Nanomaterials in Broccoli Production: Current Applications and Future Prospects
Abstract
:1. Introduction
2. Main Influencing Factors in Broccoli Production
3. Application of Nanomaterials in Broccoli Production
3.1. Nano-Fertilizers
3.1.1. Physiological Benefits
3.1.2. Stress Tolerance
3.1.3. Nutritional Quality
3.2. Nano-Pesticides
3.3. Nanopackaging
Nano Technologies | Crops | Influence | Reference |
---|---|---|---|
MWCNTs | broccoli | Enhanced water transport and absorption, reduced the adverse effects of salt stress | [36] |
Copper nano-fertilizer | broccoli | Nano-copper applied to leaves had a major impact on crop output and growth | [44] |
Humic acid and iron nano-fertilizer | broccoli | Broccoli significantly increased the number of leaves, their area, their iron content, and their overall plant production. | [45] |
Zinc nano-fertilizer | broccoli | Increased the content of chlorophyll a, chlorophyll b, carotenoids and total chlorophyll in broccoli leaves | [50] |
Boron nano fertilizer | broccoli | Increase the plant height, stem length and stem thickness, leaf number, leaf length and width, root fresh weight and dry weight, inflorescence number, bulb diameter, and weight of broccoli | [50] |
Titanium dioxide nano fertilizer and organic fertilizer | broccoli | The content of chlorophyll b (0.40 μg/g FM) and carotenoids (0.50 μg/g FM) was increased | [51] |
Nano boron fertilizer | broccoli | Increased leaf area, head yield, and vitamin C content in the head | [54] |
Nanoscale zero-valent iron with iron chelate | broccoli | Increase the growth and yield of broccoli plants | [55] |
NSePs | broccoli | Broccoli has the highest antioxidant capacity | [66] |
Corn starch (CS) and acacia gum (GA) nanocomposite membrane | broccoli | Improving the freshness of broccoli | [94] |
ZnO Nanorods and fungus | broccoli | Promote the growth of broccoli mutant broccoli | [95] |
3.4. Effects of Nanomaterials on Other Cruciferous Plants
3.5. Limitations and Toxicity
4. Discussion
- (1)
- The kinds of nano-fertilizers that can boost broccoli yields can be investigated in future studies. At the moment, few kinds of nano-fertilizers have been explored, and their methods of action are still unknown. More trace nano-fertilizers should be sprayed on broccoli in the future to study their toxicity, impacts, and mechanisms of action. Further research is needed on the compatibility of nano-fertilizers with traditional fertilizers to ensure efficacy while enhancing economic benefits. Nanotechnology has to be used in conjunction with traditional water and fertilizer management practices. The determination of optimal fertilizer ratios requires further in-depth research. Ensuring the safe use of nano-fertilizers in vegetable production necessitates balanced and carefully formulated applications.
- (2)
- Future nanotechnology-mediated pesticides offer new strategies for pest control in broccoli, but environmental safety must be considered. The toxic mechanisms of nanoscale pesticides on plants still require further study to ensure their safety for animals and humans during production. At the same time, the use of nano-pesticides for production should be consistent with the necessity of local public policies and regulations to ensure the safe application of nanotechnology in agriculture.
- (3)
- At present, nanotechnology is widely used in fruit and vegetable preservation, but it is less used in broccoli preservation. In the future, more research on nanotechnology in broccoli preservation will be added. More nanomaterials should be attempted for broccoli storage in the future. In the meantime, there is still a need for research on whether it is safe to apply nanotechnology in the bioaccumulation of broccoli.
