Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (515)

Search Parameters:
Keywords = travel time minimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4310 KiB  
Article
Training Rarámuri Criollo Cattle to Virtual Fencing in a Chaparral Rangeland
by Sara E. Campa Madrid, Andres R. Perea, Micah Funk, Maximiliano J. Spetter, Mehmet Bakir, Jeremy Walker, Rick E. Estell, Brandon Smythe, Sergio Soto-Navarro, Sheri A. Spiegal, Brandon T. Bestelmeyer and Santiago A. Utsumi
Animals 2025, 15(15), 2178; https://doi.org/10.3390/ani15152178 - 24 Jul 2025
Viewed by 551
Abstract
Virtual fencing (VF) offers a promising alternative to conventional or electrified fences for managing livestock grazing distribution. This study evaluated the behavioral responses of 25 Rarámuri Criollo cows fitted with Nofence® collars in Pine Valley, CA, USA. The VF system was deployed [...] Read more.
Virtual fencing (VF) offers a promising alternative to conventional or electrified fences for managing livestock grazing distribution. This study evaluated the behavioral responses of 25 Rarámuri Criollo cows fitted with Nofence® collars in Pine Valley, CA, USA. The VF system was deployed in chaparral rangeland pastures. The study included a 14-day training phase followed by an 18-day testing phase. The collar-recorded variables, including audio warnings and electric pulses, animal movement, and daily typical behavior patterns of cows classified into a High or Low virtual fence response group, were compared using repeated-measure analyses with mixed models. During training, High-response cows (i.e., resistant responders) received more audio warnings and electric pulses, while Low-response cows (i.e., active responders) had fewer audio warnings and electric pulses, explored smaller areas, and exhibited lower mobility. Despite these differences, both groups showed a time-dependent decrease in the pulse-to-warning ratio, indicating increased reliance on audio cues and reduced need for electrical stimulation to achieve similar containment rates. In the testing phase, both groups maintained high containment with minimal reinforcement. The study found that Rarámuri Criollo cows can effectively adapt to virtual fencing technology, achieving over 99% containment rate while displaying typical diurnal patterns for grazing, resting, or traveling behavior. These findings support the technical feasibility of using virtual fencing in chaparral rangelands and underscore the importance of accounting for individual behavioral variability in behavior-based containment systems. Full article
Show Figures

Figure 1

19 pages, 1188 KiB  
Article
Incentive Scheme for Low-Carbon Travel Based on the Public–Private Partnership
by Yingtian Zhang, Gege Jiang and Anqi Chen
Mathematics 2025, 13(15), 2358; https://doi.org/10.3390/math13152358 - 23 Jul 2025
Viewed by 163
Abstract
This paper proposes an incentive scheme based on a public–private partnership (PPP) to encourage low-carbon travel behavior by inducing the mode choice shift from private cars to public transit. The scheme involves three key entities: travelers, the government, and the private sector. Travelers [...] Read more.
This paper proposes an incentive scheme based on a public–private partnership (PPP) to encourage low-carbon travel behavior by inducing the mode choice shift from private cars to public transit. The scheme involves three key entities: travelers, the government, and the private sector. Travelers can choose between private cars and public transit, producing different emissions. As the leader, the government aims to reduce total emission to a certain level with limited budgets. The private sector, as an intermediary, invests subsidies in low-carbon rewards to attract green travelers and benefits from a larger user pool. A two-layer multi-objective optimization model is proposed, which includes travel time, monetary cost, and emission. The objective of the upper level is to maximize the utilities of the private sector and minimize social costs to the government. The lower layer is the user equilibrium of the travelers. The numerical results obtained through heuristic algorithms demonstrate that the proposed scheme can achieve a triple-win situation, where all stakeholders benefit. Moreover, sensitivity analysis finds that prioritizing pollution control strategies will be beneficial to the government only if the unit pollution control cost coefficient is below a low threshold. Contrary to intuition, larger government subsidies do not necessarily lead to better promotion of low-carbon travel. Full article
Show Figures

