational potential. This review aims to highlight the different biomedical applications of IMT and off-label uses, and to discuss current advances in drug delivery to optimize its clinical efficacy and safety profile. Full article
(This article belongs to the Section Chronic Myeloid Disease)
Show Figures

Figure 1

15 pages, 1011 KB  
Systematic Review
Therapeutic Applications of 3D Bioprinting in Surgery for Female Reproductive Tract Disorders: A Systematic Review
by Joaquín Gómez-Abellán, Raquel López-Flores, Juan A. Sánchez-Margallo, Soledad Sánchez-Mateos and Francisco M. Sánchez-Margallo
Polymers 2025, 17(22), 3010; https://doi.org/10.3390/polym17223010 (registering DOI) - 12 Nov 2025
Abstract
Three-dimensional printing has been progressively integrated into various industries, particularly the medical sector, where its significance in tissue engineering for transplantation is growing exponentially. The purpose of this systematic review is to ascertain whether the bioprinting of scaffolds holds the potential to provide [...] Read more.
Three-dimensional printing has been progressively integrated into various industries, particularly the medical sector, where its significance in tissue engineering for transplantation is growing exponentially. The purpose of this systematic review is to ascertain whether the bioprinting of scaffolds holds the potential to provide treatment for pathologies within the female reproductive system. The inclusion criteria applied were the bioimprinting of the ovary, uterus, endometrium, or vagina, intended for surgical implantation in the patient. Articles employing printing methods that do not incorporate cells embedded in the material, those that generate tissue other than that of the female reproductive system, and those that print structures with in vitro applications were excluded from the review. The search for relevant articles was conducted until 3 April 2025. After analyzing 667 articles extracted from PubMed, Scopus and Web of Science, 13 articles were included in this review. The analysis of the results encompassed aspects related to the bioprinting technology employed, the hydrogels and cells utilized, as well as the bioprinted structure and the corresponding target tissue. Few studies investigated the creation of a multicellular scaffold and in none of the cases was it implanted in a large animal model, only in murine and rabbit models. These articles reaffirm the feasibility of employing 3D bioprinting to fabricate tissues and functional organs in the present and future. This advancement will revolutionize the future demand for organs for transplantation. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

12 pages, 2177 KB  
Case Report
Fecal Microbiota Transplantation in Refractory Immune-Mediated Colitis: Case Series and Review of the Literature
by Marin Golčić, Laura Radoš, Iva Skočilić, Ivona Badovinac, Goran Hauser, Irena Krznarić Zrnić, Marina Šantić, Dora Fučkar Čupić, Sara Francetić, Karla Lisica, Lea Juras, Marija Škrtić, Ana Bešvir Džubur, Robert Šeparović, Vedran Tomašić, Ana Tečić Vuger and Ivana Mikolašević
Pharmaceuticals 2025, 18(11), 1719; https://doi.org/10.3390/ph18111719 (registering DOI) - 12 Nov 2025
Abstract
Background/Objectives: Immune checkpoint inhibitors (ICI) represent a significant breakthrough in cancer management, but they can cause adverse effects such as immune-mediated colitis (IMC). The standard first-line treatment is corticosteroids, and second-line treatment is infliximab or vedolizumab. However, a proportion of immune-mediated colitis (IMC) [...] Read more.
Background/Objectives: Immune checkpoint inhibitors (ICI) represent a significant breakthrough in cancer management, but they can cause adverse effects such as immune-mediated colitis (IMC). The standard first-line treatment is corticosteroids, and second-line treatment is infliximab or vedolizumab. However, a proportion of immune-mediated colitis (IMC) cases are refractory to immunosuppressive treatment, which has led to the exploration of novel approaches such as fecal microbiota transplantation. Methods: We present two patients who both developed grade III IMC following application of durvalumab and pembrolizumab, respectively. Both patients were refractory to corticosteroid therapy, while the first one also showed no improvement to infliximab. We performed two separate applications of FMT on both patients, from different donors, as a rescue treatment. Results: After unsuccessful immunosuppressive treatment and following rescue FMT, both patients demonstrated a rapid and sustained improvement in inflammatory markers, clinical symptoms, quality-of-life scores, and colonoscopy findings, without additional immunosuppressive treatment. Conclusions: FMT appears to be safe and a potentially effective treatment option for patients with refractory IMC both as second- and third-line therapy options. Continued efforts toward rigorous donor screening, use of standardized biobanks, and standardizing FMT protocols will further enhance safety and reproducibility. Full article
(This article belongs to the Special Issue The Regulatory Roles of the Gut Microbiota in Multisystem Diseases)
Show Figures