- (4)
- The use of nano-fertilizers in large-scale broccoli production should take into account the cost of nanotechnology as well as the acceptance of farmers and local laws and regulations. Nanotechnology still has a long way to go in large-scale broccoli cultivation.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shan, F.; Li, D.; Zhu, J.; Kang, S.; Wang, J. Effects of Vertical Smashing Rotary Tillage on Root Growth Characteristics and Yield of Broccoli. Agriculture 2022, 12, 928. [Google Scholar] [CrossRef]
- Demir, H.; Sönmez, İ.; Uçan, U.; Akgün, İ.H. Biofertilizers Improve the Plant Growth, Yield, and Mineral Concentration of Lettuce and Broccoli. Agronomy 2023, 13, 2031. [Google Scholar] [CrossRef]
- Ibraheem, F. Assessment of Best Fertilizer Combination and Planting Distance for Growth and Productivity of Broccoli (Brassica oleracea). SABRAO J. Breed. Genet. 2024, 56, 332–341. [Google Scholar] [CrossRef]
- Chen, R.; Chen, K.; Yao, X.; Zhang, X.; Yang, Y.; Su, X.; Lyu, M.; Wang, Q.; Zhang, G.; Wang, M.; et al. Genomic analyses reveal the stepwise domestication and genetic mechanism of curd biogenesis in cauliflower. Nat. Genet. 2024, 56, 1235–1244. [Google Scholar] [CrossRef]
- Tascı, F.G.; Kuzucu, C.O. The Effects of Vermicompost and Green Manure Use on Yield and Economic Factors in Broccoli. Horticulturae 2023, 9, 406. [Google Scholar] [CrossRef]
- Guo, R.; Hou, Q.; Yuan, G.; Zhao, Y.; Wang, Q. Effect of 2, 4-epibrassinolide on main health-promoting compounds in broccoli sprouts. LWT Food Sci. Technol. 2014, 58, 287–292. [Google Scholar] [CrossRef]
- De Nobile, F.O.; Calero Hurtado, A.; Prado, R.D.M.; De Souza, H.A.; Anunciação, M.G.; Palaretti, L.F.; Dezem, L.A.S.N. A Novel Technology for Processing Urban Waste Compost as a Fast-Releasing Nitrogen Source to Improve Soil Properties and Broccoli and Lettuce Production. Waste Biomass Valorization 2021, 12, 6191–6203. [Google Scholar] [CrossRef]
- Rodríguez-Seijo, A.; Santás-Miguel, V.; Arenas-Lago, D.; Arias-Estévez, M.; Pérez-Rodríguez, P. Use of nanotechnology for safe agriculture and food production: Challenges and limitations. Pedosphere 2025, 35, 20–32. [Google Scholar] [CrossRef]
- Maoying, W.; Cheng, L.; Huang, C.; Yang, L.; Zhang, L.; Zhenya, L.; Changzhou, W.; Wenqi, M.; Rengel, Z.; Jianbo, S.; et al. Green intelligent fertilizers&boxh: A novel approach for aligning sustainable agriculture with green development. Front. Agric. Sci. Eng. 2024, 11, 186–196. [Google Scholar]
- Prasad, R.; Bhattacharyya, A.; Nguyen, Q.D. Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives. Front. Microbiol. 2017, 8, 1014. [Google Scholar]
- Zhu, G.; Tang, Y.; Ding, Y.; Zhao, W.; Wang, Q.; Li, Y.; Wang, Q.; Zhang, P.; Tan, Z.; Rui, Y. Synergistic effect of nano-iron phosphide and wood vinegar on soybean production and grain quality. Environ. Sci. Nano 2024, 11, 4634–4643. [Google Scholar] [CrossRef]
- Jakhar, A.M.; Aziz, I.; Kaleri, A.R.; Hasnain, M.; Haider, G.; Ma, J.; Abideen, Z. Nano-fertilizers: A sustainable technology for improving crop nutrition and food security. NanoImpact 2022, 27, 100411. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Navarro, M.; Ashraf, M.; Akram, N.A.; Munné-Bosch, S. Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Sci. 2019, 289, 110270. [Google Scholar] [CrossRef] [PubMed]