Figure 1

30 pages, 2371 KiB  
Article
Optimization of Joint Distribution Routes for Automotive Parts Considering Multi-Manufacturer Collaboration
by Lingsan Dong, Jian Wang and Xiaowei Hu
Sustainability 2025, 17(14), 6615; https://doi.org/10.3390/su17146615 - 19 Jul 2025
Viewed by 448
Abstract
The swift expansion of China’s automotive manufacturing industry has spurred a constant rise in the demand for automotive parts production and distribution, making the optimization of distribution routes in complex environments a crucial research topic. Efficiently optimizing these routes not only boosts production [...] Read more.
The swift expansion of China’s automotive manufacturing industry has spurred a constant rise in the demand for automotive parts production and distribution, making the optimization of distribution routes in complex environments a crucial research topic. Efficiently optimizing these routes not only boosts production efficiency and cuts costs for automotive manufacturers but also enhances supply chain management and advances sustainable development. This study focuses on the optimization of automotive parts distribution routes under a multi-manufacturer collaboration framework. An optimization model is proposed to minimize the total operational costs within a joint distribution system, incorporating an improved Ant Colony Optimization (ACO) algorithm to formulate an effective solution approach. The model considers complex factors such as dynamic demand, time-window constraints, and periodic distribution. A PIVNS algorithm integrating a virtual distribution center with an enhanced variable neighborhood search is designed to efficiently address the problem. The efficacy of the proposed model and algorithm is substantiated through extensive experiments grounded in real-world case studies. The results confirm the high computational efficiency of the proposed approach in solving large-scale problems, which significantly reduces distribution costs while improving overall supply chain performance. Specifically, the PIVNS algorithm achieves an average travel distance of 2020.85 km, an average runtime of 112.25 s, a total transportation cost of CNY 12,497.99, and a loading rate of 86.775%. These findings collectively highlight the advantages of the proposed method in enhancing efficiency, reducing costs, and optimizing resource utilization. Overall, this study provides valuable insights for logistics optimization in automotive manufacturing and offers a significant reference for future research and practical applications in the field. Full article
Show Figures

Figure 1

28 pages, 3717 KiB  
Article
Comparison of Innovative Strategies for the Coverage Problem: Path Planning, Search Optimization, and Applications in Underwater Robotics
by Ahmed Ibrahim, Francisco F. C. Rego and Éric Busvelle
J. Mar. Sci. Eng. 2025, 13(7), 1369; https://doi.org/10.3390/jmse13071369 - 18 Jul 2025
Viewed by 300
Abstract
In many applications, including underwater robotics, the coverage problem requires an autonomous vehicle to systematically explore a defined area while minimizing redundancy and avoiding obstacles. This paper investigates coverage path-planning strategies to enhance the efficiency of underwater gliders particularly in maximizing the probability [...] Read more.
In many applications, including underwater robotics, the coverage problem requires an autonomous vehicle to systematically explore a defined area while minimizing redundancy and avoiding obstacles. This paper investigates coverage path-planning strategies to enhance the efficiency of underwater gliders particularly in maximizing the probability of detecting a radioactive source while ensuring safe navigation. We evaluate three path-planning approaches: the Traveling Salesman Problem (TSP), Minimum Spanning Tree (MST), and the Optimal Control Problem (OCP). Simulations were conducted in MATLAB R2020a, comparing processing time, uncovered areas, path length, and traversal time. Results indicate that the OCP is preferable when traversal time is constrained, although it incurs significantly higher computational costs. Conversely, MST-based approaches provide faster but fewer optimal solutions. These findings offer insights into selecting appropriate algorithms based on mission priorities, balancing efficiency and computational feasbility. Full article
(This article belongs to the Special Issue Innovations in Underwater Robotic Software Systems)
Show Figures

