Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (128)

Search Parameters:
Keywords = transport of hazardous chemicals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1739 KB  
Article
Analysis of the Activities of Fire Protection Units in Response to a Traffic Accident with a Cyclohexylamine Leak Using Petri Nets and Markov Chains
by Michal Hrubý and Petr Čermák
Modelling 2026, 7(1), 3; https://doi.org/10.3390/modelling7010003 - 23 Dec 2025
Abstract
Chemical emergencies in transport are rare but operationally demanding. This study presents a framework that converts the timeline of a real intervention involving a cyclohexylamine leak after a tanker truck overturned into a Petri net and subsequently into an absorbing Markov model. This [...] Read more.
Chemical emergencies in transport are rare but operationally demanding. This study presents a framework that converts the timeline of a real intervention involving a cyclohexylamine leak after a tanker truck overturned into a Petri net and subsequently into an absorbing Markov model. This provides decision-oriented indicators for the intervention phases and enables what-if analysis. Application to a case study shows that the capacity of the decontamination line has a significant impact on the duration of the incident resolution, while introducing a small probability of returning from technical measures to decontamination slightly prolongs the course while leaving the certainty of successful completion unchanged. Mapping between activities, Petri net locations, and aggregated states promotes transparency and the repeatability of procedures and highlights activities with a high number of repeat visits. The outputs are useful for decision making related to personnel and material resources, post-review analyses, and exercise planning. The limitations lie in calibration to a single incident, the partial use of expertly estimated parameters, and the approximate conversion of “steps” to time. Future work will focus on multiple cases, finer-grained time handling, and explicit capacity modelling. Full article
Show Figures

Figure 1

19 pages, 681 KB  
Article
Ecotoxicological Assessment of Perfluorooctane Sulfonate and Perfluorooctanoic Acid Following Biodegradation: Insights from Daphnia magna Toxicity and Yeast Estrogen Screen Assays
by Muyasu Grace Kibambe and Maggy Ndombo Benteke Momba
Water 2025, 17(23), 3368; https://doi.org/10.3390/w17233368 - 26 Nov 2025
Viewed by 375
Abstract
Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) pose significant health risks through various exposure pathways, including ingestion of contaminated food and water, as well as dermal absorption. Aquatic organisms are especially at risk, as water bodies serve as primary pathways for the transport [...] Read more.
Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) pose significant health risks through various exposure pathways, including ingestion of contaminated food and water, as well as dermal absorption. Aquatic organisms are especially at risk, as water bodies serve as primary pathways for the transport and transformation of these chemicals. While the biodegradation study was previously performed using a bacterial consortium from the activated sludge compartment at Zeekoegat WWTP, the ecotoxicological implications of the treated effluents remained unclear, particularly given the potential presence of degradation products. To address this gap, the present study used bioassays to evaluate the acute toxicity and endocrine-disrupting potential of PFOS and PFOA. For this purpose, PFOS and PFOA concentrations ranged from 58 ng/L to 1050 ng/L, and two types of bioassays were used: the Daphnia magna acute toxicity test, which examined the short-term lethal effects of the samples on a small freshwater organism (Daphnia magna), and the Yeast Estrogen Screen (YES), which measured estrogenic activity, an important indicator of potential endocrine disruption. Results revealed detectable estrogenic activity at environmentally relevant concentrations, with PFOS showing higher activity than PFOA. The estradiol equivalency (EEQ) values in samples containing PFOA ranged from 0.23 ± 0.029 ng/L to 3.15 ± 0.056 ng/L and from 0.43 ± 0.036 ng/L to 1.96 ± 0.086 ng/L in samples containing PFOS. Daphnia magna bioassays showed 100% mortality in samples containing PFOS at concentrations ≥ 62 ng/L and in samples containing PFOA at concentrations ≥ 142 ng/L, classifying them as ‘Very High Acute Hazard’ falling into Hazard Class V (100% mortality) according to the classification system proposed in 2003 by Persoone and co-workers. These bioassays helped to determine whether the degradation products were more toxic compared to the parent compounds, thereby supporting the objective of this study to assess environmental safety post-treatment. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

