Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (592)

Search Parameters:
Keywords = transverse beam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 3195 KiB  
Article
A Stress Analysis of a Thin-Walled, Open-Section, Beam Structure: The Combined Flexural Shear, Bending and Torsion of a Cantilever Channel Beam
by David W. A. Rees
Appl. Sci. 2025, 15(15), 8470; https://doi.org/10.3390/app15158470 - 30 Jul 2025
Viewed by 137
Abstract
Channels with three standard symmetrical sections and one asymmetric section are mounted as cantilever beams with the web oriented vertically. A classical solution to the analysis of stress in each thin-walled cantilever channel is provided using the principle of wall shear flow superposition. [...] Read more.
Channels with three standard symmetrical sections and one asymmetric section are mounted as cantilever beams with the web oriented vertically. A classical solution to the analysis of stress in each thin-walled cantilever channel is provided using the principle of wall shear flow superposition. The latter is coupled with a further superposition between axial stress arising from bending and from the constraint placed on free warping imposed at the fixed end. Closed solutions for design are tabulated for the net shear stress and the net axial stress at points around any section within the length. Stress distributions thus derived serve as a benchmark structure for alternative numerical solutions and for experimental investigations. The conversion of the transverse free end-loading applied to a thin-walled cantilever channel into the shear and axial stress that it must bear is outlined. It is shown that the point at which this loading is applied within the cross-section is crucial to this stress conversion. When a single force is applied to an arbitrary point at the free-end section, three loading effects arise generally: bending, flexural shear and torsion. The analysis of each effect requires that this force’s components are resolved to align with the section’s principal axes. These forces are then considered in reference to its centroid and to its shear centre. This shows that axial stress arises directly from bending and from the constraint imposed on free warping at the fixed end. Shear stress arises from flexural shear and also from torsion with a load offset from the shear centre. When the three actions are combined, the net stresses of each action are considered within the ability of the structure to resist collapse from plasticity and buckling. The novelty herein refers to the presentation of the shear flow calculations within a thin wall as they arise from an end load offset from the shear centre. It is shown how the principle of superposition can be applied to individual shear flow and axial stress distributions arising from flexural bending, shear and torsion. Therein, the new concept of a ‘trans-moment’ appears from the transfer in moments from their axes through centroid G to parallel axes through shear centre E. The trans-moment complements the static equilibrium condition, in which a shift in transverse force components from G to E is accompanied by torsion and bending about the flexural axis through E. Full article
Show Figures

Figure 1

18 pages, 5060 KiB  
Article
Research on Fatigue Strength Evaluation Method of Welded Joints in Steel Box Girders with Open Longitudinal Ribs
by Bo Shen, Ming Liu, Yan Wang and Hanqing Zhuge
Crystals 2025, 15(7), 646; https://doi.org/10.3390/cryst15070646 - 15 Jul 2025
Viewed by 248
Abstract
Based on the engineering background of a new type of segmental-assembled steel temporary beam buttress, the fatigue strength evaluation method of the steel box girders with open longitudinal ribs was taken as the research objective. The fatigue stress calculation analysis and the full-scale [...] Read more.
Based on the engineering background of a new type of segmental-assembled steel temporary beam buttress, the fatigue strength evaluation method of the steel box girders with open longitudinal ribs was taken as the research objective. The fatigue stress calculation analysis and the full-scale fatigue loading test for the steel box girder local component were carried out. The accuracy of the finite-element model was verified by comparing it with the test results, and the rationality of the fatigue strength evaluation methods for welded joints was deeply explored. The results indicate that the maximum nominal stress occurs at the weld toe between the transverse diaphragm and the top plate at the edge of the loading area, which is the fatigue-vulnerable location for the steel box girder local components. The initial static-load stresses at each measuring point were in good agreement with the finite-element calculation results. However, the static-load stress at the measuring point in the fatigue-vulnerable position shows a certain decrease with the increase in the number of cyclic loads, while the stress at other measuring points remains basically unchanged. According to the finite-element model, the fatigue strengths obtained by the nominal stress method and the hot-spot stress method are 72.1 MPa and 93.8 MPa, respectively. It is reasonable to use the nominal stress S-N curve with a fatigue life of 2 million cycles at 70 MPa and the hot-spot stress S-N curve with a fatigue life of 2 million cycles at 90 MPa (FAT90) to evaluate the fatigue of the welded joints in steel box girders with open longitudinal ribs. According to the equivalent structural stress method, the fatigue strength corresponding to 2 million cycles is 94.1 MPa, which is slightly lower than the result corresponding to the main S-N curve but within the range of the standard deviation curve. The research results of this article can provide important guidance for the anti-fatigue design of welded joints in steel box girders with open longitudinal ribs. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