- Kah, M.; Tufenkji, N.; White, J.C. Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. 2019, 14, 532–540. [Google Scholar] [CrossRef]
- Masciangioli, T.; Zhang, W.X. Peer Reviewed: Environmental Technologies at the Nanoscale. Environ. Sci. Technol. 2003, 37, 102A–108A. [Google Scholar] [CrossRef]
- Liu, H.; Shangguan, W.; Zhao, P.; Cao, C.; Yu, M.; Huang, Q.; Cao, L. Size Effects of Nanoenabled Agrochemicals in Sustainable Crop Production: Advances, Challenges, and Perspectives. ACS Nano 2025, 19, 54–72. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Gao, L.; White, J.C.; Haynes, C.L.; O’Keefe, T.L.; Rui, Y.; Ullah, S.; Guo, Z.; Lynch, I.; Zhang, P. Nano-enabled strategies to enhance biological nitrogen fixation. Nat. Nanotechnol. 2023, 18, 688–691. [Google Scholar] [CrossRef]
- Liu, R.; Lal, R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 2015, 514, 131–139. [Google Scholar] [CrossRef]
- Adisa, I.O.; Pullagurala, V.L.R.; Peralta-Videa, J.R.; Dimkpa, C.O.; Elmer, W.H.; Gardea-Torresdey, J.L.; White, J.C. Recent advances in nano-enabled fertilizers and pesticides: A critical review of mechanisms of action. Environ. Sci. Nano 2019, 6, 2002–2030. [Google Scholar] [CrossRef]
- Kreslavski, V.D.; Shmarev, A.N.; Ivanov, A.A.; Zharmukhamedov, S.K.; Strokina, V.; Kosobryukhov, A.; Yu, M.; Allakhverdiev, S.I.; Shabala, S. Effects of iron oxide nanoparticles (Fe3O4) and salinity on growth, photosynthesis, antioxidant activity and distribution of mineral elements in wheat (Triticum aestivum). Funct. Plant Biol. 2023, 50, 932–940. [Google Scholar] [CrossRef]
- Ye, Y.; Cota-Ruiz, K.; Hernández-Viezcas, J.A.; Valdés, C.; Medina-Velo, I.A.; Turley, R.S.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Manganese Nanoparticles Control Salinity-Modulated Molecular Responses in Capsicum annuum L. through Priming: A Sustainable Approach for Agriculture. ACS Sustain. Chem. Eng. 2020, 8, 1427–1436. [Google Scholar] [CrossRef]
- Jin, Z.J.; Liu, Y.; Xu, W.H.; Yang, C.; Chen, S.L.; Li, Y.H. Effects of Nano-Potassium Fertilizer on Amino Acid Components And Gln Family Gene Expression In Chinese Cabbage. Appl. Ecol. Environ. Res. 2020, 18, 5325–5342. [Google Scholar] [CrossRef]
- Wei, H.; Tan, S.; Yan, S.; Li, Z.; Shen, J.; Liu, X. Nanocarrier-mediated transdermal dsRNA-NPF1 delivery system contributes to pest control via inhibiting feeding behavior in Grapholita molesta. J. Pest Sci. 2022, 95, 983–995. [Google Scholar] [CrossRef]
- Al-Shammari, A.M.A.; Abbas, D.K. Response of Growth Characteristics and Yield of Broccoli Hybrids to Foliar Spraying with Copper Nanoparticles. IOP Conf. Ser. Earth Environ. Sci. 2023, 1158, 042064. [Google Scholar] [CrossRef]
- Galan, M.V.; Kishan, A.A.; Silverman, A.L. Oral Broccoli Sprouts for the Treatment of Helicobacter pylori Infection: A Preliminary Report. Dig. Dis. Sci. 2004, 49, 1088–1090. [Google Scholar] [CrossRef]