38 pages, 614 KB  
Review
A Thorough Investigation into the Current State of the Art in Safety Management on Battery Fire and Explosion Risks
by Paul Lindhout and Genserik Reniers
Sustainability 2025, 17(23), 10578; https://doi.org/10.3390/su172310578 - 25 Nov 2025
Viewed by 1156
Abstract
Battery-powered applications are rapidly spreading in handheld, domestic, business and power storage appliances and in propelling a range of electric vehicles. Fast developments of new battery technology sparked an equally fast development of a new and wide range of applications, showing new safety [...] Read more.
Battery-powered applications are rapidly spreading in handheld, domestic, business and power storage appliances and in propelling a range of electric vehicles. Fast developments of new battery technology sparked an equally fast development of a new and wide range of applications, showing new safety problems at the same time. The acceptability of these new safety risks across the range has so far not been thoroughly assessed due to lack of statistical incident data. This study explores the wide range of new technology-based battery applications where people are exposed to these hazards, gathers credible incident scenarios and assesses currently available means for incident prevention and mitigation. Battery fire, explosion and toxic fume incidents are emerging as key safety issues in aerospace, shipping, transport and storage, waste handling, the high-risk chemical industry, domestic appliances, industrial power storage, road traffic and carparks. Incidents are causing severe injuries, death and considerable environmental impacts and financial losses. Implementation of both preventive and repressive safety measures is ongoing, yet complicated due to re-ignition and chemicals involved in battery fires. New firefighting strategies and techniques are needed. The authors present an indicative risk assessment based on the presence of risk factors, as derived from a triangulation of experiences reported from practice, scientific literature findings and expert interviews, thereby initiating a risk-based perspective. Several ways to move forward are recommended. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

22 pages, 3227 KB  
Review
Uncontrolled Disposal of Plastic Agrochemical Packaging: Double-Trouble Ecotoxicological Effects in Soil and Water
by Chrysi A. Papadimitriou, Sofia Apostolidou, Sofia Galinou-Mitsoudi and Yiannis Savvidis
Sustainability 2025, 17(22), 10380; https://doi.org/10.3390/su172210380 - 20 Nov 2025
Viewed by 716
Abstract
The widespread use of agrochemicals, including inorganic and organic pesticides and fungicides, has contributed to the persistence of hazardous residues in agricultural environments, particularly through their accumulation in plastic packaging and containers. High-density polyethylene (HDPE), polypropylene (PP), and other polymer types commonly employed [...] Read more.
The widespread use of agrochemicals, including inorganic and organic pesticides and fungicides, has contributed to the persistence of hazardous residues in agricultural environments, particularly through their accumulation in plastic packaging and containers. High-density polyethylene (HDPE), polypropylene (PP), and other polymer types commonly employed for agrochemical storage and transport retain significant quantities of active substances even after standard rinsing procedures. This phenomenon raises concerns over improper disposal practices, environmental contamination, and potential ecotoxicological impacts. Recent studies demonstrate that both inorganic and organic pesticide residues exhibit strong interactions with plastic polymers, influenced by factors such as polymer chemistry, surface aging, pH, ionic strength, and dissolved organic matter. These interactions not only delay degradation but also facilitate secondary release into soils and aquatic systems, where they may impair soil microorganisms, alter plant physiology, and disrupt aquatic food webs, including phytoplankton, fish, and microbial assemblages. Despite regulatory frameworks and container management schemes in some regions, major knowledge gaps remain regarding the long-term fate of pesticide residues on plastics, their transfer to ecosystems, and cumulative effects on agroecosystem sustainability. This review synthesizes current evidence on the chemical characteristics of pesticide residues in plastic packaging, their environmental mobility, and ecotoxicological effects. It further identifies urgent research needs, including long-term field assessments of polymer–pesticide interactions, improved recycling technologies, and the development of safer container designs. Effective management strategies, coupled with strengthened international stewardship programs, are essential to reduce risks to environmental health, agricultural productivity, and human safety. Full article
Show Figures