14 pages, 3260 KiB  
Article
Performance of Hybrid Strengthening System for Reinforced Concrete Member Using CFRP Composites Inside and over Transverse Groove Technique
by Ahmed H. Al-Abdwais and Adil K. Al-Tamimi
Fibers 2025, 13(7), 93; https://doi.org/10.3390/fib13070093 - 8 Jul 2025
Viewed by 280
Abstract
The use of a carbon-fiber-reinforced polymer (CFRP) for structural strengthening has been widely adopted in recent decades. Early studies focused on externally bonded (EB) techniques, but premature delamination of CFRP from concrete surfaces often limited their efficiency. To address this, alternative methods, such [...] Read more.
The use of a carbon-fiber-reinforced polymer (CFRP) for structural strengthening has been widely adopted in recent decades. Early studies focused on externally bonded (EB) techniques, but premature delamination of CFRP from concrete surfaces often limited their efficiency. To address this, alternative methods, such as Externally Bonded Reinforcement Over Grooves (EBROG) and Externally Bonded Reinforcement Inside Grooves (EBRIG), were developed to enhance the bond strength and delay delamination. While most research has examined longitudinal groove layouts, this study investigates a hybrid system combining a CFRP fabric bonded inside transverse grooves (EBRITG) with externally bonded layers over the grooves (EBROTG). The system leverages the grooves’ surface area to anchor the CFRP and improve the bonding strength. Seven RC beams were tested in two stages: five beams with varied strengthening methods (EBROG, EBRIG, and hybrid) in the first stage and two beams with a hybrid system and concrete cover anchorage in the second stage. Results demonstrated significant flexural capacity improvement—57% and 72.5% increase with two and three CFRP layers, respectively—compared to the EBROG method, confirming the hybrid system’s superior bonding efficiency. Full article
Show Figures

Figure 1

18 pages, 1933 KiB  
Article
LTBWTB: A Mathematica Software to Evaluate the Lateral-Torsional Buckling Load of Web-Tapered Mono-Symmetric I-Section Beams
by Tolga Yılmaz
Appl. Sci. 2025, 15(13), 7572; https://doi.org/10.3390/app15137572 - 6 Jul 2025
Viewed by 305
Abstract
Web-tapered beams with I-sections, which are aesthetic and structurally efficient, have been widely used in steel structures. Web-tapered I-section beams bent about the strong axis may undergo out-of-plane buckling through lateral deflection and twisting. This primary stability failure mode in slender beams is [...] Read more.
Web-tapered beams with I-sections, which are aesthetic and structurally efficient, have been widely used in steel structures. Web-tapered I-section beams bent about the strong axis may undergo out-of-plane buckling through lateral deflection and twisting. This primary stability failure mode in slender beams is known as lateral-torsional buckling (LTB). Unlike prismatic I-beams, the complex mode shape of web-tapered I-section beams makes it challenging or even impossible to derive a closed-form expression for the LTB load under certain transverse loading conditions. Therefore, the LTB assessment of web-tapered I-section beams is primarily performed using finite element analysis (FEA). However, this method involves multiple steps, requires specialized expertise, and demands significant computational resources, making it impractical in certain cases. This study proposes an analytical approach based on the Ritz method to evaluate the LTB of simply supported web-tapered beams with doubly or mono-symmetric I-sections. The proposed analytical method accounts for web tapering, I-section mono-symmetry, types and positions of transverse loads, and beam slenderness. The method was implemented in Mathematica to allow the rapid evaluation of the LTB capacity of web-tapered I-beams. The study validates the LTB loads computed using the developed Mathematica package against results from shell-based FEA. An excellent agreement was observed between the analytically and numerically calculated LTB loads. Full article
Show Figures

