Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (477)

Search Parameters:
Keywords = travel trajectory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 8223 KiB  
Article
Optimal Time–Jerk Trajectory Planning for Manipulators Based on a Constrained Multi-Objective Dream Optimization Algorithm
by Zhijun Wu, Fang Wang and Tingting Bao
Machines 2025, 13(8), 682; https://doi.org/10.3390/machines13080682 - 2 Aug 2025
Viewed by 366
Abstract
A multi-objective optimal trajectory planning method is proposed for manipulators in this paper to enhance motion efficiency and to reduce component wear while ensuring motion smoothness. The trajectory is initially interpolated in the joint space by using quintic non-uniform B-splines with virtual points, [...] Read more.
A multi-objective optimal trajectory planning method is proposed for manipulators in this paper to enhance motion efficiency and to reduce component wear while ensuring motion smoothness. The trajectory is initially interpolated in the joint space by using quintic non-uniform B-splines with virtual points, achieving the C4 continuity of joint motion and satisfying dynamic, kinematic, geometric, synchronization, and boundary constraints. The interpolation reformulates the trajectory planning problem into an optimization problem, where the time intervals between desired adjacent waypoints serve as variables. Travelling time and the integral of the squared jerk along the entire trajectories comprise the multi-objective functions. A constrained multi-objective dream optimization algorithm is designed to solve the time–jerk optimal trajectory planning problem and generate Pareto solutions for optimized trajectories. Simulations conducted on 6-DOF manipulators validate the effectiveness and superiority of the proposed method in comparison with existing typical trajectory planning methods. Full article
(This article belongs to the Special Issue Cutting-Edge Automation in Robotic Machining)
Show Figures

Figure 1

10 pages, 1924 KiB  
Article
A Waypoint-Based Flow Capture Location Model for Siting Facilities on Transportation Networks
by Joni Downs, Yujie Hu and Ran Tao
Future Transp. 2025, 5(3), 93; https://doi.org/10.3390/futuretransp5030093 - 1 Aug 2025
Viewed by 94
Abstract
We introduce a waypoint-based flow capture location model (WbFCLM) for siting facilities on networks with the objective of maximally capturing flows. The advantages of the waypoint-based formulation are that (1) demand is modeled along observed trajectories rather than assumed travel paths, and (2) [...] Read more.
We introduce a waypoint-based flow capture location model (WbFCLM) for siting facilities on networks with the objective of maximally capturing flows. The advantages of the waypoint-based formulation are that (1) demand is modeled along observed trajectories rather than assumed travel paths, and (2) demand is allowed to vary across geographic space. We demonstrate the WbFCLM using a test dataset derived from vehicle tracking data. Though solving the WbFCLM can require considerable computing power, it can be used to site facilities on networks where both flows and demand vary spatially. Full article
Show Figures

Figure 1

17 pages, 1584 KiB  
Article
What Determines Carbon Emissions of Multimodal Travel? Insights from Interpretable Machine Learning on Mobility Trajectory Data
by Guo Wang, Shu Wang, Wenxiang Li and Hongtai Yang
Sustainability 2025, 17(15), 6983; https://doi.org/10.3390/su17156983 - 31 Jul 2025
Viewed by 212
Abstract
Understanding the carbon emissions of multimodal travel—comprising walking, metro, bus, cycling, and ride-hailing—is essential for promoting sustainable urban mobility. However, most existing studies focus on single-mode travel, while underlying spatiotemporal and behavioral determinants remain insufficiently explored due to the lack of fine-grained data [...] Read more.
Understanding the carbon emissions of multimodal travel—comprising walking, metro, bus, cycling, and ride-hailing—is essential for promoting sustainable urban mobility. However, most existing studies focus on single-mode travel, while underlying spatiotemporal and behavioral determinants remain insufficiently explored due to the lack of fine-grained data and interpretable analytical frameworks. This study proposes a novel integration of high-frequency, real-world mobility trajectory data with interpretable machine learning to systematically identify the key drivers of carbon emissions at the individual trip level. Firstly, multimodal travel chains are reconstructed using continuous GPS trajectory data collected in Beijing. Secondly, a model based on Calculate Emissions from Road Transport (COPERT) is developed to quantify trip-level CO2 emissions. Thirdly, four interpretable machine learning models based on gradient boosting—XGBoost, GBDT, LightGBM, and CatBoost—are trained using transportation and built environment features to model the relationship between CO2 emissions and a set of explanatory variables; finally, Shapley Additive exPlanations (SHAP) and partial dependence plots (PDPs) are used to interpret the model outputs, revealing key determinants and their non-linear interaction effects. The results show that transportation-related features account for 75.1% of the explained variance in emissions, with bus usage being the most influential single factor (contributing 22.6%). Built environment features explain the remaining 24.9%. The PDP analysis reveals that substantial emission reductions occur only when the shares of bus, metro, and cycling surpass threshold levels of approximately 40%, 40%, and 30%, respectively. Additionally, travel carbon emissions are minimized when trip origins and destinations are located within a 10 to 11 km radius of the central business district (CBD). This study advances the field by establishing a scalable, interpretable, and behaviorally grounded framework to assess carbon emissions from multimodal travel, providing actionable insights for low-carbon transport planning and policy design. Full article
(This article belongs to the Special Issue Sustainable Transportation Systems and Travel Behaviors)
Show Figures