- Kusvuran, S. Microalgae (Chlorella vulgaris Beijerinck) alleviates drought stress of broccoli plants by improving nutrient uptake, secondary metabolites, and antioxidative defense system. Hortic. Plant J. 2021, 7, 221–231. [Google Scholar] [CrossRef]
- Wang, Q.; Liao, Y.; Zhao, W.; Yi, T.; Jiang, Y.; Zhu, G.; Sun, Y.; Wang, Q.; Huang, L.; Chen, F.; et al. Potassium-based nanomaterials significantly enhance nutrient utilization efficiency and promote high crop yields. Environ. Sci. Nano 2024, 11, 2906–2922. [Google Scholar] [CrossRef]
- Øvsthus, I.; Breland, T.A.; Hagen, S.F.; Brandt, K.; Wold, A.B.; Bengtsson, G.B.; Seljåsen, R. Effects of Organic and Waste-Derived Fertilizers on Yield, Nitrogen and Glucosinolate Contents, and Sensory Quality of Broccoli ( Brassica oleracea L. var. italica). J. Agric. Food Chem. 2015, 63, 10757–10767. [Google Scholar] [CrossRef]
- Liu, M.; Huang, W.; Zhang, J.; Zhao, Z.; Wang, Y.; Gruda, N.S.; Liu, G.; He, H. Effect of Exogenous Substance K2SO4 on the Nutritional Quality of Broccoli and Its Metabolic Regulation Mechanism. Horticulturae 2023, 9, 1058. [Google Scholar] [CrossRef]
- Yang, Q.; Luo, M.; Zhou, Q.; Zhao, Y.; Chen, J.; Ji, S. Insights into the loss of glucoraphanin in post-harvested broccoli––Possible involvement of the declined supply capacity of sulfur donor. Plant Sci. 2023, 328, 111580. [Google Scholar] [CrossRef]
- Mohamed, M.H.M.; Ali, M.; Eid, R.S.M.; El-Desouky, H.S.; Petropoulos, S.A.; Sami, R.; Al-Mushhin, A.A.M.; Ismail, K.A.; Zewail, R.M.Y. Phosphorus and Biofertilizer Application Effects on Growth Parameters, Yield and Chemical Constituents of Broccoli. Agronomy 2021, 11, 2210. [Google Scholar] [CrossRef]
- Yang, R.; Guo, L.; Jin, X.; Shen, C.; Zhou, Y.; Gu, Z. Enhancement of glucosinolate and sulforaphane formation of broccoli sprouts by zinc sulphate via its stress effect. J. Funct. Foods 2015, 13, 345–349. [Google Scholar] [CrossRef]
- Shelp, B.J.; Vivekanandan, P.; Vanderpool, R.A.; Kitheka, A.M. Translocation and effectiveness of foliar-fertilized boron in broccoli plants of varying boron status. Plant Soil 1996, 183, 309–313. [Google Scholar] [CrossRef]
- Mezzetti, B.; Biondi, F.; Balducci, F.; Capocasa, F.; Mei, E.; Vagnoni, M.; Visciglio, M.; Mazzoni, L. Variation of Nutritional Quality Depending on Harvested Plant Portion of Broccoli and Black Cabbage. Appl. Sci. 2022, 12, 6668. [Google Scholar] [CrossRef]
- Usman, M.; Farooq, M.; Wakeel, A.; Nawaz, A.; Cheema, S.A.; Rehman, H.U.; Ashraf, I.; Sanaullah, M. Nanotechnology in agriculture: Current status, challenges and future opportunities. Sci. Total Environ. 2020, 721, 137778. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ballesta, M.C.; Zapata, L.; Chalbi, N.; Carvajal, M. Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity. J. Nanobiotechnol. 2016, 14, 42. [Google Scholar] [CrossRef]
- Ding, Y.; Zhao, W.; Zhu, G.; Wang, Q.; Zhang, P.; Rui, Y. Recent Trends in Foliar Nanofertilizers: A Review. Nanomaterials 2023, 13, 2906. [Google Scholar] [CrossRef]
- Meselhy, A.G.; Sharma, S.; Guo, Z.; Singh, G.; Yuan, H.; Tripathi, R.D.; Xing, B.; Musante, C.; White, J.C.; Dhankher, O.P. Nanoscale Sulfur Improves Plant Growth and Reduces Arsenic Toxicity and Accumulation in Rice (Oryza sativa L.). Environ. Sci. Technol. 2021, 55, 13490–13503. [Google Scholar] [CrossRef]