Figure 1

8 pages, 900 KiB  
Proceeding Paper
Repercussions on the Shear Force of an Internal Beam–Column Connection from Two Symmetrical Uniformly Distributed Loads at Different Positions on the Beam
by Albena Doicheva
Eng. Proc. 2025, 87(1), 85; https://doi.org/10.3390/engproc2025087085 - 26 Jun 2025
Viewed by 1319
Abstract
The beam–column connection is an important element in frame construction. Despite numerous studies, there is still no uniform procedure for shear force design across countries. We continue to witness serious problems and even collapse of buildings under seismic activity caused by failures in [...] Read more.
The beam–column connection is an important element in frame construction. Despite numerous studies, there is still no uniform procedure for shear force design across countries. We continue to witness serious problems and even collapse of buildings under seismic activity caused by failures in the beam–column connection of the frame. During the last 60 decades, a large number of experimental studies have been carried out on frame assemblies, where various parameters and their compatibility under cyclic activities have been investigated. What remains misunderstood is the magnitude and distribution of the forces passing through the joint and their involvement in the magnitude of the shear force. Here, the creation of a new mathematical model for the beam and column contributes significantly to our understanding of the flow of forces in the frame connection. For this purpose, the full dimensions of the beam and its material properties are taken into account. All investigations were carried out before crack initiation and after crack propagation along the face of the column, where it separates from the beam. In the present work, the beam is subjected to two symmetrical, transverse, uniformly distributed loads. Expressions are derived to determine the magnitudes of the support reactions from the beam, as a function of the height of its lateral edge. The load positions corresponding to the extreme values of the support reactions are determined. Numerical results are presented for the effect over the magnitudes of the support reactions from different strengths of concrete and steel on the beam. The results are compared with those given in the Eurocode for shear force calculation. It is found that the shear force determined by the proposed new model exceeds the force calculated by Eurocode by 4–62.5%, depending on the crack development stage and the beam materials. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

13 pages, 3040 KiB  
Article
Design and Development of Dipole Magnet for MIR/THz Free Electron Laser Beam Dumps and Spectrometers
by Ekkachai Kongmon, Kantaphon Damminsek, Nopadon Khangrang, Sakhorn Rimjaem and Chitrlada Thongbai
Particles 2025, 8(3), 66; https://doi.org/10.3390/particles8030066 - 25 Jun 2025
Viewed by 809
Abstract
This study presents the design and development of electromagnetic dipole magnets for use as beam dumps and spectrometers in the MIR and THz free-electron laser (FEL) beamlines at the PBP-CMU Electron Linac Laboratory (PCELL). The magnets were optimized to achieve a 60-degree bending [...] Read more.
This study presents the design and development of electromagnetic dipole magnets for use as beam dumps and spectrometers in the MIR and THz free-electron laser (FEL) beamlines at the PBP-CMU Electron Linac Laboratory (PCELL). The magnets were optimized to achieve a 60-degree bending angle for electron beams with energies up to 30 MeV, without requiring water cooling. Using CST EM Studio for 3D magnetic field simulations and ASTRA for particle tracking, the THz dipole (with 414 turns) and MIR dipole (with 600 turns) generated magnetic fields of 0.1739 T and 0.2588 T, respectively, while both operating at currents below 10 A. Performance analysis confirmed effective beam deflection, with the THz dipole showing that it was capable of handling beam energies up to 20 MeV and the MIR dipole could handle up to 30 MeV. The energy measurement at the spectrometer screen position was simulated, taking into account transverse beam size, fringe fields, and space charge effects, using ASTRA. The energy resolution, defined as the ratio of energy uncertainty to the mean energy, was evaluated for selected cases. For beam energies of 16 MeV and 25 MeV, resolutions of 0.2% and 0.5% were achieved with transverse beam sizes of 1 mm and 4 mm, respectively. All evaluated cases maintained energy resolutions below 1%, confirming the spectrometer’s suitability for high-precision beam diagnostics. Furthermore, the relationship between the initial and measured energy spread errors, taking into account a camera resolution of 0.1 mm/pixel, was evaluated. Simulations across various beam energies (10–16 MeV for the THz dipole and 20–25 MeV for the MIR dipole) confirmed that the measurement error in energy spread decreases with smaller RMS transverse beam sizes. This trend was consistent across all tested energies and magnet configurations. To ensure accurate energy spread measurements, a small initial beam size is recommended. Specifically, for beams with a narrow initial energy spread, a transverse beam size below 1 mm is essential. Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources 2025)
Show Figures

