Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,904)

Search Parameters:
Keywords = transportation sustainability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 7051 KiB  
Review
Review of Material-Handling Challenges in Energy Production from Biomass and Other Solid Waste Materials
by Tong Deng, Vivek Garg and Michael S. A. Bradley
Energies 2025, 18(15), 4194; https://doi.org/10.3390/en18154194 - 7 Aug 2025
Abstract
Biomass and other solid wastes create potential environmental and health hazards in our modern society. Conversion of the wastes into energy presents a promising avenue for sustainable energy generation. However, the feasibility of the approach is limited by the challenges in material handling [...] Read more.
Biomass and other solid wastes create potential environmental and health hazards in our modern society. Conversion of the wastes into energy presents a promising avenue for sustainable energy generation. However, the feasibility of the approach is limited by the challenges in material handling because of the special properties of the materials. Despite their critical importance, the complexities of material handling often evade scrutiny until operational implementation. This paper highlights the challenges inherent in standard solid material-handling processes, preceded by a concise review of common solid waste typologies and their physical properties, particularly those related to biomass and biowastes. It delves into the complexities of material flow, storage, compaction, agglomeration, separation, transport, and hazard management. Specialised characterisation techniques essential for informed process design are also discussed to mitigate operational risks. In conclusion, this paper emphasises the necessity of a tailored framework before the establishment of any further conversion processes. Given the heterogeneous nature of biomaterials, material-handling equipment must demonstrate adaptability to accommodate the substantial variability in material properties in large-scale production. This approach aims to enhance feasibility and efficacy of any energy conversion initiatives by using biomass or other solid wastes, thereby advancing sustainable resource utilisation and environmental stewardship. Full article
Show Figures

Figure 1

37 pages, 2030 KiB  
Article
Open Competency Optimization with Combinatorial Operators for the Dynamic Green Traveling Salesman Problem
by Rim Benjelloun, Mouna Tarik and Khalid Jebari
Information 2025, 16(8), 675; https://doi.org/10.3390/info16080675 - 7 Aug 2025
Abstract
This paper proposes the Open Competency Optimization (OCO) approach, based on adaptive combinatorial operators, to solve the Dynamic Green Traveling Salesman Problem (DG-TSP), which extends the classical TSP by incorporating dynamic travel conditions, realistic road gradients, and energy consumption considerations. The objective is [...] Read more.
This paper proposes the Open Competency Optimization (OCO) approach, based on adaptive combinatorial operators, to solve the Dynamic Green Traveling Salesman Problem (DG-TSP), which extends the classical TSP by incorporating dynamic travel conditions, realistic road gradients, and energy consumption considerations. The objective is to minimize fuel consumption and emissions by reducing the total tour length under varying conditions. Unlike conventional metaheuristics based on real-coded representations, our method directly operates on combinatorial structures, ensuring efficient adaptation without costly transformations. Embedded within a dynamic metaheuristic framework, our operators continuously refine the routing decisions in response to environmental and demand changes. Experimental assessments conducted in practical contexts reveal that our algorithm attains a tour length of 21,059, which is indicative of a 36.16% reduction in fuel consumption relative to Ant Colony Optimization (ACO) (32,994), a 4.06% decrease when compared to Grey Wolf Optimizer (GWO) (21,949), a 2.95% reduction in relation to Particle Swarm Optimization (PSO) (21,701), and a 0.90% decline when juxtaposed with Genetic Algorithm (GA) (21,251). In terms of overall offline performance, our approach achieves the best score (21,290.9), significantly outperforming ACO (36,957.6), GWO (122,881.04), GA (59,296.5), and PSO (36,744.29), confirming both solution quality and stability over time. These findings underscore the resilience and scalability of the proposed approach for sustainable logistics, presenting a pragmatic resolution to enhance transportation operations within dynamic and ecologically sensitive environments. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