Figure 1

16 pages, 995 KiB  
Article
An Upper Partial Moment Framework for Pathfinding Problem Under Travel Time Uncertainty
by Xu Zhang and Mei Chen
Systems 2025, 13(7), 600; https://doi.org/10.3390/systems13070600 - 17 Jul 2025
Viewed by 179
Abstract
Route planning under uncertain traffic conditions requires accounting for not only expected travel times but also the risk of late arrivals. This study proposes a mean-upper partial moment (MUPM) framework for pathfinding that explicitly considers travel time unreliability. The framework incorporates a benchmark [...] Read more.
Route planning under uncertain traffic conditions requires accounting for not only expected travel times but also the risk of late arrivals. This study proposes a mean-upper partial moment (MUPM) framework for pathfinding that explicitly considers travel time unreliability. The framework incorporates a benchmark travel time to measure the upper partial moment (UPM), capturing both the probability and severity of delays. By adjusting a risk parameter (θ), the model reflects different traveler risk preferences and unifies several existing reliability measures, including on-time arrival probability, late arrival penalty, and semi-variance. A bi-objective model is formulated to simultaneously minimize mean travel time and UPM. Theoretical analysis shows that the MUPM framework is consistent with the expected utility theory (EUT) and stochastic dominance theory (SDT), providing a behavioral foundation for the model. To efficiently solve the model, an SDT-based label-correcting algorithm is adapted, with a pre-screening step to reduce unnecessary pairwise path comparisons. Numerical experiments using GPS probe vehicle data from Louisville, Kentucky, USA, demonstrate that varying θ values lead to different non-dominated paths. Lower θ values emphasize frequent small delays but may overlook excessive delays, while higher θ values effectively capture the tail risk, aligning with the behavior of risk-averse travelers. The MUPM framework provides a flexible, behaviorally grounded, and computationally scalable approach to pathfinding under uncertainty. It holds strong potential for applications in traveler information systems, transportation planning, and network resilience analysis. Full article
(This article belongs to the Special Issue Data-Driven Urban Mobility Modeling)
Show Figures

Figure 1

26 pages, 6624 KiB  
Article
Data-Efficient Sowing Position Estimation for Agricultural Robots Combining Image Analysis and Expert Knowledge
by Shuntaro Aotake, Takuya Otani, Masatoshi Funabashi and Atsuo Takanishi
Agriculture 2025, 15(14), 1536; https://doi.org/10.3390/agriculture15141536 - 16 Jul 2025
Viewed by 484
Abstract
We propose a data-efficient framework for automating sowing operations by agricultural robots in densely mixed polyculture environments. This study addresses the challenge of enabling robots to identify suitable sowing positions with minimal labeled data by integrating image-based field sensing with expert agricultural knowledge. [...] Read more.
We propose a data-efficient framework for automating sowing operations by agricultural robots in densely mixed polyculture environments. This study addresses the challenge of enabling robots to identify suitable sowing positions with minimal labeled data by integrating image-based field sensing with expert agricultural knowledge. We collected 84 RGB-depth images from seven field sites, labeled by synecological farming practitioners of varying proficiency levels, and trained a regression model to estimate optimal sowing positions and seeding quantities. The model’s predictions were comparable to those of intermediate-to-advanced practitioners across diverse field conditions. To implement this estimation in practice, we mounted a Kinect v2 sensor on a robot arm and integrated its 3D spatial data with axis-specific movement control. We then applied a trajectory optimization algorithm based on the traveling salesman problem to generate efficient sowing paths. Simulated trials incorporating both computation and robotic control times showed that our method reduced sowing operation time by 51% compared to random planning. These findings highlight the potential of interpretable, low-data machine learning models for rapid adaptation to complex agroecological systems and demonstrate a practical approach to combining structured human expertise with sensor-based automation in biodiverse farming environments. Full article
Show Figures