Figure 1

27 pages, 10012 KiB  
Article
Beam Emittance and Bunch Length Diagnostics for the MIR-FEL Beamline at Chiang Mai University
by Kittipong Techakaew, Kanlayaporn Kongmali, Siriwan Pakluea and Sakhorn Rimjaem
Particles 2025, 8(3), 64; https://doi.org/10.3390/particles8030064 - 21 Jun 2025
Viewed by 1120
Abstract
The generation of high-quality mid-infrared free-electron laser (MIR-FEL) radiation depends critically on precise control of electron beam parameters, including energy, energy spread, transverse emittance, bunch charge, and bunch length. At the PBP-CMU Electron Linac Laboratory (PCELL), effective beam diagnostics are essential for optimizing [...] Read more.
The generation of high-quality mid-infrared free-electron laser (MIR-FEL) radiation depends critically on precise control of electron beam parameters, including energy, energy spread, transverse emittance, bunch charge, and bunch length. At the PBP-CMU Electron Linac Laboratory (PCELL), effective beam diagnostics are essential for optimizing FEL performance. However, dedicated systems for direct measurement of transverse emittance and bunch length at the undulator entrance have been lacking. This paper addresses this gap by presenting the design, simulation, and analysis of diagnostic stations for accurate characterization of these parameters. A two-quadrupole emittance measurement system was developed, enabling independent control of beam-focusing in both transverse planes. An analytical model was formulated specifically for this configuration to enhance emittance reconstruction accuracy. Systematic error analysis was conducted using ASTRA beam dynamics simulations, incorporating 3D field maps from CST Studio Suite and fully including space-charge effects. Results show that transverse emittance values as low as 0.15 mm·mrad can be measured with less than 20% error when the initial RMS beam size is under 2 mm. Additionally, quadrupole misalignment effects were quantified, showing that alignment within ±0.95 mm limits systematic errors to below 33.3%. For bunch length measurements, a transition radiation (TR) station coupled with a Michelson interferometer was designed. Spectral and interferometric simulations reveal that transverse beam size and beam splitter properties significantly affect measurement accuracy. A 6% error due to transverse size was identified, while Kapton beam splitters introduced additional systematic distortions. In contrast, a 6 mm-thick silicon beam splitter enabled accurate, correction-free measurements. The finite size of the radiator was also found to suppress low-frequency components, resulting in up to 10.6% underestimation of bunch length. This work provides a practical and comprehensive diagnostic framework that accounts for multiple error sources in both transverse emittance and bunch length measurements. These findings contribute valuable insight for the beam diagnostics community and support improved control of beam quality in MIR FEL systems. Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources 2025)
Show Figures

Figure 1

24 pages, 4026 KiB  
Article
Changes of Airway Space and Flow in Patients Treated with Rapid Palatal Expander (RPE): An Observational Pilot Study with Comparison with Non-Treated Patients
by Paolo Faccioni, Alessia Pardo, Giorgia Matteazzi, Erika Zoccatelli, Silvia Bazzanella, Elena Montini, Fabio Lonardi, Benedetta Olivato, Massimo Albanese, Pietro Montagna, Giorgio Lombardo, Miriana Gualtieri, Annarita Signoriello, Giulio Conti and Alessandro Zangani
J. Clin. Med. 2025, 14(12), 4357; https://doi.org/10.3390/jcm14124357 - 18 Jun 2025
Viewed by 578
Abstract
Background/Objectives. With a rapid palatal expander (RPE) is reported to be effective in increasing the volume of nasal cavities, with a restoration of physiological nasal airflow. The purpose of this retrospective clinical study was to evaluate, using Cone Beam Computed Tomography (CBCT), [...] Read more.
Background/Objectives. With a rapid palatal expander (RPE) is reported to be effective in increasing the volume of nasal cavities, with a restoration of physiological nasal airflow. The purpose of this retrospective clinical study was to evaluate, using Cone Beam Computed Tomography (CBCT), the volumetric changes and airflow velocity changes in the nasal cavities, retro-palatal and retro-glossal airways, resulting from the use of RPE with dental anchorage (group A), also comparing these data with patients non treated with RPE (group B). Methods. Sixteen subjects (aged 9.34 years) with transverse maxillary deficiency and unilateral posterior crossbite were treated with RPE with dental anchorage. Additionally, 8 patients (aged 11.11 years) with juvenile idiopathic arthritis, who did not undergo any orthodontic treatment, were selected as a control group. Expansion was performed until overcorrection was achieved, and the device was left in place for 6 months as fixed retention, followed by another 6 months of night-time removable retention. From the retrospective evaluation, all patients presented two CBCT scans at baseline (T0) and 1-year follow-up (T1). The 3D-Slicer software was used for each CBCT to measure the nasal (VN), retropalatal (VRP), and retroglossal (VRG) volumes, while an iterative Excel spreadsheet allowed for a pilot approximated modeling and calculation of airway flow-related data. Results. Regarding mean age, a statistically significant difference (p = 0.01 *) was found between groups, suggesting that group B is closer to the pubertal growth peak. Analysis between T0 and T1 revealed: (i) a statistically significant increase for volumes VN, VRP and VRG in group A; (ii) a statistically significant increase for VN in group B; (iii) a statistically significant decrease for all variables related to airflow velocity in both groups. Furthermore, comparison between group A and B, regarding variations between T0 and T1, found a statistically significant difference only for VN. Conclusions. Within the limitations of this pilot evaluation, the treatment with RPE revealed promising outcomes for retro-palatal, retro-glossal and nasal volumes, together with clinical changes in airflow velocities. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