Figure 1

21 pages, 8015 KiB  
Article
Differential Mechanism of 3D Motions of Falling Debris in Tunnels Under Extreme Wind Environments Induced by a Single Train and by Trains Crossing
by Wei-Chao Yang, Hong He, Yi-Kang Liu and Lun Zhao
Appl. Sci. 2025, 15(15), 8523; https://doi.org/10.3390/app15158523 - 31 Jul 2025
Viewed by 113
Abstract
The extended operation of high-speed railways has led to an increased incidence of tunnel lining defects, with falling debris posing a significant safety threat. Within tunnels, single-train passage and trains-crossing events constitute the most frequent operational scenarios, both generating extreme aerodynamic environments that [...] Read more.
The extended operation of high-speed railways has led to an increased incidence of tunnel lining defects, with falling debris posing a significant safety threat. Within tunnels, single-train passage and trains-crossing events constitute the most frequent operational scenarios, both generating extreme aerodynamic environments that alter debris trajectories from free fall. To systematically investigate the aerodynamic differences and underlying mechanisms governing falling debris behavior under these two distinct conditions, a three-dimensional computational fluid dynamics (CFD) model (debris–air–tunnel–train) was developed using an improved delayed detached eddy simulation (IDDES) turbulence model. Comparative analyses focused on the translational and rotational motions as well as the aerodynamic load coefficients of the debris in both single-train and trains-crossing scenarios. The mechanisms driving the changes in debris aerodynamic behavior are elucidated. Findings reveal that under single-train operation, falling debris travels a greater distance compared with trains-crossing conditions. Specifically, at train speeds ranging from 250–350 km/h, the average flight distances of falling debris in the X and Z directions under single-train conditions surpass those under trains crossing conditions by 10.3 and 5.5 times, respectively. At a train speed of 300 km/h, the impulse of CFx and CFz under single-train conditions is 8.6 and 4.5 times greater than under trains-crossing conditions, consequently leading to the observed reduction in flight distance. Under the conditions of trains crossing, the falling debris is situated between the two trains, and although the wind speed is low, the flow field exhibits instability. This is the primary factor contributing to the reduced flight distance of the falling debris. However, it also leads to more pronounced trajectory deviations and increased speed fluctuations under intersection conditions. The relative velocity (CRV) on the falling debris surface is diminished, resulting in smaller-scale vortex structures that are more numerous. Consequently, the aerodynamic load coefficient is reduced, while the fluctuation range experiences an increase. Full article
(This article belongs to the Special Issue Transportation and Infrastructures Under Extreme Weather Conditions)
Show Figures