21 pages, 767 KiB  
Article
Promoting Sustainable Mobility on Campus: Uncovering the Behavioral Mechanisms Behind Non-Compliant E-Bike Use Among University Students
by Huihua Chen, Yongqi Guo and Lei Li
Sustainability 2025, 17(15), 7147; https://doi.org/10.3390/su17157147 - 7 Aug 2025
Abstract
Electric bikes (e-bikes) offer a low-carbon, space-efficient solution for campus mobility, yet their sustainable potential is increasingly challenged by patterns of non-compliant use, including speeding, informal parking, and unauthorized charging. This study integrates the Theory of Planned Behavior (TPB) and the Technology Acceptance [...] Read more.
Electric bikes (e-bikes) offer a low-carbon, space-efficient solution for campus mobility, yet their sustainable potential is increasingly challenged by patterns of non-compliant use, including speeding, informal parking, and unauthorized charging. This study integrates the Theory of Planned Behavior (TPB) and the Technology Acceptance Model (TAM) to examine the cognitive and contextual factors that shape such behaviors among university students. Drawing on a survey of 408 e-bike users and structural equation modeling, the results show that non-compliance is primarily driven by perceived usefulness, ease of action, and behavioral feasibility, with affective and normative factors playing indirect, reinforcing roles. Importantly, actual behavior is influenced not only by intention but also by students’ perceived capacity to act within low-enforcement environments. These findings highlight the need to align behavioral perceptions with sustainability goals. The study contributes to sustainable mobility governance by clarifying key psychological pathways and offering targeted insights for designing perception-sensitive interventions in campus transport systems. Furthermore, by promoting compliance-oriented campus mobility, this research highlights a pathway toward enhancing the resilience of transport systems through behavioral adaptation within semi-regulated environments. Full article
Show Figures

Figure 1

26 pages, 2444 KiB  
Article
A Multi-Stage Feature Selection and Explainable Machine Learning Framework for Forecasting Transportation CO2 Emissions
by Mohammad Ali Sahraei, Keren Li and Qingyao Qiao
Energies 2025, 18(15), 4184; https://doi.org/10.3390/en18154184 - 7 Aug 2025
Abstract
The transportation sector is a major consumer of primary energy and is a significant contributor to greenhouse gas emissions. Sustainable transportation requires identifying and quantifying factors influencing transport-related CO2 emissions. This research aims to establish an adaptable, precise, and transparent forecasting structure [...] Read more.
The transportation sector is a major consumer of primary energy and is a significant contributor to greenhouse gas emissions. Sustainable transportation requires identifying and quantifying factors influencing transport-related CO2 emissions. This research aims to establish an adaptable, precise, and transparent forecasting structure for transport CO2 emissions of the United States. For this reason, we proposed a multi-stage method that incorporates explainable Machine Learning (ML) and Feature Selection (FS), guaranteeing interpretability in comparison to conventional black-box models. Due to high multicollinearity among 24 initial variables, hierarchical feature clustering and multi-step FS were applied, resulting in five key predictors: Total Primary Energy Imports (TPEI), Total Fossil Fuels Consumed (FFT), Annual Vehicle Miles Traveled (AVMT), Air Passengers-Domestic and International (APDI), and Unemployment Rate (UR). Four ML methods—Support Vector Regression, eXtreme Gradient Boosting, ElasticNet, and Multilayer Perceptron—were employed, with ElasticNet outperforming the others with RMSE = 45.53, MAE = 30.6, and MAPE = 0.016. SHAP analysis revealed AVMT, FFT, and APDI as the top contributors to CO2 emissions. This framework aids policymakers in making informed decisions and setting precise investments. Full article
Show Figures

Figure 1

29 pages, 3563 KiB  
Article
Assessment of Hydrogels for Intra-Articulate Application, Based on Sodium Hyaluronate Doped with Synthetic Polymers and Incorporated with Diclofenac Sodium
by Dorota Wójcik-Pastuszka, Maja Grabara and Witold Musiał
Int. J. Mol. Sci. 2025, 26(15), 7631; https://doi.org/10.3390/ijms26157631 - 6 Aug 2025
Abstract
The intra-articular application of drugs has gained considerable interest with regard to formulations for advanced drug delivery systems. It has been identified as a potential route for local drug delivery. A drug agent is usually incorporated into the hydrogel to prolong and control [...] Read more.
The intra-articular application of drugs has gained considerable interest with regard to formulations for advanced drug delivery systems. It has been identified as a potential route for local drug delivery. A drug agent is usually incorporated into the hydrogel to prolong and control the drug release. This study aimed to design and evaluate an intra-articular hydrogel based sodium hyaluronate, which was modified with an additional polymer to enable the sustained release of the incorporated anti-inflammatory agent, diclofenac sodium (NaDic). Viscosity studies, drug release tests and FTIR−ATR measurements, as well as DSC analysis, were carried out to evaluate the obtained formulations. The viscosity measurements were performed using a rotational viscometer. The drug release was carried out by employing the apparatus paddle over the disk. The concentration of the released drug was obtained spectrophotometrically. The results revealed that the addition of the second polymer to the matrix influenced the dynamic viscosity of the hydrogels. The highest viscosity of (25.33 ± 0.55) × 103 cP was observed when polyacrylic acid (PA) was doped in the formulation. This was due to the hydrogen bond formation between both polymers. The FTIR−ATR investigations and DSC study revealed the hydrogen bond formation between the drug and both polymers. The drug was released the slowest from hydrogel doped with PA and 17.2 ± 3.7% of NaDic was transported to the acceptor fluid within 8 h. The hydrogel based on hyaluronan sodium doped with PA and containing NaDic is a promising formulation for the prolonged and controlled intra-articulate drug delivery of anti-inflammatory agents. Full article
(This article belongs to the Special Issue New Insights into Hyaluronan in Human Medicine)
Show Figures