- Van Nhan, L.; Ma, C.; Cao, W.; Deng, Y.; Liu, L.; Xing, B.; Rui, Y. The Effects of Fe2O3 Nanoparticles on Physiology and Insecticide Activity in Non-Transgenic and Bt-Transgenic Cotton. Front. Plant Sci. 2016, 6, 1263. [Google Scholar] [CrossRef]
- Wu, H.; Wan, X.; Niu, J.; Cao, Y.; Wang, S.; Zhang, Y.; Guo, Y.; Xu, H.; Xue, X.; Yao, J.; et al. Enhancing iron content and growth of cucumber seedlings with MgFe-LDHs under low-temperature stress. J. Nanobiotechnol. 2024, 22, 268. [Google Scholar] [CrossRef]
- Feregrino-Perez, A.A.; Magaña-López, E.; Guzmán, C.; Esquivel, K. A general overview of the benefits and possible negative effects of the nanotechnology in horticulture. Sci. Hortic. 2018, 238, 126–137. [Google Scholar] [CrossRef]
- Verma, K.K.; Song, X.-P.; Joshi, A.; Tian, D.-D.; Rajput, V.D.; Singh, M.; Arora, J.; Minkina, T.; Li, Y.-R. Recent Trends in Nano-Fertilizers for Sustainable Agriculture under Climate Change for Global Food Security. Nanomaterials 2022, 12, 173. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.; Liu, C.; Huang, M.; Liu, K.; Yan, D. Effects of Foliar Fertilization: A Review of Current Status and Future Perspectives. J. Soil Sci. Plant Nutr. 2021, 21, 104–118. [Google Scholar] [CrossRef]
- Al-Shamry, A.M.A.; Abbas, D.K. Effect of Foliar Feeding with Copper Nanoparticles on Growth and Yield of Broccoli Crosses. IOP Conf. Ser. Earth Environ. Sci. 2023, 1158, 042053. [Google Scholar] [CrossRef]
- Farhan, K.J.; Mahdi, L.E.; Al-Falahi, M.N.A.; Sallume, M.O.; Alkhateb, B.A.A.H. The Role of Iron Nanoparticles and Humic Acid in Iron Concentration, Growth and Yield of Broccoli (Brassica Oleracea var Italic). IOP Conf. Ser. Earth Environ. Sci. 2023, 1158, 022033. [Google Scholar] [CrossRef]
- Liu, X.; Nadeem, M.; Rui, Y. Effects of Nanofertilizers on the Mechanism of Photosynthetic Efficiency in Plants: A Review. Phyton 2024, 93, 3197–3216. [Google Scholar]
- Hu, J.; Jia, W.; Wu, X.; Zhang, H.; Wang, Y.; Liu, J.; Yang, Y.; Tao, S.; Wang, X. Carbon dots can strongly promote photosynthesis in lettuce (Lactuca sativa L.). Environ. Sci. Nano 2022, 9, 1530–1540. [Google Scholar] [CrossRef]
- Li, P.; Xia, Y.; Song, K.; Liu, D. The Impact of Nanomaterials on Photosynthesis and Antioxidant Mechanisms in Gramineae Plants: Research Progress and Future Prospects. Plants 2024, 13, 984. [Google Scholar] [CrossRef]
- Jing, X.; Liu, Y.; Liu, X.; Zhang, Y.; Wang, G.; Yang, F.; Zhang, Y.; Chang, D.; Zhang, Z.-L.; You, C.-X.; et al. Enhanced photosynthetic efficiency by nitrogen-doped carbon dots via plastoquinone-involved electron transfer in apple. Hortic. Res. 2024, 11, uhae016. [Google Scholar] [CrossRef]
- Sardar, H.; Irshad, M.; Anjum, M.A.; Hussain, S.; Ali, S.; Ahmad, R.; Ejaz, S. Foliar application of micronutrients improves the growth, yield, mineral contents, and nutritional quality of broccoli (Brassica oleracea L.). Turk. J. Agric. For. 2022, 46, 791–801. [Google Scholar] [CrossRef]