Figure 1

28 pages, 17529 KiB  
Article
Intelligent Functional Clustering and Spatial Interactions of Urban Freight System: A Data-Driven Framework for Decoding Heavy-Duty Truck Behavioral Heterogeneity
by Ruixu Pan, Quan Yuan, Chen Liu, Jiaming Cao and Xingyu Liang
Appl. Sci. 2025, 15(15), 8337; https://doi.org/10.3390/app15158337 - 26 Jul 2025
Viewed by 329
Abstract
The rapid development of the logistics industry has underscored the urgent need for efficient and sustainable urban freight systems. As a core component of freight systems, heavy-duty trucks (HDT) have been researched regarding surface-level descriptive statistics of their heterogeneities, such as trip volume, [...] Read more.
The rapid development of the logistics industry has underscored the urgent need for efficient and sustainable urban freight systems. As a core component of freight systems, heavy-duty trucks (HDT) have been researched regarding surface-level descriptive statistics of their heterogeneities, such as trip volume, frequency, etc., but there is a lack of in-depth analyses of the spatial interaction between freight travel and freight functional clustering, which restricts a systematic understanding of freight systems. Against this backdrop, this study develops a data-driven framework to analyze HDT behavioral heterogeneity and its spatial interactions with a freight functional zone in Shanghai. Leveraging the high-frequency trajectory data of nearly 160,000 HDTs across seven types, we construct a set of regional indicators and employ hierarchical clustering, dividing the city into six freight functional zones. Combined with the HDTs’ application scenarios, functional characteristics, and trip distributions, we further analyze the spatial interaction between the HDTs and clustered zones. The results show that HDT travel patterns are not merely responses to freight demand but complex reflections of urban industrial structures, infrastructure networks, and policy environments. By embedding vehicle behaviors within their spatial and functional contexts, this study reveals a layered freight system in which each HDT type plays a distinct role in supporting economic activities. This research provides a new perspective for deeply understanding the formation mechanisms of HDT trip distributions and offers critical evidence for promoting targeted freight management strategies. Full article
(This article belongs to the Special Issue Intelligent Logistics and Supply Chain Systems)
Show Figures

Figure 1

16 pages, 5175 KiB  
Data Descriptor
From Raw GPS to GTFS: A Real-World Open Dataset for Bus Travel Time Prediction
by Aigerim Mansurova, Aigerim Mussina, Sanzhar Aubakirov, Aliya Nugumanova and Didar Yedilkhan
Data 2025, 10(8), 119; https://doi.org/10.3390/data10080119 - 23 Jul 2025
Viewed by 465
Abstract
The data descriptor introduces an open, high-resolution dataset of real-world bus operations in Astana, Kazakhstan, captured from GPS trajectories between July and September 2024. The data covers three high-frequency routes and have been processed into a GTFS format, enabling direct use with existing [...] Read more.
The data descriptor introduces an open, high-resolution dataset of real-world bus operations in Astana, Kazakhstan, captured from GPS trajectories between July and September 2024. The data covers three high-frequency routes and have been processed into a GTFS format, enabling direct use with existing transit modeling tools. Unlike typical static GTFS feeds, this dataset provides empirically observed dwell times, run times, and travel times, offering a detailed snapshot of operational variability in urban bus systems. The dataset supports applications in machine learning–based travel time prediction, timetable optimization, and transit reliability analysis, especially in settings where live feeds are unavailable. By releasing this dataset publicly, we aim to promote transparent, data-driven transport research in emerging urban contexts. Full article
Show Figures