Figure 1

19 pages, 8835 KiB  
Article
The Spatial Distribution Characteristics and Driving Factors of Traditional Villages’ Tourism Transformation Level in Shaanxi, China
by Huidi Jia, Lanbo Li, Siying Wu, Ruiqi Zhao and Huan Yang
Land 2025, 14(8), 1602; https://doi.org/10.3390/land14081602 - 6 Aug 2025
Abstract
Although numerous studies have examined the spatial patterns of traditional villages and their driving factors, limited attention has been devoted to the transformation of tourism. This study focused on traditional villages in Shaanxi Province, employing geodetector and grounded theory methods to analyze their [...] Read more.
Although numerous studies have examined the spatial patterns of traditional villages and their driving factors, limited attention has been devoted to the transformation of tourism. This study focused on traditional villages in Shaanxi Province, employing geodetector and grounded theory methods to analyze their spatial distribution characteristics and influencing factors. First, most traditional villages have not developed tourism. Only 11.98% reached the relatively mature tourism stage. Second, the spatial distribution of mature traditional tourism villages is scattered and primarily clustered in Liuba County, Mizhi County, and Jia County. Third, the factors influencing spatial distribution characteristics include resource endowment, transportation accessibility, and regional economic conditions. Among these factors, the level of traditional villages, village heritage values, and the local tourism environment show the strongest explanatory power. These findings can help enhance cultural resilience, promote economic transformation and upgrading, and support the sustainable development of traditional villages. Full article
Show Figures

Figure 1

27 pages, 355 KiB  
Review
Comprehensive Review of Life Cycle Carbon Footprint in Edible Vegetable Oils: Current Status, Impact Factors, and Mitigation Strategies
by Shuang Zhao, Sheng Yang, Qi Huang, Haochen Zhu, Junqing Xu, Dan Fu and Guangming Li
Waste 2025, 3(3), 26; https://doi.org/10.3390/waste3030026 - 6 Aug 2025
Abstract
Amidst global climate change, carbon emissions across the edible vegetable oil supply chain are critical for sustainable development. This paper systematically reviews the existing literature, employing life cycle assessment (LCA) to analyze key factors influencing carbon footprints at stages including cultivation, processing, and [...] Read more.
Amidst global climate change, carbon emissions across the edible vegetable oil supply chain are critical for sustainable development. This paper systematically reviews the existing literature, employing life cycle assessment (LCA) to analyze key factors influencing carbon footprints at stages including cultivation, processing, and transportation. It reveals the differential impacts of fertilizer application, energy structures, and regional policies. Unlike previous reviews that focus on single crops or regions, this study uniquely integrates global data across major edible oils, identifying three critical gaps: methodological inconsistency (60% of studies deviate from the requirements and guidelines for LCA); data imbalance (80% concentrated on soybean/rapeseed); weak policy-technical linkage. Key findings: fertilizer emissions dominate cultivation (40–60% of total footprint), while renewable energy substitution in processing reduces emissions by 35%. Future efforts should prioritize multidisciplinary integration, enhanced data infrastructure, and policy scenario analysis to provide scientific insights for the low-carbon transformation of the global edible oil industry. Full article
30 pages, 8483 KiB  
Article
Research on Innovative Design of Two-in-One Portable Electric Scooter Based on Integrated Industrial Design Method
by Yang Zhang, Xiaopu Jiang, Shifan Niu and Yi Zhang
Sustainability 2025, 17(15), 7121; https://doi.org/10.3390/su17157121 - 6 Aug 2025
Abstract
With the advancement of low-carbon and sustainable development initiatives, electric scooters, recognized as essential transportation tools and leisure products, have gained significant popularity, particularly among young people. However, the current electric scooter market is plagued by severe product similarity. Once the initial novelty [...] Read more.
With the advancement of low-carbon and sustainable development initiatives, electric scooters, recognized as essential transportation tools and leisure products, have gained significant popularity, particularly among young people. However, the current electric scooter market is plagued by severe product similarity. Once the initial novelty fades for users, the usage frequency declines, resulting in considerable resource wastage. This research collected user needs via surveys and employed the KJ method (affinity diagram) to synthesize fragmented insights into cohesive thematic clusters. Subsequently, a hierarchical needs model for electric scooters was constructed using analytical hierarchy process (AHP) principles, enabling systematic prioritization of user requirements through multi-criteria evaluation. By establishing a house of quality (HoQ), user needs were transformed into technical characteristics of electric scooter products, and the corresponding weights were calculated. After analyzing the positive and negative correlation degrees of the technical characteristic indicators, it was found that there are technical contradictions between functional zoning and compact size, lightweight design and material structure, and smart interaction and usability. Then, based on the theory of inventive problem solving (TRIZ), the contradictions were classified, and corresponding problem-solving principles were identified to achieve a multi-functional innovative design for electric scooters. This research, leveraging a systematic industrial design analysis framework, identified critical pain points among electric scooter users, established hierarchical user needs through priority ranking, and improved product lifecycle sustainability. It offers novel methodologies and perspectives for advancing theoretical research and design practices in the electric scooter domain. Full article
Show Figures