Figure 1

51 pages, 7121 KB  
Case Report
Total Reversal of ALS Confirmed by EMG Normalization, Structural Reconstitution, and Neuromuscular–Molecular Restoration Achieved Through Computerized Brain-Guided Reengineering of the 1927 Nobel Prize Fever Therapy: A Case Report
by M. Marc Abreu, Mohammad Hosseine-Farid and David G. Silverman
Diseases 2025, 13(11), 371; https://doi.org/10.3390/diseases13110371 (registering DOI) - 12 Nov 2025
Abstract
Background: Neurological disorders are the leading cause of disability, affecting over three billion people worldwide. Amyotrophic lateral sclerosis (ALS) is among the most feared and uniformly fatal neurodegenerative diseases, with no therapy capable of restoring lost function. Methods: We report the first application [...] Read more.
Background: Neurological disorders are the leading cause of disability, affecting over three billion people worldwide. Amyotrophic lateral sclerosis (ALS) is among the most feared and uniformly fatal neurodegenerative diseases, with no therapy capable of restoring lost function. Methods: We report the first application of therapeutic fever to ALS using Computerized Brain-Guided Intelligent Thermofebrile Therapy (CBIT2). This fully noninvasive treatment, delivered through an FDA-approved computerized platform, digitally reengineers the 1927 Nobel Prize-recognized malarial fever therapy into a modern treatment guided by the Brain–Eyelid Thermoregulatory Tunnel. CBIT2 induces therapeutic fever through synchronized hypothalamic feedback, activating heat shock proteins, which are known to restore proteostasis and neuronal function. Case presentation: A 56-year-old woman was diagnosed with progressive ALS at the Mayo Clinic, with electromyography (EMG) demonstrating fibrillation and fasciculation indicative of denervation corroborated by neurological and MRI findings; the patient was informed that she had an expected survival of three to five years. A neurologist from Northwestern University confirmed the diagnosis and thus maintained the patient on FDA-approved ALS drugs (riluzole and edaravone). Her condition rapidly worsened despite pharmacological treatment, and she underwent CBIT2, resulting in (i) electrophysiological reversal with complete disappearance of denervation; (ii) biomarker correction, including reductions in neurofilament and homocysteine, IL-10 normalization (previously linked to mortality), and robust HSP70 induction; (iii) restoration of gait, swallowing, respiration, speech, and cognition; (iv) reconstitution of tongue structure; and (v) return to complex motor tasks, including golf, pickleball, and swimming. Discussion: This case provides the first documented evidence that ALS can be reversed through digitally reengineered fever therapy aligned with thermoregulation, which induces heat shock response and upregulates heat shock proteins, resulting in the patient no longer meeting diagnostic criteria for ALS and discontinuation of ALS-specific medications. Beyond ALS, shared protein-misfolding pathology suggests that CBIT2 may extend to Alzheimer’s, Parkinson’s, and related disorders. By modernizing this Nobel Prize-recognized therapeutic principle with computerized precision, CBIT2 establishes a framework for large-scale clinical trials. A century after fever therapy restored lost brain function and so decisively reversed dementia paralytica such that it earned the 1927 Nobel Prize in Medicine, CBIT2 now safely harnesses the therapeutic power of fever through noninvasive, intelligent, brain-guided thermal modulation. Amid a global brain health crisis, fever-based therapies may offer a path to preserve thought, memory, movement, and independence for the more than one-third of humanity currently affected by neurological disorders. Full article
(This article belongs to the Special Issue Research Progress in Neurodegenerative Diseases)
Show Figures