Figure 1

15 pages, 1617 KiB  
Article
A Stochastic Optimization Model for Multi-Airport Flight Cooperative Scheduling Considering CvaR of Both Travel and Departure Time
by Wei Cong, Zheng Zhao, Ming Wei and Huan Liu
Aerospace 2025, 12(7), 631; https://doi.org/10.3390/aerospace12070631 - 14 Jul 2025
Viewed by 204
Abstract
By assuming that both travel and departure time are normally distributed variables, a multi-objective stochastic optimization model for the multi-airport flight cooperative scheduling problem (MAFCSP) with CvaR of travel and departure time is firstly proposed. Herein, conflicts of flights from different airports at [...] Read more.
By assuming that both travel and departure time are normally distributed variables, a multi-objective stochastic optimization model for the multi-airport flight cooperative scheduling problem (MAFCSP) with CvaR of travel and departure time is firstly proposed. Herein, conflicts of flights from different airports at the same waypoint can be avoided by simultaneously assigning an optimal route to each flight between the airport and waypoint and determining its practical departure time. Furthermore, several real-world constraints, including the safe interval between any two aircraft at the same waypoint and the maximum allowable delay for each flight, have been incorporated into the proposed model. The primary objective is minimization of both total carbon emissions and delay times for all flights across all airports. A feasible set of non-dominated solutions were obtained using a two-stage heuristic approach-based NSGA-II. Finally, we present a case study of four airports and three waypoints in the Beijing–Tianjin–Hebei region of China to test our study. Full article
(This article belongs to the Special Issue Flight Performance and Planning for Sustainable Aviation)
Show Figures

Figure 1

21 pages, 1830 KiB  
Article
Optimization Model of Express–Local Train Schedules Under Cross-Line Operation of Suburban Railway
by Jingyi Zhu, Xin Guo and Jianju Pan
Appl. Sci. 2025, 15(14), 7853; https://doi.org/10.3390/app15147853 - 14 Jul 2025
Viewed by 218
Abstract
Cross-line operation and express–local train coordination are both crucial for enhancing the efficiency of multi-level urban rail transit systems. Most studies address suburban railway operations in isolation, overlooking coordination and inducing supply–demand mismatches that weaken system efficiency. This study addresses the joint optimization [...] Read more.
Cross-line operation and express–local train coordination are both crucial for enhancing the efficiency of multi-level urban rail transit systems. Most studies address suburban railway operations in isolation, overlooking coordination and inducing supply–demand mismatches that weaken system efficiency. This study addresses the joint optimization of cross-line operation and express–local scheduling by proposing a novel train timetable model. The model determines train service plans and departure times to minimize total system cost, including train operating and passenger travel costs. A space–time network represents integrated train–passenger interactions, and an extended adaptive large neighborhood search (E-ALNS) algorithm is developed to solve the model efficiently. Numerical experiments verify the effectiveness of the proposed approach. The E-ALNS achieves near-optimal solutions with less than 4% deviation from Gurobi. Comparative analysis shows that the proposed hybrid operation mode reduces total passenger travel cost by 6% and improves the cost efficiency ratio by 13% compared to independent operations. Sensitivity analyses further confirm the model’s robustness to variations in transfer walking time, passenger penalties, and waiting thresholds. This study provides a practical and scalable framework for optimizing train timetables in complex cross-line transit systems, offering insights for enhancing system coordination and passenger service quality. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

20 pages, 26297 KiB  
Article
A Framework for Coverage Path Planning of Outdoor Sweeping Robots Deployed in Large Environments
by Braulio Félix Gómez, Akhil Jayadeep, M. A. Viraj J. Muthugala and Mohan Rajesh Elara
Mathematics 2025, 13(14), 2238; https://doi.org/10.3390/math13142238 - 10 Jul 2025
Viewed by 322
Abstract
Outdoor sweeping is a tedious and labor-intensive task essential for maintaining the cleanliness of public spaces such as gardens and parks. Robots have been developed to address the limitations of traditional methods. Coverage Path Planning (CPP) is a critical function for these robots. [...] Read more.
Outdoor sweeping is a tedious and labor-intensive task essential for maintaining the cleanliness of public spaces such as gardens and parks. Robots have been developed to address the limitations of traditional methods. Coverage Path Planning (CPP) is a critical function for these robots. However, existing CPP methods often perform poorly in large environments, where such robots are typically deployed. This paper proposes a novel CPP framework for outdoor sweeping robots operating in expansive outdoor areas, defined as environments exceeding 1000 square meters in size. The framework begins by decomposing the environment into smaller sub-regions. The sequence in which these sub-regions are visited is then optimized by formulating the problem as a Travelling Salesman Problem (TSP), aiming to minimize travel distance. Once the visiting sequence is determined, a boustrophedon-based CPP is applied within each sub-region. We analyzed two decomposition strategies, Voronoi-based and grid-based, and evaluated three TSP optimization techniques: local search, record-to-record travel, and simulated annealing. This results in six possible combinations. Simulation results demonstrated that Voronoi-based decomposition achieves higher area coverage (average coverage of 95.6%) than grid-based decomposition (average coverage 52.8%). For Voronoi-based methods, local search yielded the shortest computation time, while simulated annealing achieved the lowest travel distance. We have also conducted hardware experiments to validate the real-world applicability of the proposed framework for efficient CPP in outdoor sweeping robots. The robot hardware experiment achieved 84% coverage in a 19 m × 17 m environment. Full article
(This article belongs to the Special Issue Optimization and Path Planning of Robotics)
Show Figures