Figure 1

20 pages, 1279 KiB  
Article
A Framework for Quantifying Hyperloop’s Socio-Economic Impact in Smart Cities Using GDP Modeling
by Aleksejs Vesjolijs, Yulia Stukalina and Olga Zervina
Economies 2025, 13(8), 228; https://doi.org/10.3390/economies13080228 - 6 Aug 2025
Abstract
Hyperloop ultra-high-speed transport presents a transformative opportunity for future mobility systems in smart cities. However, assessing its socio-economic impact remains challenging due to Hyperloop’s unique technological, modal, and operational characteristics. As a novel, fifth mode of transportation—distinct from both aviation and rail—Hyperloop requires [...] Read more.
Hyperloop ultra-high-speed transport presents a transformative opportunity for future mobility systems in smart cities. However, assessing its socio-economic impact remains challenging due to Hyperloop’s unique technological, modal, and operational characteristics. As a novel, fifth mode of transportation—distinct from both aviation and rail—Hyperloop requires tailored evaluation tools for policymakers. This study proposes a custom-designed framework to quantify its macroeconomic effects through changes in gross domestic product (GDP) at the city level. Unlike traditional economic models, the proposed approach is specifically adapted to Hyperloop’s multimodality, infrastructure, speed profile, and digital-green footprint. A Poisson pseudo-maximum likelihood (PPML) model is developed and applied at two technology readiness levels (TRL-6 and TRL-9). Case studies of Glasgow, Berlin, and Busan are used to simulate impacts based on geo-spatial features and city-specific trade and accessibility indicators. Results indicate substantial GDP increases driven by factors such as expanded 60 min commute catchment zones, improved trade flows, and connectivity node density. For instance, under TRL-9 conditions, GDP uplift reaches over 260% in certain scenarios. The framework offers a scalable, reproducible tool for policymakers and urban planners to evaluate the economic potential of Hyperloop within the context of sustainable smart city development. Full article
(This article belongs to the Section International, Regional, and Transportation Economics)
Show Figures