11 pages, 430 KiB  
Article
Experimental Observation of Laser Planar Trapping
by Silvânia A. Carvalho and Stefano De Leo
Optics 2025, 6(2), 27; https://doi.org/10.3390/opt6020027 - 18 Jun 2025
Viewed by 234
Abstract
This study experimentally demonstrates transverse symmetry breaking—a mechanism governing laser planar trapping—and distinguishes its unique role from related phenomena such as the lateral Goos–Hänchen shift and angular deviations. While the latter effects describe positional or angular beam displacements at interfaces, transverse symmetry breaking [...] Read more.
This study experimentally demonstrates transverse symmetry breaking—a mechanism governing laser planar trapping—and distinguishes its unique role from related phenomena such as the lateral Goos–Hänchen shift and angular deviations. While the latter effects describe positional or angular beam displacements at interfaces, transverse symmetry breaking fundamentally alters the beam’s spatial symmetry, enabling unprecedented control over its intensity and phase profiles. Empirical results exhibit exceptional agreement with a recently proposed theoretical model, validating its predictive capability. Crucially, our findings highlight transverse symmetry breaking as a critical tool for tailoring beam profiles, advancing applications in optical trapping, structured light systems, and photonic device engineering, where symmetry manipulation unlocks new degrees of freedom in light–matter interactions. Full article
(This article belongs to the Section Laser Sciences and Technology)
Show Figures

Figure 1

22 pages, 3922 KiB  
Article
Research on the Dynamic Characteristics of a Typical Medium–Low-Speed Maglev Train–Bridge System Influenced by the Transverse Stiffness of Pier Tops
by Yanghua Cui, Xiangrong Guo, Hongwei Mao and Jianghao Liu
Appl. Sci. 2025, 15(12), 6628; https://doi.org/10.3390/app15126628 - 12 Jun 2025
Viewed by 307
Abstract
With the continuous development of maglev transportation technology, medium–low-speed maglev trains have been widely implemented in many countries. However, due to the limitations of existing specifications, the stiffness limit values of the large-span main girders used in medium–low-speed maglev trains have not been [...] Read more.
With the continuous development of maglev transportation technology, medium–low-speed maglev trains have been widely implemented in many countries. However, due to the limitations of existing specifications, the stiffness limit values of the large-span main girders used in medium–low-speed maglev trains have not been unified. To address this issue, this study takes a specific bridge on a dedicated maglev line as an example and uses self-developed software to model the vehicle–bridge dynamic system. The natural vibration characteristics and vehicle–bridge coupling vibration response of the bridge are calculated and analyzed. Based on this, the influence of pier top stiffness on the dynamic characteristics of a typical medium–low-speed maglev train–bridge system under different working conditions is investigated, with a focus on the lateral line stiffness at the pier top. The results show that vehicle speed has no significant effect on the lateral displacement of the main girder, the lateral displacement of the pier top, the lateral acceleration of the pier top, and the transverse and longitudinal angles of the beam end, and no obvious regularity is observed. However, in the double-track operating condition, the vertical deflection of the main girder is significantly higher than that in the single-track operating condition. As the lateral linear stiffness at the pier top increases, the fundamental frequency of the bridge’s lateral bending vibration gradually increases, while the fundamental frequency of longitudinal floating gradually decreases. The lateral displacements, including those of the main girder, pier top, and beam ends, all decrease, whereas the lateral and vertical vibration accelerations of the main girder and the train are less affected by the lateral stiffness at the pier top. Full article
Show Figures