Figure 1

21 pages, 5921 KiB  
Article
Coverage Path Planning Based on Region Segmentation and Path Orientation Optimization
by Tao Yang, Xintong Du, Bo Zhang, Xu Wang, Zhenpeng Zhang and Chundu Wu
Agriculture 2025, 15(14), 1479; https://doi.org/10.3390/agriculture15141479 - 10 Jul 2025
Viewed by 299
Abstract
To address the operational demands of irregular farmland with fixed obstacles, this study proposes a full-coverage path planning framework that integrates UAV-based 3D perception and angle-adaptive optimization. First, digital orthophoto maps (DOMs) and digital elevation models (DEMs) were reconstructed from low-altitude aerial imagery. [...] Read more.
To address the operational demands of irregular farmland with fixed obstacles, this study proposes a full-coverage path planning framework that integrates UAV-based 3D perception and angle-adaptive optimization. First, digital orthophoto maps (DOMs) and digital elevation models (DEMs) were reconstructed from low-altitude aerial imagery. The feasible working region was constructed by shrinking field boundaries inward and dilating obstacle boundaries outward. This ensured sufficient safety margins for machinery operation. Next, segmentation angles were scanned from 0° to 180° to minimize the number and irregularity of sub-regions; then a two-level simulation search was performed over 0° to 360° to optimize the working direction for each sub-region. For each sub-region, the optimal working direction was selected based on four criteria: the number of turns, travel distance, coverage redundancy, and planning time. Between sub-regions, a closed-loop interconnection path was generated using eight-directional A* search combined with polyline simplification, arc fitting, Chaikin subdivision, and B-spline smoothing. Simulation results showed that a 78° segmentation yielded four regular sub-regions, achieving 99.97% coverage while reducing the number of turns, travel distance, and planning time by up to 70.42%, 23.17%, and 85.6%. This framework accounts for field heterogeneity and turning radius constraints, effectively mitigating path redundancy in conventional fixed-angle methods. This framework enables general deployment in agricultural field operations and facilitates extensions toward collaborative and energy-optimized task planning. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

23 pages, 1794 KiB  
Article
Dynamic Rescheduling Strategy for Passenger Congestion Balancing in Airport Passenger Terminals
by Yohan Lee, Seung Chan Choi, Keyju Lee and Sung Won Cho
Mathematics 2025, 13(13), 2208; https://doi.org/10.3390/math13132208 - 7 Jul 2025
Viewed by 398
Abstract
Airports are facing significant challenges due to the increasing number of air travel passengers. After a significant downturn during the COVID-19 pandemic, airports are implementing measures to enhance security and improve their level of service in response to rising demand. However, the rising [...] Read more.
Airports are facing significant challenges due to the increasing number of air travel passengers. After a significant downturn during the COVID-19 pandemic, airports are implementing measures to enhance security and improve their level of service in response to rising demand. However, the rising passenger volume has led to increased congestion and longer waiting times, undermining operational efficiency and passenger satisfaction. While most previous studies have focused on static modeling or infrastructure improvements, few have addressed the problem of dynamically allocating passengers in real-time. To tackle this issue, this study proposes a mathematical model with a dynamic rescheduling framework to balance the workload across multiple departure areas where security screening takes place, while minimizing the negative impact on passenger satisfaction resulting from increased walking distances. The proposed model strategically allocates departure areas for passengers in advance, utilizing data-based predictions. A mixed integer linear programming (MILP) model was developed and evaluated through discrete event simulation (DES). Real operational data provided by Incheon International Airport Corporation (IIAC) were used to validate the model. Comparative simulations against four baseline strategies demonstrated superior performance in balancing workload, reducing waiting passengers, and minimizing walking distances. In conclusion, the proposed model has the potential to enhance the efficiency of the security screening stage in the passenger departure process. Full article
Show Figures