Graphical abstract

25 pages, 2563 KB  
Article
LungVisionNet: A Hybrid Deep Learning Model for Chest X-Ray Classification—A Case Study at King Hussein Cancer Center (KHCC)
by Iyad Sultan, Hasan Gharaibeh, Azza Gharaibeh, Belal Lahham, Mais Al-Tarawneh, Rula Al-Qawabah and Ahmad Nasayreh
Technologies 2025, 13(11), 517; https://doi.org/10.3390/technologies13110517 - 12 Nov 2025
Abstract
Early diagnosis and rapid treatment of respiratory abnormalities such as many lung diseases including pneumonia, TB, cancer, and other pulmonary problems depend on accurate and fast classification of chest X-ray images. Delayed diagnosis and insufficient treatment lead to the subjective, labour-intensive, error-prone features [...] Read more.
Early diagnosis and rapid treatment of respiratory abnormalities such as many lung diseases including pneumonia, TB, cancer, and other pulmonary problems depend on accurate and fast classification of chest X-ray images. Delayed diagnosis and insufficient treatment lead to the subjective, labour-intensive, error-prone features of current manual diagnosis systems. To tackle this pressing healthcare issue, this work investigates many deep convolutional neural network (CNN) architectures including VGG16, VGG19, ResNet50, InceptionV3, Xception, DenseNet121, NASNetMobile, and NASNet Large. LungVisionNet (LVNet) is an innovative hybrid model proposed here that combines MobileNetV2 with multilayer perceptron (MLP) layers in a unique way. LungVisionNet outperformed previous models in accuracy 96.91%, recall 97.59%, precision, specificity, F1-score 97.01%, and area under the curve (AUC) measurements according to thorough examination on two publicly available datasets including various chest abnormalities and normal cases exhibited. Comprehensive evaluation with an independent, real-world clinical dataset from King Hussein Cancer Centre (KHCC), which achieved 95.3% accuracy, 95.3% precision, 78.8% recall, 99.1% specificity, and 86.4% F1-score, confirmed the model’s robustness, generalizability, and clinical usefulness. We also created a simple mobile application that lets doctors quickly classify and evaluate chest X-ray images in hospitals, so enhancing clinical integration and practical application and supporting fast decision-making and better patient outcomes. Full article
(This article belongs to the Section Assistive Technologies)
Show Figures

Figure 1

32 pages, 8009 KB  
Review
Recent Advances in Nanoparticle-Mediated Antibacterial Photodynamic Therapy
by Nivedita, Shashwat Sharma, Dyah Ika Krisnawati, Tsai-Mu Cheng and Tsung-Rong Kuo
Int. J. Mol. Sci. 2025, 26(22), 10949; https://doi.org/10.3390/ijms262210949 - 12 Nov 2025
Abstract
The escalating threat of antibiotic resistance has prompted the search for alternative antibacterial therapies. Antibacterial photodynamic therapy (aPDT), which utilizes light-activated photosensitizers to generate reactive oxygen species (ROS), offers a promising, non-invasive approach. The aim of this review is to analyze recent advances [...] Read more.
The escalating threat of antibiotic resistance has prompted the search for alternative antibacterial therapies. Antibacterial photodynamic therapy (aPDT), which utilizes light-activated photosensitizers to generate reactive oxygen species (ROS), offers a promising, non-invasive approach. The aim of this review is to analyze recent advances in nanoparticle-mediated aPDT and synthesize crucial design principles necessary to overcome the current translational barriers, thereby establishing a roadmap for future clinically applicable antimicrobial treatments. Emerging nanoparticle platforms, including upconverting nanoparticles (UCNPs), carbon dots (CDs), mesoporous silica nanoparticles (MSNs), liposomes, and metal–organic frameworks (MOFs), have demonstrated improved photosensitizer delivery, enhanced ROS generation, biofilm disruption, and targeted bacterial eradication. Synergistic effects are observed when aPDT is integrated with photothermal, chemodynamic, or immunotherapeutic approaches. The review further examines the mechanisms of action, biocompatibility, and antibacterial performance of these nanoparticle systems, particularly against drug-resistant strains and in challenging environments such as chronic wounds. Overall, nanomaterial-mediated aPDT presents a highly promising and versatile solution to antimicrobial resistance. Future perspectives include the integration of artificial intelligence to personalize aPDT by predicting optimal light dosage and nanoplatform design based on patient-specific data, rigorous clinical validation through trials, and the development of safer, more efficient nanoparticle platforms. Full article
(This article belongs to the Special Issue New Molecular Insights into Antimicrobial Photo-Treatments)
Show Figures