Figure 1

24 pages, 3261 KiB  
Review
Some Insights on Kerr Lensing Effects
by Kamel Aït-Ameur and Abdelkrim Hasnaoui
Photonics 2025, 12(6), 596; https://doi.org/10.3390/photonics12060596 - 10 Jun 2025
Viewed by 1518
Abstract
The research on high-order transverse modes in lasers was largely abandoned a few years after the invention of the laser in 1960. The main reason for this was that high-order beams are more divergent and less bright than the Gaussian beam. In the [...] Read more.
The research on high-order transverse modes in lasers was largely abandoned a few years after the invention of the laser in 1960. The main reason for this was that high-order beams are more divergent and less bright than the Gaussian beam. In the present paper, we showed that the behaviour of LGp0 beams faced to the optical Kerr effect (OKE) varies considerably depending on the mode order (p = 0 or p1). We focused our attention on the properties of LG00 and LG10 beams when subject to OKE, and we found that the LG10 beam keeps its focusability much better than the LG00 beam. This property has at least two applications concerning first the conception of high-intensity laser chains not based on a Gaussian beam but on an LG10 beam and second, the use of an LG10 beam instead of the usual Gaussian beam which can reduce drastically the protection of optical limiters based on OKE; this constitutes a counter-measure against such limiters. Full article
Show Figures

Figure 1

28 pages, 4795 KiB  
Article
Numerical and Geometrical Evaluation of Steel Plates with Transverse Hat-Stiffeners Under Bending
by Mariana Alvarenga Alves, Eduarda Machado Rodrigues, Luiz Alberto Oliveira Rocha, Elizaldo Domingues dos Santos, William Ramires Almeida and Liércio André Isoldi
Metals 2025, 15(6), 647; https://doi.org/10.3390/met15060647 - 10 Jun 2025
Viewed by 997
Abstract
Thin steel plates with stiffeners are widely used in shipbuilding, aeronautics, and civil construction due to their lightness and structural strength. This study presents a numerical model developed using ANSYS Mechanical APDL with SHELL281 finite elements to evaluate the deflection of thin steel [...] Read more.
Thin steel plates with stiffeners are widely used in shipbuilding, aeronautics, and civil construction due to their lightness and structural strength. This study presents a numerical model developed using ANSYS Mechanical APDL with SHELL281 finite elements to evaluate the deflection of thin steel plates with trapezoidal-shaped box-beam stiffeners, known as hat-stiffened plates. The structure is analyzed under a uniformly distributed load perpendicular to the plate, with simply supported boundary conditions. The constructal design method combined with the exhaustive search technique is employed to optimize the geometry. A volume fraction of 30% is used, transferring material from the reference plate (without stiffeners) to the stiffeners, defining parameters such as number, height, and thickness—considered degrees of freedom. The stiffener angle is fixed at 120°. The results show that increasing stiffener height and reducing thickness generally improve structural performance by reducing deflections. The best configuration with transverse stiffeners reduced deflection by 97.15% compared to the reference plate, and by 79.27% compared to the best longitudinal configuration from previous studies. Therefore, transverse stiffeners were more effective than longitudinal ones. This study highlights the importance of stiffener orientation and geometry in the structural optimization of thin steel plates. Full article
Show Figures