Graphical abstract

30 pages, 3749 KB  
Article
Dynamic Scheduling Fusion Model for Railway Hazardous Chemical Transportation Emergency Supplies Based on DBSCAN–Bayesian Network
by Hao Yin, Minbo Zhang, Chen Lei, Kejiang Lei, Tianyu Li and Yuhao Jia
Sustainability 2025, 17(22), 10085; https://doi.org/10.3390/su172210085 - 11 Nov 2025
Viewed by 465
Abstract
Railway hazardous chemical transportation, a high-risk activity that endangers personnel, infrastructure, and ecosystems, directly undermines the sustainability of the transportation system and regional development. Traditional risk management algorithms, which rely on empirical rules, result in sluggish emergency responses (with an average response time [...] Read more.
Railway hazardous chemical transportation, a high-risk activity that endangers personnel, infrastructure, and ecosystems, directly undermines the sustainability of the transportation system and regional development. Traditional risk management algorithms, which rely on empirical rules, result in sluggish emergency responses (with an average response time of 4.8 h), further exacerbating the environmental and economic losses caused by accidents. The standalone DBSCAN algorithm only supports static spatial clustering (with unoptimized hyperparameters); it lacks probabilistic reasoning capabilities for dynamic scenarios and thus fails to support sustainable resource allocation. To address this gap, this study develops a DBSCAN–Bayesian network fusion model that identifies risk hotspots via static spatial clustering—with ε optimized by the K-distance method and MinPts determined through cross-validation—for targeted prevention; meanwhile, the Bayesian network quantifies the dynamic relationships among “hazardous chemical properties-accident scenarios-material requirements” and integrates real-time transportation and environmental data to form a “risk positioning-demand prediction-intelligent allocation” closed loop. Experimental results show that the fusion algorithm outperforms comparative methods in sustainability-linked dimensions: ① Emergency response time is shortened to 2.3 h (a 52.1% improvement), with a 92% compliance rate in high-risk areas (e.g., water sources), thereby reducing ecological damage. ② The material satisfaction rate reaches 92.3% (a 17.6% improvement), and the neutralizer matching accuracy for corrosive leaks is increased by 26 percentage points, which cuts down resource waste and lowers carbon footprints. ③ The coverage rate of high-risk areas reaches 95.6% (a 16.4% improvement over the standalone DBSCAN algorithm), with a 27.5% reduction in dispatch costs and a drop in resource waste from 38% to 11%. This model achieves a leap from static to dynamic decision-making, providing a data-driven paradigm for the sustainable emergency management of railway hazardous chemicals. Its “spatial clustering + probabilistic reasoning” path holds universal value for risk control in complex systems, further boosting the sustainability of infrastructure. Full article
Show Figures

Figure 1

11 pages, 6975 KB  
Article
Dissolution of Microparticles of Cadmium, Lead and Thallium in Water
by Gennadii L. Bykov and Boris G. Ershov
Toxics 2025, 13(11), 904; https://doi.org/10.3390/toxics13110904 - 22 Oct 2025
Viewed by 414
Abstract
Anthropogenic activity seriously damages the environment. Cadmium, lead, and thallium are toxic elements that are especially hazardous for nature. In polluted air, they are present in the form of microparticles 2–3 μm in size and belong to the PM2.5 fraction. Such particles [...] Read more.
Anthropogenic activity seriously damages the environment. Cadmium, lead, and thallium are toxic elements that are especially hazardous for nature. In polluted air, they are present in the form of microparticles 2–3 μm in size and belong to the PM2.5 fraction. Such particles can be transported over long distances, penetrate into water and dissolve, and then enter the food chain. This poses a severe threat to human and animal health due to the bioaccumulation of metals. Therefore, it is important to study the properties of toxic metals of this size. In this work, we developed a radiation–chemical method for obtaining microparticles of cadmium, lead, and thallium corresponding to the PM2.5 fraction and studied their properties in aqueous solutions. In the absence of oxygen, the metals do not dissolve. Over time, they agglomerate and settle. When exposed to air, the particles quickly dissolve in water, usually within a few minutes. This process involves the disappearance of small particles and a decrease in the size of larger ones. The rate of dissolution increases in the Pb-Cd-Tl series. Cadmium dissolves approximately 4–5 times faster than lead, and thallium more than 10 times faster. Acidification of water accelerates this process. Studying the properties of microparticles of heavy metals is important for assessing their migration in the environment, health risks, and developing methods for preventing pollution. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Graphical abstract