Figure 1

27 pages, 110289 KiB  
Article
Automated Digitization Approach for Road Intersections Mapping: Leveraging Azimuth and Curve Detection from Geo-Spatial Data
by Ahmad M. Senousi, Wael Ahmed, Xintao Liu and Walid Darwish
ISPRS Int. J. Geo-Inf. 2025, 14(7), 264; https://doi.org/10.3390/ijgi14070264 - 5 Jul 2025
Viewed by 388
Abstract
Effective maintenance and management of road infrastructure are essential for community well-being, economic stability, and cost efficiency. Well-maintained roads reduce accident risks, improve safety, shorten travel times, lower vehicle repair costs, and facilitate the flow of goods, all of which positively contribute to [...] Read more.
Effective maintenance and management of road infrastructure are essential for community well-being, economic stability, and cost efficiency. Well-maintained roads reduce accident risks, improve safety, shorten travel times, lower vehicle repair costs, and facilitate the flow of goods, all of which positively contribute to GDP and economic development. Accurate intersection mapping forms the foundation of effective road asset management, yet traditional manual digitization methods remain time-consuming and prone to gaps and overlaps. This study presents an automated computational geometry solution for precise road intersection mapping that eliminates common digitization errors. Unlike conventional approaches that only detect intersection positions, our method systematically reconstructs complete intersection geometries while maintaining topological consistency. The technique combines plane surveying principles (including line-bearing analysis and curve detection) with spatial analytics to automatically identify intersections, characterize their connectivity patterns, and assign unique identifiers based on configurable parameters. When evaluated across multiple urban contexts using diverse data sources (manual digitization and OpenStreetMap), the method demonstrated consistent performance with mean Intersection over Union greater than 0.85 and F-scores more than 0.91. The high correctness and completeness metrics (both more than 0.9) confirm its ability to minimize both false positive and omission errors, even in complex roadway configurations. The approach consistently produced gap-free, overlap-free outputs, showing strength in handling interchange geometries. The solution enables transportation agencies to make data-driven maintenance decisions by providing reliable, standardized intersection inventories. Its adaptability to varying input data quality makes it particularly valuable for large-scale infrastructure monitoring and smart city applications. Full article
Show Figures

Figure 1

18 pages, 2781 KiB  
Article
Enhancing the Resilience of Intercity Transit System by Integrated Multimodal Emergency Dispatching and Passenger Assignment
by Xiaoyou Wang, Jiahe Tian and Enze Liu
Sustainability 2025, 17(13), 5717; https://doi.org/10.3390/su17135717 - 21 Jun 2025
Viewed by 316
Abstract
After the disruption of intercity railways, in order to effectively enhance system resilience and improve the sustainability of the intercity transit system, this paper studies the emergency response problem of multimodal collaboration based on the intercity multimodal transit system. Considering the constraints of [...] Read more.
After the disruption of intercity railways, in order to effectively enhance system resilience and improve the sustainability of the intercity transit system, this paper studies the emergency response problem of multimodal collaboration based on the intercity multimodal transit system. Considering the constraints of the disrupted network structure, multimodal emergency resources, dynamic passenger demand, and passenger participation willingness, a bi-level optimization model is established for maximizing system resilience and minimizing the deviation of passengers’ desired arrival time. This paper integrally determines the transit capacity, timetable, and passenger quantity on each line of each mode. A hybrid genetic and ant colony algorithm is designed to solve the problem. Taking the regional disruption of the Beijing–Tianjin–Hebei intercity railway network as a case study, the research results show that 59% of demand can be met with a single attempt and 70% of the arrival time is within the planned period. Based on this resilience-enhancement strategy, the imbalance between travel demand and transit capacity can be sustainably alleviated after railway disruption. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