Figure 1

12 pages, 8263 KiB  
Proceeding Paper
Comparing Dynamic Traffic Flow Between Human-Driven and Autonomous Vehicles Under Cautious and Aggressive Vehicle Behavior
by Maftuh Ahnan and Dukgeun Yun
Eng. Proc. 2025, 102(1), 11; https://doi.org/10.3390/engproc2025102011 (registering DOI) - 5 Aug 2025
Abstract
This study explores the impact of driving behaviors, specifically cautious and aggressive, on the performance of human-driven vehicles (HDVs) and autonomous vehicles (AVs) in traffic flow dynamics. It focuses on various metrics, including level of service (LOS), average speed, traffic volume, queue delays, [...] Read more.
This study explores the impact of driving behaviors, specifically cautious and aggressive, on the performance of human-driven vehicles (HDVs) and autonomous vehicles (AVs) in traffic flow dynamics. It focuses on various metrics, including level of service (LOS), average speed, traffic volume, queue delays, carbon emissions, and fuel consumption, to assess their effects on overall performance. The findings reveal significant differences between cautious and aggressive AVs, particularly at varying market penetration rates (MPRs). Aggressive autonomous vehicles demonstrate greater traffic efficiency compared to their cautious counterparts. They achieve higher levels of service, improving from poor performance at low MPRs to significantly better performance at higher MPRs and in fully autonomous scenarios. In contrast, cautious AVs often experience poor service ratings at low MPRs, with an improvement in performance only at higher MPRs. Regarding environmental performance, aggressive AVs outperform cautious ones in terms of reduced emissions and fuel consumption. The emissions produced by aggressive AVs are significantly lower than those from cautious AVs, and they further decrease as the MPRs increases. Additionally, aggressive AVs show a considerable reduction in fuel usage compared to cautious AVs. While cautious AVs improve slightly at higher MPRs, they continue to generate higher emissions and consume more fuel than their aggressive counterparts. In conclusion, aggressive AVs offer better traffic efficiency and environmental performance than both cautious AVs. Their ability to improve road efficiency and reduce congestion positions them as a valuable asset for sustainable transportation. Strategically incorporating aggressive AVs into transportation systems could lead to significant advancements in traffic management and environmental sustainability. Full article
Show Figures

Figure 1

16 pages, 5519 KiB  
Article
The Performance of a Novel Automated Algorithm in Estimating Truckload Volume Based on LiDAR Data
by Mihai Daniel Niţă, Cătălin Cucu-Dumitrescu, Bogdan Candrea, Bogdan Grama, Iulian Iuga and Stelian Alexandru Borz
Forests 2025, 16(8), 1281; https://doi.org/10.3390/f16081281 - 5 Aug 2025
Abstract
Significant improvements in the forest-based industrial sector are expected due to increased digitalization; however, examples of practical implementations remain limited. This study explores the use of an automated algorithm to estimate truckload volumes based on 3D point cloud data acquired using two different [...] Read more.
Significant improvements in the forest-based industrial sector are expected due to increased digitalization; however, examples of practical implementations remain limited. This study explores the use of an automated algorithm to estimate truckload volumes based on 3D point cloud data acquired using two different LiDAR scanning platforms. This research compares the performance of a professional mobile laser scanning (MLS GeoSLAM) platform and a smartphone-based iPhone LiDAR system. A total of 48 truckloads were measured using a combination of manual, factory-based, and digital approaches. Accuracy was evaluated using standard error metrics, including the mean absolute error (MAE) and root mean square error (RMSE), with manual or factory references used as benchmarks. The results showed a strong correlation and no significant differences between the algorithmic and manual measurements when using the MLS platform (MAE = 2.06 m3; RMSE = 2.46 m3). For the iPhone platform, the results showed higher deviations and significant overestimation compared to the factory reference (MAE = 3.29 m3; RMSE = 3.60 m3). Despite these differences, the iPhone platform offers real-time acquisition and low-cost deployment. These findings highlight the trade-offs between precision and operational efficiency and support the adoption of automated measurement tools in timber supply chains. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