Figure 1

11 pages, 1327 KB  
Article
Effectiveness of Mobile Exergaming with Sensor-Based Visual Feedback as an Adjunct Therapy for Home-Based Quadriceps Exercise Training in Knee Osteoarthritis: A Prospective Randomized Controlled Trial
by Chavarat Jarungvittayakon, Paphon Sa-ngasoongsong, Danai Chockchaisakul, Jaturong Bamrungchaowkasem and Siwadol Wongsak
Life 2025, 15(11), 1738; https://doi.org/10.3390/life15111738 - 12 Nov 2025
Abstract
Background: Exergame applications were introduced recently for orthopedic rehabilitation. This study aimed to evaluate the effectiveness of a 6-week home-based quadriceps exercise with mobile exergaming for treatment of primary knee osteoarthritis (KOA). Methods: A prospective randomized controlled trial was conducted in 56 primary [...] Read more.
Background: Exergame applications were introduced recently for orthopedic rehabilitation. This study aimed to evaluate the effectiveness of a 6-week home-based quadriceps exercise with mobile exergaming for treatment of primary knee osteoarthritis (KOA). Methods: A prospective randomized controlled trial was conducted in 56 primary KOA patients. All patients were allocated into two groups (n = 28 each group). Intervention group received the 6-week mobile exergaming program using a smartphone exercise game with a wearable wireless motion sensor. Control group received a standard 6-week exercise program. Outcomes were active knee arc of motion, quadriceps muscle power, visual analog scale score, timed “Up and Go” (TUG) test, and Knee Injury and Osteoarthritis Outcome Score (KOOS) at a 6-week follow-up. Results: At 6-week post-exercise, the intervention group significantly improved quadriceps power, arc of motion, VAS score at rest and on motion, TUG test, and KOOS-symptom domain compared to the control group (p < 0.05 all). No device- or exercise-related complications were found. Conclusions: Mobile exergaming with visual feedback control using a wearable wireless sensor significantly improves KOA outcomes compared to standard home-based exercise as early as 6 weeks post-application. Full article
(This article belongs to the Special Issue Advances in Knee Biomechanics)
Show Figures

Figure 1

42 pages, 2905 KB  
Review
A Review on the Mixing Quality of Static Mixers
by Lukas von Damnitz and Denis Anders
ChemEngineering 2025, 9(6), 128; https://doi.org/10.3390/chemengineering9060128 - 12 Nov 2025
Abstract
Static mixers are widely used devices for efficient fluid mixing, homogenization, and enhancement of heat transfer, with applications ranging from chemical processing and pharmaceutical manufacturing to wastewater treatment. This review provides a structured overview of mixing processes and the key metrics used to [...] Read more.
Static mixers are widely used devices for efficient fluid mixing, homogenization, and enhancement of heat transfer, with applications ranging from chemical processing and pharmaceutical manufacturing to wastewater treatment. This review provides a structured overview of mixing processes and the key metrics used to assess mixing quality in static mixers. Conceptual models such as dispersive versus distributive mixing and the classification into macro-, meso-, and micromixing are introduced as a basis for understanding mixing phenomena. Subsequently, a comprehensive set of quantitative measures, including G-value, residence time distribution, intensity of segregation, coefficient of variation, striation-based descriptors, Lyapunov exponent, extensional efficiency, and shear rate, is discussed in detail. Correlations and relationships among these measures are highlighted to facilitate their application in characterizing mixing quality in static mixers. By systematically summarizing the theoretical background, definitions, and interconnections of mixing quality measures, this review aims to provide researchers and engineers with a clear framework for evaluating and comparing mixing quality in static mixers, thereby supporting both academic studies and practical design considerations. Full article
Show Figures