22 pages, 3812 KB  
Review
Micro- and Nanoplastics Act as Metal Carriers with the Potential to Alter Human Gene Expression Patterns—The Inferences from Bioinformatic Online Tools
by Maja Grabacka and Małgorzata Pierzchalska
Biomolecules 2025, 15(10), 1418; https://doi.org/10.3390/biom15101418 - 6 Oct 2025
Viewed by 1020
Abstract
Micro- and nanoplastic particles (MNPLs) present in the environment have recently become a potential health hazard factor due to the ability to penetrate living organisms, their organs, and cells. MNPLs interact with and absorb chemicals and elements, including metals, such as iron, copper, [...] Read more.
Micro- and nanoplastic particles (MNPLs) present in the environment have recently become a potential health hazard factor due to the ability to penetrate living organisms, their organs, and cells. MNPLs interact with and absorb chemicals and elements, including metals, such as iron, copper, and zinc, and transport them into the cells. The cells subsequently respond with the altered gene expression profiles. In this study, we applied freely accessible online bioinformatic tools to draw out the sets of genes modulated by the metal ions and MNPLs. We focused on the gene interactome as revealed by The Comparative Toxicogenomics Database (CTD). To achieve a deeper insight into the biological processes that are potentially modulated, the retrieved CTD lists of genes, whose expression was influenced by MNPLs and metals, were subsequently analyzed using online tools: Metascape and String database. The genes from the revealed networks were arranged into functional clusters, annotated mainly as inflammation and immune system activity, regulation of apoptosis, oxidative stress response, Wingless-related Integration Site (WNT) signaling and ferroptosis. The complexity of the interactions between the gene sets altered by MNPLs and metal ions illustrates their pleiotropic effects on living systems. Full article
(This article belongs to the Special Issue Molecular Advances in Drug Resistance and Novel Therapies for Cancer)
Show Figures

Graphical abstract

20 pages, 7097 KB  
Article
Development of a Dispersion Model for Liquid and Gaseous Chemical Agents: Application to Four Types of Street Canyons
by Dong-Hyeon Kim, Sang Cheol Han, Sung-Deuk Choi, Hyunsook Jung, Jiyun Seo, Heesoo Jung and Jae-Jin Kim
Appl. Sci. 2025, 15(18), 10106; https://doi.org/10.3390/app151810106 - 16 Sep 2025
Cited by 1 | Viewed by 639
Abstract
This study presents a computational fluid dynamics (CFD) modeling framework to simulate two-phase (liquid and gas) chemical agent dispersion in urban canyons. The model was validated against wind tunnel experiments, meeting statistical criteria. To assess geometric impacts on flow and dispersion, the model [...] Read more.
This study presents a computational fluid dynamics (CFD) modeling framework to simulate two-phase (liquid and gas) chemical agent dispersion in urban canyons. The model was validated against wind tunnel experiments, meeting statistical criteria. To assess geometric impacts on flow and dispersion, the model was applied to four idealized canyon types—Cube (CB), Short (SH), Medium (MD), and Long (LN). Results revealed that increasing building length reduced the horizontal extent but enhanced the vertical extent of wake zones, weakened roof-level wind speeds, and shifted the reattachment point farther downstream. For liquid-phase sulfur mustard (HD), CB showed active canyon exchange and rapid penetration to pedestrian level. SH and MD exhibited more gradual infiltration with weaker variability due to fewer streamwise streets. LN had no streamwise street; transport was primarily driven by canyon vortices and showed slower penetration. Gaseous HD exhibited similar patterns to liquid HD but attained higher in-canyon concentrations due to differences in evaporation and dry deposition effects, indicating prolonged persistence. Overall, canyon geometry strongly influenced pollutant retention and variability. These findings suggest that the model can support chemical hazard assessment and early response planning that considers building geometry. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