41 pages, 7308 KiB  
Review
Challenges and Opportunities for Extending Battery Pack Life Using New Algorithms and Techniques for Battery Electric Vehicles
by Pedro S. Gonzalez-Rodriguez, Jorge de J. Lozoya-Santos, Hugo G. Gonzalez-Hernandez, Luis C. Felix-Herran and Juan C. Tudon-Martinez
World Electr. Veh. J. 2025, 16(8), 442; https://doi.org/10.3390/wevj16080442 - 5 Aug 2025
Abstract
The shift from Internal Combustion Engine Vehicles (ICEVs) to Battery Electric Vehicles (BEVs) has accelerated global efforts to decarbonize transportation. However, battery degradation, high costs, and limited lifespan remain critical barriers. This review synthesizes recent innovations to extend Li-ion battery life in BEVs [...] Read more.
The shift from Internal Combustion Engine Vehicles (ICEVs) to Battery Electric Vehicles (BEVs) has accelerated global efforts to decarbonize transportation. However, battery degradation, high costs, and limited lifespan remain critical barriers. This review synthesizes recent innovations to extend Li-ion battery life in BEVs by exploring advances in degradation modeling, adaptive Battery Management Systems (BMSs), electronic component simulations, and real-world usage profiling. The authors have systematically analyzed over 80 recent studies using a PRISMA-guided review protocol. A novel comparative framework highlights gaps in current literature, particularly regarding real-world driving impacts, ripple current effects, and second-life battery applications. This review article critically compares model-driven, data-driven, and hybrid model approaches, emphasizing trade-offs in interpretability, accuracy, and deployment feasibility. Finally, the review links battery life extension to broader sustainability metrics, including circular economy models and predictive maintenance algorithms. This review offers actionable insights for researchers, engineers, and policymakers aiming to design longer-lasting and more sustainable electric mobility systems. Full article
(This article belongs to the Special Issue Electric Vehicle Battery Pack and Electric Motor Sizing Methods)
Show Figures

Figure 1

28 pages, 3960 KiB  
Article
Electric Bus Battery Energy Consumption Estimation and Influencing Features Analysis Using a Two-Layer Stacking Framework with SHAP-Based Interpretation
by Runze Liu, Jianming Cai, Lipeng Hu, Benxiao Lou and Jinjun Tang
Sustainability 2025, 17(15), 7105; https://doi.org/10.3390/su17157105 - 5 Aug 2025
Abstract
The widespread adoption of electric buses represents a major step forward in sustainable transportation, but also brings new operational challenges, particularly in terms of improving their efficiency and controlling costs. Therefore, battery energy consumption management is a key approach for addressing these issues. [...] Read more.
The widespread adoption of electric buses represents a major step forward in sustainable transportation, but also brings new operational challenges, particularly in terms of improving their efficiency and controlling costs. Therefore, battery energy consumption management is a key approach for addressing these issues. Accurate prediction of energy consumption and interpretation of the influencing factors are essential for improving operational efficiency, optimizing energy use, and reducing operating costs. Although existing studies have made progress in battery energy consumption prediction, challenges remain in achieving high-precision modeling and conducting a comprehensive analysis of the influencing features. To address these gaps, this study proposes a two-layer stacking framework for estimating the energy consumption of electric buses. The first layer integrates the strengths of three nonlinear regression models—RF (Random Forest), GBDT (Gradient Boosted Decision Trees), and CatBoost (Categorical Boosting)—to enhance the modeling capacity for complex feature relationships. The second layer employs a Linear Regression model as a meta-learner to aggregate the predictions from the base models and improve the overall predictive performance. The framework is trained on 2023 operational data from two electric bus routes (NO. 355 and NO. W188) in Changsha, China, incorporating battery system parameters, driving characteristics, and environmental variables as independent variables for model training and analysis. Comparative experiments with various ensemble models demonstrate that the proposed stacking framework exhibits superior performance in data fitting. Furthermore, XGBoost (Extreme Gradient Boosting, version 2.1.4) is introduced as a surrogate model to approximate the decision logic of the stacking framework, enabling SHAP (SHapley Additive exPlanations) analysis to quantify the contribution and marginal effects of influencing features. The proposed stacked and surrogate models achieved superior battery energy consumption prediction accuracy (lowest MSE, RMSE, and MAE), significantly outperforming benchmark models on real-world datasets. SHAP analysis quantified the overall contributions of feature categories (battery operation parameters: 56.5%; driving characteristics: 42.3%; environmental data: 1.2%), further revealing the specific contributions and nonlinear influence mechanisms of individual features. These quantitative findings offer specific guidance for optimizing battery system control and driving behavior. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