Figure 1

29 pages, 4545 KiB  
Article
Characterization of Fresh and Aged Smoke Particles Simultaneously Observed with an ACTRIS Multi-Wavelength Raman Lidar in Potenza, Italy
by Benedetto De Rosa, Aldo Amodeo, Giuseppe D’Amico, Nikolaos Papagiannopoulos, Marco Rosoldi, Igor Veselovskii, Francesco Cardellicchio, Alfredo Falconieri, Pilar Gumà-Claramunt, Teresa Laurita, Michail Mytilinaios, Christina-Anna Papanikolaou, Davide Amodio, Canio Colangelo, Paolo Di Girolamo, Ilaria Gandolfi, Aldo Giunta, Emilio Lapenna, Fabrizio Marra, Rosa Maria Petracca Altieri, Ermann Ripepi, Donato Summa, Michele Volini, Alberto Arienzo and Lucia Monaadd Show full author list remove Hide full author list
Remote Sens. 2025, 17(15), 2538; https://doi.org/10.3390/rs17152538 - 22 Jul 2025
Viewed by 353
Abstract
This study describes a quite special and interesting atmospheric event characterized by the simultaneous presence of fresh and aged smoke layers. These peculiar conditions occurred on 16 July 2024 at the CNR-IMAA atmospheric observatory (CIAO) in Potenza (Italy), and represent an ideal case [...] Read more.
This study describes a quite special and interesting atmospheric event characterized by the simultaneous presence of fresh and aged smoke layers. These peculiar conditions occurred on 16 July 2024 at the CNR-IMAA atmospheric observatory (CIAO) in Potenza (Italy), and represent an ideal case for the evaluation of the impact of aging and transport mechanisms on both the optical and microphysical properties of biomass burning aerosol. The fresh smoke was originated by a local wildfire about 2 km from the measurement site and observed about one hour after its ignition. The other smoke layer was due to a wide wildfire occurring in Canada that, according to backward trajectory analysis, traveled for about 5–6 days before reaching the observatory. Synergetic use of lidar, ceilometer, radar, and microwave radiometer measurements revealed that particles from the local wildfire, located at about 3 km a.s.l., acted as condensation nuclei for cloud formation as a result of high humidity concentrations at this altitude range. Optical characterization of the fresh smoke layer based on Raman lidar measurements provided lidar ratio (LR) values of 46 ± 4 sr and 34 ± 3 sr, at 355 and 532 nm, respectively. The particle linear depolarization ratio (PLDR) at 532 nm was 0.067 ± 0.002, while backscatter-related Ångström exponent (AEβ) values were 1.21 ± 0.03, 1.23 ± 0.03, and 1.22 ± 0.04 in the spectral ranges of 355–532 nm, 355–1064 nm and 532–1064 nm, respectively. Microphysical inversion caused by these intensive optical parameters indicates a low contribution of black carbon (BC) and, despite their small size, particles remained outside the ultrafine range. Moreover, a combined use of CIAO remote sensing and in situ instrumentation shows that the particle properties are affected by humidity variations, thus suggesting a marked particle hygroscopic behavior. In contrast, the smoke plume from the Canadian wildfire traveled at altitudes between 6 and 8 km a.s.l., remaining unaffected by local humidity. Absorption in this case was higher, and, as observed in other aged wildfires, the LR at 532 nm was larger than that at 355 nm. Specifically, the LR at 355 nm was 55 ± 2 sr, while at 532 nm it was 82 ± 3 sr. The AEβ values were 1.77 ± 0.13 and 1.41 ± 0.07 at 355–532 nm and 532–1064 nm, respectively and the PLDR at 532 nm was 0.040 ± 0.003. Microphysical analysis suggests the presence of larger, yet much more absorbent particles. This analysis indicates that both optical and microphysical properties of smoke can vary significantly depending on its origin, persistence, and transport in the atmosphere. These factors that must be carefully incorporated into future climate models, especially considering the frequent occurrences of fire events worldwide. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

26 pages, 6624 KiB  
Article
Data-Efficient Sowing Position Estimation for Agricultural Robots Combining Image Analysis and Expert Knowledge
by Shuntaro Aotake, Takuya Otani, Masatoshi Funabashi and Atsuo Takanishi
Agriculture 2025, 15(14), 1536; https://doi.org/10.3390/agriculture15141536 - 16 Jul 2025
Viewed by 498
Abstract
We propose a data-efficient framework for automating sowing operations by agricultural robots in densely mixed polyculture environments. This study addresses the challenge of enabling robots to identify suitable sowing positions with minimal labeled data by integrating image-based field sensing with expert agricultural knowledge. [...] Read more.
We propose a data-efficient framework for automating sowing operations by agricultural robots in densely mixed polyculture environments. This study addresses the challenge of enabling robots to identify suitable sowing positions with minimal labeled data by integrating image-based field sensing with expert agricultural knowledge. We collected 84 RGB-depth images from seven field sites, labeled by synecological farming practitioners of varying proficiency levels, and trained a regression model to estimate optimal sowing positions and seeding quantities. The model’s predictions were comparable to those of intermediate-to-advanced practitioners across diverse field conditions. To implement this estimation in practice, we mounted a Kinect v2 sensor on a robot arm and integrated its 3D spatial data with axis-specific movement control. We then applied a trajectory optimization algorithm based on the traveling salesman problem to generate efficient sowing paths. Simulated trials incorporating both computation and robotic control times showed that our method reduced sowing operation time by 51% compared to random planning. These findings highlight the potential of interpretable, low-data machine learning models for rapid adaptation to complex agroecological systems and demonstrate a practical approach to combining structured human expertise with sensor-based automation in biodiverse farming environments. Full article
Show Figures