14 pages, 1535 KB  
Article
Evaluation of a Method for Assessing Food Contamination Based on a Shopping Mall Model
by Marcin Niemcewicz, Rafał Szelenberger, Weronika Grabowska, Natalia Cichon, Marcin Podogrocki and Michal Bijak
Foods 2025, 14(17), 3110; https://doi.org/10.3390/foods14173110 - 5 Sep 2025
Viewed by 858
Abstract
This study evaluated a novel methodology for assessing food safety vulnerabilities in shopping malls by integrating Hazard Analysis and Critical Control Points (HACCP), Threat Assessment and Critical Points (TACCP), and Failure Mode and Effects Analysis (FMEA). Inspections were conducted in nine shopping centers [...] Read more.
This study evaluated a novel methodology for assessing food safety vulnerabilities in shopping malls by integrating Hazard Analysis and Critical Control Points (HACCP), Threat Assessment and Critical Points (TACCP), and Failure Mode and Effects Analysis (FMEA). Inspections were conducted in nine shopping centers across Poland, the Czech Republic, Slovakia, and Spain to identify the risk of intentional/unintentional contamination with chemical, biological, radiological, and nuclear agents. The assessment considered key operational areas, including food delivery, transportation, staff security, back-office access, product handling, and inspection protocols. Risk levels were quantified using FMEA parameters. The findings revealed an overall high to average risk score with the most critical vulnerabilities linked to back-office access, unauthorized personnel entry, and susceptibility to fraudulent inspections. Observations also highlighted infrastructural shortcomings, insufficient monitoring, and procedural gaps that could facilitate contamination. The proposed methodology offers a structured, quantitative framework for identifying and prioritizing food safety hazards in public environments. Implementing targeted countermeasures—such as enhanced surveillance, strict access control, staff training, and dedicated food handling protocols—can substantially reduce risks, thereby strengthening public health protection and operational resilience. This approach may serve as a promising framework for integrating food defense and safety assessments for food defense in high-density commercial facilities. Full article
(This article belongs to the Special Issue Evaluation of Food Safety Performance)
Show Figures

Figure 1

22 pages, 2782 KB  
Article
A Novel Optimization Method and Its Application for Hazardous Materials Vehicle Routing Problem Under Different Road Conditions
by Fangwei Zhang, Lu Ding, Jun Jiang, Fanyi Kong and Xiaoyu Liu
Mathematics 2025, 13(16), 2690; https://doi.org/10.3390/math13162690 - 21 Aug 2025
Viewed by 863
Abstract
With the increasing demand for hazardous materials (hazmat) from enterprises, port chemical industrial parks face growing risks in hazardous material transportation. By using internal road network information of parks, this study investigates the hazmat vehicle routing problem (HVRP) under different road conditions, with [...] Read more.
With the increasing demand for hazardous materials (hazmat) from enterprises, port chemical industrial parks face growing risks in hazardous material transportation. By using internal road network information of parks, this study investigates the hazmat vehicle routing problem (HVRP) under different road conditions, with a bi-objective of minimizing total transportation risk and cost. The two main innovations are as follows. First, according to the grid-like road conditions in parks, the research scope of transportation segments of hazmat vehicles is divided into straight segments and curved segments. Second, the potential affected area of an accident is defined as a type of geometric shape associated with a series of factors refined from transportation situations. Finally, the effectiveness of the proposed two-stage ant colony optimization (TSACO) algorithm is verified through one instance using field data from a real port chemical industry park, and twelve instances from the classical capacitated vehicle routing problem (CVRP) resource. Full article
(This article belongs to the Special Issue Multi-Criteria Decision-Making and Operations Research)
Show Figures