21 pages, 21837 KiB  
Article
Decoding China’s Transport Decarbonization Pathways: An Interpretable Spatio-Temporal Neural Network Approach with Scenario-Driven Policy Implications
by Yanming Sun, Kaixin Liu and Qingli Li
Sustainability 2025, 17(15), 7102; https://doi.org/10.3390/su17157102 - 5 Aug 2025
Abstract
The transportation sector, as a major source of carbon emissions, plays a crucial role in the realization of dual carbon goals worldwide. In this study, an improved least absolute shrinkage and selection operator (LASSO) is used to identify six key factors affecting transportation [...] Read more.
The transportation sector, as a major source of carbon emissions, plays a crucial role in the realization of dual carbon goals worldwide. In this study, an improved least absolute shrinkage and selection operator (LASSO) is used to identify six key factors affecting transportation carbon emissions (TCEs) in China. Aiming at the spatio-temporal characteristics of transportation carbon emissions, a CNN-BiLSTM neural network model is constructed for the first time for prediction, and an improved whale optimization algorithm (EWOA) is introduced for hyperparameter optimization, finding that the prediction model combining spatio-temporal characteristics has a more significant prediction accuracy, and scenario forecasting was carried out using the prediction model. Research indicates that over the past three decades, TCEs have demonstrated a rapid growth trend. Under the baseline, green, low-carbon, and high-carbon scenarios, peak carbon emissions are expected in 2035, 2031, 2030, and 2040. The adoption of a low-carbon scenario represents the most advantageous pathway for the sustainable progression of China’s transportation sector. Consequently, it is imperative for China to accelerate the formulation and implementation of low-carbon policies, promote the application of clean energy and facilitate the green transformation of the transportation sector. These efforts will contribute to the early realization of dual-carbon goals with a positive impact on global sustainable development. Full article
Show Figures

Figure 1

23 pages, 11168 KiB  
Article
Persistent Inflammation, Maladaptive Remodeling, and Fibrosis in the Kidney Following Long COVID-like MHV-1 Mouse Model
by Rajalakshmi Ramamoorthy, Anna Rosa Speciale, Emily M. West, Hussain Hussain, Nila Elumalai, Klaus Erich Schmitz Abe, Madesh Chinnathevar Ramesh, Pankaj B. Agrawal, Arumugam R. Jayakumar and Michael J. Paidas
Diseases 2025, 13(8), 246; https://doi.org/10.3390/diseases13080246 - 5 Aug 2025
Viewed by 57
Abstract
Background: Accumulating evidence indicates that SARS-CoV-2 infection results in long-term multiorgan complications, with the kidney being a primary target. This study aimed to characterize the long-term transcriptomic changes in the kidney following coronavirus infection using a murine model of MHV-1-induced SARS-like illness and [...] Read more.
Background: Accumulating evidence indicates that SARS-CoV-2 infection results in long-term multiorgan complications, with the kidney being a primary target. This study aimed to characterize the long-term transcriptomic changes in the kidney following coronavirus infection using a murine model of MHV-1-induced SARS-like illness and to evaluate the therapeutic efficacy of SPIKENET (SPK). Methods: A/J mice were infected with MHV-1. Renal tissues were collected and subjected to immunofluorescence analysis and Next Generation RNA Sequencing to identify differentially expressed genes associated with acute and chronic infection. Bioinformatic analyses, including PCA, volcano plots, and GO/KEGG pathway enrichment, were performed. A separate cohort received SPK treatment, and comparative transcriptomic profiling was conducted. Gene expression profile was further confirmed using real-time PCR. Results: Acute infection showed the upregulation of genes involved in inflammation and fibrosis. Long-term MHV-1 infection led to the sustained upregulation of genes involved in muscle regeneration, cytoskeletal remodeling, and fibrotic responses. Notably, both expression and variability of SLC22 and SLC22A8, key proximal tubule transporters, were reduced, suggesting a loss of segment-specific identity. Further, SLC12A1, a critical regulator of sodium reabsorption and blood pressure, was downregulated and is associated with the onset of polyuria and hydronephrosis. SLC transporters exhibited expression patterns consistent with tubular dysfunction and inflammation. These findings suggest aberrant activation of myogenic pathways and structural proteins in renal tissues, consistent with a pro-fibrotic phenotype. In contrast, SPK treatment reversed the expression of most genes, thereby restoring the gene profiles to those observed in control mice. Conclusions: MHV-1-induced long COVID is associated with persistent transcriptional reprogramming in the kidney, indicative of chronic inflammation, cytoskeletal dysregulation, and fibrogenesis. SPK demonstrates robust therapeutic potential by normalizing these molecular signatures and preventing long-term renal damage. These findings underscore the relevance of the MHV-1 model and support further investigation of SPK as a candidate therapy for COVID-19-associated renal sequelae. Full article
(This article belongs to the Special Issue COVID-19 and Global Chronic Disease 2025: New Challenges)
Show Figures

Figure 1

Back to TopTop