Figure 1

10 pages, 300 KiB  
Article
Delayed Choice for Entangled Photons
by Rolando Velázquez, Linda López-Díaz, Leonardo López-Hernández, Eduardo Hernández, L. M. Arévalo-Aguilar and V. Velázquez
Photonics 2025, 12(7), 696; https://doi.org/10.3390/photonics12070696 - 10 Jul 2025
Viewed by 292
Abstract
The wave–particle duality is the quintessence of quantum mechanics. This duality gives rise to distinct behaviors depending on the experimental setup, with the system exhibiting either wave-like or particle-like properties, depending on whether the focus is on interference (wave) or trajectory (particle). In [...] Read more.
The wave–particle duality is the quintessence of quantum mechanics. This duality gives rise to distinct behaviors depending on the experimental setup, with the system exhibiting either wave-like or particle-like properties, depending on whether the focus is on interference (wave) or trajectory (particle). In the interaction with a beam splitter, photons with particle behavior can transform into a wave behavior and vice versa. In Wheeler’s delayed-choice gedanken experiment, this interaction is delayed so that the wave that initially travels through the interferometer can become a particle, avoiding the interaction. We show that this contradiction can be resolved using polarized entangled photon pairs. An analysis of Shannon’s entropy supports this proposal. Full article
(This article belongs to the Section Quantum Photonics and Technologies)
Show Figures

Figure 1

18 pages, 3657 KiB  
Article
Vehicle Trajectory Data Augmentation Using Data Features and Road Map
by Jianfeng Hou, Wei Song, Yu Zhang and Shengmou Yang
Electronics 2025, 14(14), 2755; https://doi.org/10.3390/electronics14142755 - 9 Jul 2025
Viewed by 345
Abstract
With the advancement of intelligent transportation systems, vehicle trajectory data have become a key component in areas like traffic flow prediction, route planning, and traffic management. However, high-quality, publicly available trajectory datasets are scarce due to concerns over privacy, copyright, and data collection [...] Read more.
With the advancement of intelligent transportation systems, vehicle trajectory data have become a key component in areas like traffic flow prediction, route planning, and traffic management. However, high-quality, publicly available trajectory datasets are scarce due to concerns over privacy, copyright, and data collection costs. The lack of data creates challenges for training machine learning models and optimizing algorithms. To address this, we propose a new method for generating synthetic vehicle trajectory data, leveraging traffic flow characteristics and road maps. The approach begins by estimating hourly traffic volumes, then it uses the Poisson distribution modeling to assign departure times to synthetic trajectories. Origin and destination (OD) distributions are determined by analyzing historical data, allowing for the assignment of OD pairs to each synthetic trajectory. Path planning is then applied using a road map to generate a travel route. Finally, trajectory points, including positions and timestamps, are calculated based on road segment lengths and recommended speeds, with noise added to enhance realism. This method offers flexibility to incorporate additional information based on specific application needs, providing valuable opportunities for machine learning in intelligent transportation systems. Full article
(This article belongs to the Special Issue Big Data and AI Applications)
Show Figures

Figure 1

22 pages, 5161 KiB  
Article
AUV Trajectory Planning for Optimized Sensor Data Collection in Internet of Underwater Things
by Talal S. Almuzaini and Andrey V. Savkin
Future Internet 2025, 17(7), 293; https://doi.org/10.3390/fi17070293 - 30 Jun 2025
Viewed by 277
Abstract
Efficient and timely data collection in Underwater Acoustic Sensor Networks (UASNs) for Internet of Underwater Things (IoUT) applications remains a significant challenge due to the inherent limitations of the underwater environment. This paper presents a Value of Information (VoI)-based trajectory planning framework for [...] Read more.
Efficient and timely data collection in Underwater Acoustic Sensor Networks (UASNs) for Internet of Underwater Things (IoUT) applications remains a significant challenge due to the inherent limitations of the underwater environment. This paper presents a Value of Information (VoI)-based trajectory planning framework for a single Autonomous Underwater Vehicle (AUV) operating in coordination with an Unmanned Surface Vehicle (USV) to collect data from multiple Cluster Heads (CHs) deployed across an uneven seafloor. The proposed approach employs a VoI model that captures both the importance and timeliness of sensed data, guiding the AUV to collect and deliver critical information before its value significantly degrades. A forward Dynamic Programming (DP) algorithm is used to jointly optimize the AUV’s trajectory and the USV’s start and end positions, with the objective of maximizing the total residual VoI upon mission completion. The trajectory design incorporates the AUV’s kinematic constraints into travel time estimation, enabling accurate VoI evaluation throughout the mission. Simulation results show that the proposed strategy consistently outperforms conventional baselines in terms of residual VoI and overall system efficiency. These findings highlight the advantages of VoI-aware planning and AUV–USV collaboration for effective data collection in challenging underwater environments. Full article
Show Figures