Figure 1

10 pages, 206 KB  
Review
Chemicals in Medical Laboratory and Its Impact on Healthcare Workers and Biotic Factors: Analysis Through the Prism of Environmental Bioethics
by Manjeshwar Shrinath Baliga, Rashmi T. D’souza, Lal P. Madathil, Russell F. DeSouza, Arnadi R. Shivashankara and Princy L. Palatty
Laboratories 2025, 2(3), 14; https://doi.org/10.3390/laboratories2030014 - 4 Jul 2025
Viewed by 2368
Abstract
From an occupational health perspective, if not stored, handled, and disposed of properly, laboratory chemicals exhibit hazardous properties such as flammability, corrosion, and explosibility. Additionally, they can also cause a range of health effects in handlers, including irritation, sensitization, and carcinogenicity. Additionally, the [...] Read more.
From an occupational health perspective, if not stored, handled, and disposed of properly, laboratory chemicals exhibit hazardous properties such as flammability, corrosion, and explosibility. Additionally, they can also cause a range of health effects in handlers, including irritation, sensitization, and carcinogenicity. Additionally, the chemical waste generated during the planned assay is a significant byproduct and, if left untreated, can cause detrimental effects on both living organisms and non-living elements when released into the environment. Chemically, laboratory waste contains reagents, organic and inorganic compounds, and diagnostic stains. These agents are more toxic and hazardous than residential waste and affect the personnel handling them and the environments in which they are released. Considering this, it is crucial to adhere to waste management regulations during the various stages including generation, segregation, collection, storage, transportation, and treatment. This is extremely important and necessary if we are to avoid harm to individuals and environmental contamination. This review encompasses the examination of laboratory medical waste, various categories of chemical waste, and strategies to minimize and ensure the safe disposal of these toxic agents. As far as the authors are aware, this is the first review that focuses on the effects of laboratory-generated chemical wastes and environmental ethics. This is a neglected topic in healthcare education, and this review will serve as a valuable resource for students. Full article
(This article belongs to the Special Issue Exposure and Risk in the Laboratory)
21 pages, 4596 KB  
Article
Size–Frequency Distribution Characteristic of Fatalities Due to Workplace Accidents and Industry Dependency
by Fang Zhou, Xiling Liu and Fuxiang Wang
Mathematics 2025, 13(12), 2021; https://doi.org/10.3390/math13122021 - 19 Jun 2025
Viewed by 1559
Abstract
The exploration of the statistical characteristics and distribution patterns of workplace accidents can help to reveal the intrinsic features and general laws of safety issues, which is essential for forecasting and decision making in safe production. Here, we conduct the detailed analysis of [...] Read more.
The exploration of the statistical characteristics and distribution patterns of workplace accidents can help to reveal the intrinsic features and general laws of safety issues, which is essential for forecasting and decision making in safe production. Here, we conduct the detailed analysis of the distribution characteristics between the fatality number and the frequency of workplace accidents based on the in-depth data mining of various industries. The results show that the distribution between the fatality number and the frequency of workplace accidents follows a power-law distribution. Moreover, the exponents of such power-law distributions in different industries exhibit significant industry dependence, with the characteristic values of the power-law exponents in the coal mining industry, the hazardous chemicals industry, the transportation industry, and the construction industry being 1.55, 2.16, 2.15, and 2.92, respectively. Meanwhile, the temporal variation in the power-law distribution exponent in each industry can be used for the short-term prediction and evaluation of safe production, which will inform the decision making of the safety management department. Last, but not the least, the results of this study provide the theoretical basis for Heinrich’s Law and confirm that a substantial reduction in the number of small-scale accidents can effectively help control the frequency of large-scale fatal accidents. Full article
Show Figures

Figure 1

17 pages, 1640 KB  
Article
An Occupational Risk Analysis in the Bituminous Emulsion Transport and Spreading Process: A Case Study Applied in a Company in Romania
by Adriana Milea (Pârvu) and Lucian-Ionel Cioca
Safety 2025, 11(2), 46; https://doi.org/10.3390/safety11020046 - 16 May 2025
Cited by 2 | Viewed by 908
Abstract
This paper analyzes the occupational risks associated with the activities of transporting and spreading bituminous emulsion, focusing on a specific technological process used in a company in Romania. This study aims to identify risk factors, systematically evaluate them, and propose preventive measures aimed [...] Read more.
This paper analyzes the occupational risks associated with the activities of transporting and spreading bituminous emulsion, focusing on a specific technological process used in a company in Romania. This study aims to identify risk factors, systematically evaluate them, and propose preventive measures aimed at reducing occupational accidents and diseases. The main hazards identified include exposure to hazardous chemicals, mechanical risks generated by the equipment used, and ergonomic factors that may affect workers’ health. Given the specificity of the activity analyzed, there is currently a lack of relevant studies specifically addressing the occupational safety and health of this category of workers, which further highlights the novelty and importance of the present research. Based on the results obtained, recommendations are formulated for optimizing work conditions, including the use of appropriate protective equipment, improving operational procedures, and implementing effective technical and organizational measures. This study contributes to the development of a solid preventive framework in the field of transporting and applying bituminous emulsion, thus supporting the improvement of occupational safety and health in the road construction industry. The results obtained can be used to develop more effective policies in the field of occupational safety and to raise awareness among decision-makers about the need for proactive measures in preventing occupational risks. Full article
(This article belongs to the Special Issue Safety Performance Assessment and Management in Construction)
Show Figures