Figure 1

18 pages, 7815 KiB  
Article
Short-Beam Shear Fatigue Behavior on Unidirectional GLARE: Mean Shear Stress Effect, Scatter, and Anisotropy
by Douglas G. Caetano, Hector G. Kotik, Juan E. Perez Ipiña and Enrique M. Castrodeza
Fibers 2025, 13(6), 77; https://doi.org/10.3390/fib13060077 - 9 Jun 2025
Viewed by 986
Abstract
This paper investigates the effect of mean shear stress on short-beam shear fatigue in a GLARE 1-3/2 commercial fiber–metal laminate (FML). This study explores three shear stress ratios (Rτ 0.1, 0.3, and 0.5) and two material orientations (longitudinal and transversal) under [...] Read more.
This paper investigates the effect of mean shear stress on short-beam shear fatigue in a GLARE 1-3/2 commercial fiber–metal laminate (FML). This study explores three shear stress ratios (Rτ 0.1, 0.3, and 0.5) and two material orientations (longitudinal and transversal) under constant amplitude fatigue. Different stress levels for each Rτ value were explored to obtain failures between 103 and 106 load cycles. The experimental results reveal anisotropy, with transversal specimens exhibiting lower performance and increased scatter. The mean shear stress effect is discussed herein, with insights into the critical role of mean shear of fatigue performance. Rτ 0.1 was the most severe condition and Rτ 0.5 was the least severe. The Rτ 0.3 condition produced steeper S-N curves, indicating that the combined effect of mean shear stress and shear stress amplitude led to a higher rate of damage accumulation. The fractographic analysis investigated the failure modes and confirmed the damage dominated by Mode II, supporting the test methodology employed. Full article
Show Figures

Figure 1

17 pages, 1780 KiB  
Article
Development and Performance Analysis of a Novel Wave Energy Converter Based on Roll Movement: A Case Study in the BiMEP
by Egoitz Urtaran-Lavin, David Boullosa-Falces, Urko Izquierdo and Miguel Angel Gomez-Solaetxe
J. Mar. Sci. Eng. 2025, 13(6), 1097; https://doi.org/10.3390/jmse13061097 - 30 May 2025
Viewed by 295
Abstract
With the growing concern for environmental issues, progress has been made recently in the promotion of new technologies in the field of renewable energies. This article studies a new wave energy converter that uses the heel generated by the mechanical energy of the [...] Read more.
With the growing concern for environmental issues, progress has been made recently in the promotion of new technologies in the field of renewable energies. This article studies a new wave energy converter that uses the heel generated by the mechanical energy of the waves to transform it into electrical energy by means of a mobile mass, coupled to an electrical generator, which moves from port to starboard and vice versa. The advantage of this converter is that it is capable of incorporating the energy conversion unit inside the converter, as well as allowing the placement of a set of several devices within the same collector, and of modifying the roll period to adapt it to the wave conditions of the installation area. To do this, on one side, two models of wave energy converters were compared by varying the beam to check whether it is better to have a smaller or larger beam by carrying out roll decay tests and simulations for different waves. Moreover, the maximum power available in the moving mass of the power take-off was calculated theoretically for two situations of different transverse metacentric height to check which is more efficient, reaching 2 MW for some waves. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 6052 KiB  
Article
W-Band Transverse Slotted Frequency Scanning Antenna for 6G Wireless Communication and Space Applications
by Hurrem Ozpinar, Sinan Aksimsek and Nurhan Türker Tokan
Aerospace 2025, 12(6), 493; https://doi.org/10.3390/aerospace12060493 - 30 May 2025
Viewed by 499
Abstract
Terahertz (THz) antennas are among the critical components required for enabling the transition to sixth-generation (6G) wireless networks. Although research on THz antennas for 6G communication systems has garnered significant attention, a standardized antenna design has yet to be established. This study introduces [...] Read more.
Terahertz (THz) antennas are among the critical components required for enabling the transition to sixth-generation (6G) wireless networks. Although research on THz antennas for 6G communication systems has garnered significant attention, a standardized antenna design has yet to be established. This study introduces the modeling of a full-metal transverse slotted waveguide antenna (TSWA) for 6G and beyond. The proposed antenna operates across the upper regions of the V-band and the entire W-band. Designed and simulated using widely adopted full-wave analysis tools, the antenna achieves a peak gain of 17 dBi and a total efficiency exceeding 90% within the band. Additionally, it exhibits pattern-reconfigurable capabilities, enabling main lobe beam steering between 5° and 68° with low side lobe levels. Simulations are conducted to assess the power handling capability (PHC) of the antenna, including both the peak (PPHC) and average (APHC) values. The results indicate that the antenna can handle 17 W of APHC within the W-band and 3.4 W across the 60–160 GHz range. Furthermore, corona discharge and multipaction analyses are performed to evaluate the antenna’s power handling performance under extreme operating conditions. These features make the proposed TSWA a strong candidate for high-performance space applications, 6G communication systems, and beyond. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

Back to TopTop