Figure 1

21 pages, 3019 KiB  
Article
Spatiotemporal Patterns and Drivers of Urban Traffic Carbon Emissions in Shaanxi, China
by Yongsheng Qian, Junwei Zeng, Wenqiang Hao, Xu Wei, Minan Yang, Zhen Zhang and Haimeng Liu
Land 2025, 14(7), 1355; https://doi.org/10.3390/land14071355 - 26 Jun 2025
Viewed by 447
Abstract
Mitigating traffic-related carbon emissions is pivotal for achieving carbon peaking targets and advancing sustainable urban development. This study employs spatial autocorrelation and high-low clustering analyses to analyze the spatial correlation and clustering patterns of urban road traffic carbon emissions in Shaanxi Province. The [...] Read more.
Mitigating traffic-related carbon emissions is pivotal for achieving carbon peaking targets and advancing sustainable urban development. This study employs spatial autocorrelation and high-low clustering analyses to analyze the spatial correlation and clustering patterns of urban road traffic carbon emissions in Shaanxi Province. The spatiotemporal evolution and structural impacts of emissions are quantified through a systematic framework, while the GTWR (Geographically Weighted Temporal Regression) model uncovers the multidimensional and heterogeneous driving mechanisms underlying carbon emissions. Findings reveal that road traffic CO2 emissions in Shaanxi exhibit an upward trajectory, with a temporal evolution marked by distinct phases: “stable growth—rapid increase—gradual decline”. Emission dynamics vary significantly across transport modes: private vehicles emerge as the primary emission source, taxi/motorcycle emissions remain relatively stable, and bus/electric vehicle emissions persist at low levels. Spatially, the province demonstrates a pronounced high-carbon spillover effect, with persistent high-value clusters concentrated in central Shaanxi and the northern region of Yan’an City, exhibiting spillover effects on adjacent urban areas. Notably, the spatial distribution of CO2 emissions has evolved significantly: a relatively balanced pattern across cities in 2010 transitioned to a pronounced “M”-shaped gradient along the north–south axis by 2015, stabilizing by 2020. The central urban cluster (Yan’an, Tongchuan, Xianyang, Baoji) initially formed a secondary low-carbon core, which later integrated into the regional emission gradient. By focusing on the micro-level dynamics of urban road traffic and its internal structural complexities—while incorporating built environment factors such as network layout, travel behavior, and infrastructure endowments—this study contributes novel insights to the transportation carbon emission literature, offering a robust framework for regional emission mitigation strategies. Full article
Show Figures

Figure 1

36 pages, 4653 KiB  
Article
A Novel Method for Traffic Parameter Extraction and Analysis Based on Vehicle Trajectory Data for Signal Control Optimization
by Yizhe Wang, Yangdong Liu and Xiaoguang Yang
Appl. Sci. 2025, 15(13), 7155; https://doi.org/10.3390/app15137155 - 25 Jun 2025
Viewed by 360
Abstract
As urban traffic systems become increasingly complex, traditional traffic data collection methods based on fixed detectors face challenges such as poor data quality and acquisition difficulties. Traditional methods also lack the ability to capture complete vehicle path information essential for signal optimization. While [...] Read more.
As urban traffic systems become increasingly complex, traditional traffic data collection methods based on fixed detectors face challenges such as poor data quality and acquisition difficulties. Traditional methods also lack the ability to capture complete vehicle path information essential for signal optimization. While vehicle trajectory data can provide rich spatiotemporal information, its sampling characteristics present new technical challenges for traffic parameter extraction. This study addresses the key issue of extracting traffic parameters suitable for signal timing optimization from sampled trajectory data by proposing a comprehensive method for traffic parameter extraction and analysis based on vehicle trajectory data. The method comprises five modules: data preprocessing, basic feature processing, exploratory data analysis, key feature extraction, and data visualization. An innovative algorithm is proposed to identify which intersections vehicles pass through, effectively solving the challenge of mapping GPS points to road network nodes. A dual calculation method based on instantaneous speed and time difference is adopted, improving parameter estimation accuracy through multi-source data fusion. A highly automated processing toolchain based on Python and MATLAB is developed. The method advances the state of the art through a novel polygon-based trajectory mapping algorithm and a systematic multi-source parameter extraction framework specifically designed for signal control optimization. Validation using actual trajectory data containing 2.48 million records successfully eliminated 30.80% redundant data and accurately identified complete paths for 7252 vehicles. The extracted multi-dimensional parameters, including link flow, average speed, travel time, and OD matrices, accurately reflect network operational status, identifying congestion hotspots, tidal traffic characteristics, and unstable road segments. The research outcomes provide a feasible technical solution for areas lacking traditional detection equipment. The extracted parameters can directly support signal optimization applications such as traffic signal coordination, timing optimization, and congestion management, providing crucial support for implementing data-driven intelligent traffic control. This research presents a theoretical framework validated with real-world data, providing a foundation for future implementation in operational signal control systems. Full article
(This article belongs to the Special Issue Research and Estimation of Traffic Flow Characteristics)
Show Figures