Figure 1

21 pages, 2083 KB  
Review
Nanomaterials in Broccoli Production: Current Applications and Future Prospects
by Xinyi Liu, Yi Sun and Yukui Rui
Agronomy 2025, 15(5), 1193; https://doi.org/10.3390/agronomy15051193 - 15 May 2025
Viewed by 1686
Abstract
Conventional pesticides and fertilizers are frequently linked to high resource consumption, environmental damage, and poor nutrient usage efficiency in the production of broccoli. Nanofertilizers (e.g., iron, copper, zinc oxide, and boron NMs) and pesticide nanoparticles (NPs) are examples of nanotechnology that is mainly [...] Read more.
Conventional pesticides and fertilizers are frequently linked to high resource consumption, environmental damage, and poor nutrient usage efficiency in the production of broccoli. Nanofertilizers (e.g., iron, copper, zinc oxide, and boron NMs) and pesticide nanoparticles (NPs) are examples of nanotechnology that is mainly related to broccoli production. These technologies can increase the efficiency of nutrient uptake and utilization as well as broccoli’s resistance to drought, heavy metal stress, saline and alkaline stress, and other conditions. Through accurate fertilization and dosing, nanotechnology can reduce environmental contamination and the need for traditional chemical pesticides and fertilizers. Crops with nanomaterials have higher micronutrient content and better nutritional quality. This study examines the use of nanotechnology in the production of broccoli, which could improve crop yield and quality. However, much research is still required to determine how nanomaterials affect the environment and whether or not they might be hazardous to broccoli because of their minuscule particle size and unique physical and chemical characteristics. Researchers and agricultural professionals both within and outside the field of nanobiotechnology will be able to choose the right nanoparticles for broccoli production with the help of the information presented in this paper. The use of nanotechnology can reduce production costs and support sustainable agricultural growth. Additionally, it opens up new possibilities for the future production, transportation, and storage of cruciferous vegetables. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Graphical abstract

19 pages, 5917 KB  
Article
The Effect of Condensate Oil on the Spontaneous Combustion of Tank Corrosion Products Based on Thermodynamics
by Wenjing Zang, Jianhai Wang, Shuo Wang, Shuo Yuan, Qi Zeng, Huanran Zhang and Hui Liu
Sustainability 2025, 17(10), 4445; https://doi.org/10.3390/su17104445 - 13 May 2025
Viewed by 946
Abstract
Condensate oil, due to its inherent physical and chemical properties, can accelerate the spontaneous combustion of corrosion products in storage tanks during transportation or storage, posing significant risks to the safety and sustainability of energy infrastructure. While prior research has primarily examined crude [...] Read more.
Condensate oil, due to its inherent physical and chemical properties, can accelerate the spontaneous combustion of corrosion products in storage tanks during transportation or storage, posing significant risks to the safety and sustainability of energy infrastructure. While prior research has primarily examined crude oil or reactive sulfur effects on tank corrosion, the mechanistic role of condensate oil in promoting corrosion product ignition remains unclear. To address this knowledge gap, this study investigates the impact of condensate oil on simulated tank corrosion product compounds (STCPCs) through a combination of microstructural analysis (XRD and SEM) and thermal behavior characterization (TG-DSC). The results reveal that condensate oil treatment markedly increases STCPC surface roughness, inducing crack formation and pore proliferation. These structural changes may enhance the adsorption of O2 and condensate oil, thereby amplifying STCPC reactivity. Notably, condensate oil reduces the thermal stability of STCPC, increasing its spontaneous combustion propensity. DSC analysis further demonstrates that condensate oil introduces additional exothermic peaks during oxidative heating, releasing heat that accelerates STCPC ignition. Moreover, condensate oil lowers the apparent activation energy of STCPC by 1.44 kJ/mol and alters the dominant reaction mechanism. These insights advance the understanding of corrosion-induced spontaneous combustion and highlight critical sustainability challenges in petrochemical storage and transportation. By elucidating the hazards associated with condensate oil, this study provides actionable theoretical guidance for improving the safety and environmental sustainability of energy logistics. Future work should explore mitigation strategies, such as corrosion-resistant materials or optimized storage conditions, to align industrial practices with sustainable development goals. Full article
Show Figures

Figure 1

Back to TopTop