24 pages, 1800 KiB  
Article
Cold Chain Logistics Path Optimization with Adaptive Speed and Hybrid Genetic Algorithm Solution
by Yuhui Sun and Dazhi Pan
Mathematics 2025, 13(12), 1981; https://doi.org/10.3390/math13121981 - 16 Jun 2025
Viewed by 407
Abstract
In this work, we aim to adjust vehicle speeds in real time by predicting the surrounding population density based on the spacing of customer locations. We comprehensively consider fixed costs, cargo loss costs, fuel costs, penalty costs, and environmental costs; build a cold [...] Read more.
In this work, we aim to adjust vehicle speeds in real time by predicting the surrounding population density based on the spacing of customer locations. We comprehensively consider fixed costs, cargo loss costs, fuel costs, penalty costs, and environmental costs; build a cold chain distribution vehicle path optimization model with the goal of minimizing the total cost and maximizing customer satisfaction; and design a hybrid genetic algorithm solution optimization model. The algorithm dynamically adjusts the tournament scale through the standard deviation of the fitness value, uses the OX cross operator, determines the position of variation based on the customer information matrix, and performs local search optimization with the removal and insertion operators. Through comparison to other algorithms in the literature, the results show that the hybrid genetic algorithm not only improves customer satisfaction, but also maintains a lower total cost, which is obviously superior when solving the complex cold chain distribution path optimization problem; further comparison and analysis of the mathematical model in this paper with the single-dimension satisfaction model reveals that under the same satisfaction constraint threshold, the model in this paper can significantly reduce the system operating cost; we also deeply discuss the influence mechanism of vehicle traveling mode and customer point sparsity radius on distribution path planning. Full article
Show Figures

Figure 1

23 pages, 1492 KiB  
Article
A Collaborative Optimization Model for Metro Passenger Flow Control Considering Train–Passenger Symmetry
by Rong Li, Qing Liu and Lei Wang
Symmetry 2025, 17(6), 937; https://doi.org/10.3390/sym17060937 - 12 Jun 2025
Viewed by 431
Abstract
Due to the unbalanced temporal and spatial distribution of the passenger flow on metro lines during peak hours, the implementation of passenger flow control strategies effectively ensures operational safety and travel efficiency for passengers. In this study, we analyze the coupling relationship between [...] Read more.
Due to the unbalanced temporal and spatial distribution of the passenger flow on metro lines during peak hours, the implementation of passenger flow control strategies effectively ensures operational safety and travel efficiency for passengers. In this study, we analyze the coupling relationship between trains and passengers, introduce train-stopping state variables, and synergistically optimize both train operation schedules and station passenger flow control. Aiming to minimize the total passenger delay time and maximize the number of boarding passengers, we consider four constraints: the train operation process, the passenger entry process, the passenger–train interaction process, and system constraints. This framework enables us to construct a cooperative passenger flow control optimization model for oversaturated metro lines. Subsequently, we propose an improved artificial bee colony algorithm to solve this model. We utilize evolutionary operators and an enhanced tabu search to create new food sources for employed bees and enhance their local search capabilities during the employed phase. Finally, Shanghai Metro Line 9 is used as a case study for the model validation. The computational results indicate that the proposed Collaborative passenger flow control strategy significantly reduces the number of stranded passengers on platforms and decreases the total passenger delay time by 36.26% compared to the existing passenger flow control strategy. The findings demonstrate that the cooperative control strategy proposed in this paper can effectively alleviate the pressure from passenger flow on oversaturated lines, balance the asymmetry between supply and demand, and markedly improve both safety and efficiency in the metro system during peak hours. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

Back to TopTop