Figure 1

19 pages, 4327 KiB  
Article
Research on a Two-Stage Human-like Trajectory-Planning Method Based on a DAC-MCLA Network
by Hao Xu, Guanyu Zhang and Huanyu Zhao
Vehicles 2025, 7(3), 63; https://doi.org/10.3390/vehicles7030063 - 24 Jun 2025
Viewed by 509
Abstract
Due to the complexity of the unstructured environment and the high-level requirement of smoothness when a tracked transportation vehicle is traveling, making the vehicle travel as safely and smoothly as when a skilled operator is maneuvering the vehicle is a critical issue worth [...] Read more.
Due to the complexity of the unstructured environment and the high-level requirement of smoothness when a tracked transportation vehicle is traveling, making the vehicle travel as safely and smoothly as when a skilled operator is maneuvering the vehicle is a critical issue worth studying. To this end, this study proposes a trajectory-planning method for human-like maneuvering. First, several field equipment operators are invited to manipulate the model vehicle for obstacle avoidance driving in an outdoor scene with densely distributed obstacles, and the manipulation data are collected. Then, in terms of the lateral displacement, by comparing the similarity between the data as well as the curvature change degree, the data with better smoothness are screened for processing, and a dataset of human manipulation behaviors is established for the training and testing of the trajectory-planning network. Then, using the dynamic parameters as constraints, a two-stage planning approach utilizes a modified deep network model to map trajectory points at multiple future time steps through the relationship between the spatial environment and the time series. Finally, after the experimental test and analysis with multiple methods, the root-mean-square-error and the mean-average-error indexes between the planned trajectory and the actual trajectory, as well as the trajectory-fitting situation, reveal that this study’s method is capable of planning long-step trajectory points in line with human manipulation habits, and the standard deviation of the angular acceleration and the curvature of the planned trajectory show that the trajectory planned using this study’s method has a satisfactory smoothness. Full article
Show Figures

Figure 1

20 pages, 11802 KiB  
Article
Distributed Trajectory Optimization for Connected and Automated Vehicle Platoons Considering Safe Inter-Vehicle Following Gaps
by Meiqi Liu, Ying Gao, Yikai Zeng and Ruochen Hao
Systems 2025, 13(6), 483; https://doi.org/10.3390/systems13060483 - 17 Jun 2025
Viewed by 419
Abstract
Existing studies on platoon trajectory optimization of connected and automated vehicles face challenges in balancing computational efficiency, privacy, and safety. This study proposes a distributed optimization method that decomposes the platoon trajectory planning problem into independent individual vehicle tasks while ensuring safe inter-vehicle [...] Read more.
Existing studies on platoon trajectory optimization of connected and automated vehicles face challenges in balancing computational efficiency, privacy, and safety. This study proposes a distributed optimization method that decomposes the platoon trajectory planning problem into independent individual vehicle tasks while ensuring safe inter-vehicle following gaps and maximizing travel efficiencyand ride comfort. The individual vehicle problems independently optimize their trajectory to improve computational efficiency, and only exchange dual variables related to safe following gaps to preserve privacy. Simulation experiments were conducted under single-platoon scenarios with different simulation horizons, as well as multi-platoon and platoon-merging scenarios, to analyze the control performance of the distributed method in contrast to the centralized method. Simulation results demonstrate that the mean computation time is reduced by 50% and the fuel consumption is decreased by 4% compared to the centralized method while effectively maintaining the safe inter-vehicle following gaps. The distributed method shows its scalability and adaptability for large-scale problems. Full article
(This article belongs to the Special Issue Modeling and Optimization of Transportation and Logistics System)
Show Figures

Figure 1

Back to TopTop