Figure 1

14 pages, 2886 KB  
Article
Covered Socket Residuum (CSR) in Former Third Molar Sockets Despite Platelet-Rich Fibrin: A Prospective Randomized Controlled Split-Mouth Clinical Study
by Shahram Ghanaati, Atullo Kamalov, Jerry Bouquot, Robert Sader, Anja Heselich and Sarah Al-Maawi
Bioengineering 2025, 12(11), 1242; https://doi.org/10.3390/bioengineering12111242 - 12 Nov 2025
Abstract
Third molar extraction is a common oral surgical procedure that can be accompanied by challenges in wound healing and bone regeneration. Materials such as bone substitute materials (BSMs) and platelet-rich fibrin (PRF) are often used to support socket regeneration. This prospective randomized controlled [...] Read more.
Third molar extraction is a common oral surgical procedure that can be accompanied by challenges in wound healing and bone regeneration. Materials such as bone substitute materials (BSMs) and platelet-rich fibrin (PRF) are often used to support socket regeneration. This prospective randomized controlled split-mouth clinical trial compared PRF application combined with BSM versus PRF alone in patients requiring bilateral third molar extraction. A total of 15 patients underwent standardized osteotomy procedures, with sockets filled either with PRF alone (control group) or with BSM + PRF on opposite sides (test group) under general anesthesia and with patients blinded to the treatment allocation. Postoperative pain and swelling were measured over 7 days using a visual analog scale and anatomical distance measurements, respectively. Bone regeneration was evaluated using cone beam computed tomography (CBCT) scans after an average healing period of six months, with results showing no significant differences between groups in terms of postoperative pain or swelling (n = 12; 3 patients were lost to randomization). However, CBCT imaging revealed covered socket residuum (CSR)—non-mineralized areas within the socket—in the PRF only group, whereas the BSM + PRF group demonstrated more homogeneous and mineralized bone formation throughout the extraction sites (n = 8; 5 patients were lost to follow-up). These non-mineralized areas represent covered socket residuum within the extraction sockets, which poses a clinical risk of infection and may negatively affect the dental health of the adjacent second molar. Based on the presented findings, we recommend combining BSM with PRF to support bone regeneration and regulate the postoperative pain and swelling following third molar extraction. Nevertheless, further research is required to determine the most suitable BSM type in this regard. Full article
(This article belongs to the Special Issue Tissue Engineering for Regenerative Dentistry, 2nd Edition)
Show Figures

Figure 1

8 pages, 197 KB  
Article
Various GLP-1 Receptor Agonist Preference Use with a Special Focus on Oral and Subcutaneous Forms in Poland
by Klaudia Nowak, Artur Dziewierz, Aleksandra Sojda, Michał Zabojszcz, Łukasz Szarpak, Natalia Dardzinska, Paulina Jaskulska and Zbigniew Siudak
Healthcare 2025, 13(22), 2874; https://doi.org/10.3390/healthcare13222874 - 12 Nov 2025
Abstract
Background: Since the introduction of the first GLP-1 receptor agonist (GLP-1 RA) in 2005, there has been a steady increase in the number of drugs available in this group, as well as an expansion of their indications and routes of administration. Aim [...] Read more.
Background: Since the introduction of the first GLP-1 receptor agonist (GLP-1 RA) in 2005, there has been a steady increase in the number of drugs available in this group, as well as an expansion of their indications and routes of administration. Aim: The aim of the study was to assess the clinical characteristics of patients treated with GLP-1 RA in Poland in 2018–2024, with particular emphasis on the disease entities constituting indications for treatment (like obesity and diabetes), and to analyse the frequency of use of individual drugs during the study period. Methods: A cohort study was conducted based on anonymised medical data from 300 outpatient clinics the largest private healthcare facilities in Poland (Luxmed), on consecutive patients who had at least one prescription for GLP-1 RA. The analysis covered the period from 1 January 2018 to 31 December 2024. Results: The number of patients using GLP-1 RA increased from 212 in 2018 to 12,836 in 2024. Obesity was diagnosed in 78% of all patients, most often in the groups using liraglutide and tirzepatide. The highest percentage of patients with type 2 diabetes was observed in the dulaglutide group (67%), while the lowest was in the tirzepatide group (15%). From 2022, the share of oral semaglutide steadily increased, reaching 50% of all semaglutide applications in 2024 in Poland. Conclusions: In the analysed group, GLP-1 RAs were most commonly used to treat obesity. The oral form of semaglutide was more frequently used in younger females with less aggravating medical history. Full article
Back to TopTop