- Halshoy, H.S.; Rasul, K.S.; Ahmed, H.M.; Mohammed, H.A.; Mohammed, A.A.; Ibrahim, A.S.; Braim, S.A. Effect of nano titanium and organic fertilizer on broccoli growth, production, and biochemical profiles. J. Plant Nutr. 2024, 48, 1344–1363. [Google Scholar] [CrossRef]
- Cheng, B.; Yang, Z.; Chen, F.; Yue, L.; Cao, X.; Li, J.; Qian, H.-L.; Yan, X.-P.; Wang, C.; Wang, Z. Biomass-derived carbon dots with light conversion and nutrient provisioning capabilities facilitate plant photosynthesis. Sci. Total Environ. 2023, 901, 165973. [Google Scholar] [CrossRef] [PubMed]
- Thapa, U.; Prasad, P.H.; Rai, R. Studies on Growth, Yield and Quality of Broccoli (Brassica Oleracea L. Var Italica Plenck) as Influenced by Boron and Molybdenum. J. Plant Nutr. 2016, 39, 261–267. [Google Scholar] [CrossRef]
- Shams, A.; Abbas, M. Can Hydroxyapatite and Boron Oxide Nano-fertilizers Substitute Calcium Superphosphate and Boric Acid for Broccoli (Brassica oleracea var. italica) Grown on A Heavy Clay Soil? Egypt. J. Hortic. 2019, 46, 215–234. [Google Scholar] [CrossRef]
- Shabani, E.; Bolandnazar, S.; Pirdashti, H. Converting Iron Wastes to Nano Scale Zero Valent Iron: A Tool for Improving the Yield and Physiological Properties of Vegetables in Hydroponic Systems-Case Study, Broccoli in Floating System. Yüzüncü Yıl Üniversitesi Tarım Bilim. Derg. 2019, 29, 559–568. [Google Scholar] [CrossRef]
- Gowtham, H.G.; Shilpa, N.; Singh, S.B.; Aiyaz, M.; Abhilash, M.R.; Nataraj, K.; Amruthesh, K.N.; Ansari, M.A.; Alomary, M.N.; Murali, M. Toxicological effects of nanoparticles in plants: Mechanisms involved at morphological, physiological, biochemical and molecular levels. Plant Physiol. Biochem. 2024, 210, 108604. [Google Scholar] [CrossRef]
- Xiang, L.; Zhao, H.-M.; Li, Y.-W.; Huang, X.-P.; Wu, X.-L.; Zhai, T.; Yuan, Y.; Cai, Q.-Y.; Mo, C.-H. Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environ. Sci. Pollut. Res. 2015, 22, 10452–10462. [Google Scholar] [CrossRef]
- Chung, I.M.; Venkidasamy, B.; Thiruvengadam, M. Nickel oxide nanoparticles cause substantial physiological, phytochemical, and molecular-level changes in Chinese cabbage seedlings. Plant Physiol. Biochem. 2019, 139, 92–101. [Google Scholar] [CrossRef]
- Wang, J.; Wu, H.; Wang, Y.; Ye, W.; Kong, X.; Yin, Z. Small particles, big effects: How nanoparticles can enhance plant growth in favorable and harsh conditions. J. Integr. Plant Biol. 2024, 66, 1274–1294. [Google Scholar] [CrossRef]
- Rajput, V.D.; Minkina, T.; Feizi, M.; Kumari, A.; Khan, M.; Mandzhieva, S.; Sushkova, S.; El-Ramady, H.; Verma, K.K.; Singh, A.; et al. Effects of Silicon and Silicon-Based Nanoparticles on Rhizosphere Microbiome, Plant Stress and Growth. Biology 2021, 10, 791. [Google Scholar] [CrossRef]
- El-Esawi, M.A.; Alayafi, A.A. Overexpression of Rice Rab7 Gene Improves Drought and Heat Tolerance and Increases Grain Yield in Rice (Oryza sativa L.). Genes 2019, 10, 56. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Alseekh, S.; Zhu, Z.; Zhou, K.; Fernie, A.R. Multiomics and biotechnologies for understanding and influencing cadmium accumulation and stress response in plants. Plant Biotechnol. J. 2024, 22, 2641–2659. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, P.; He, M.; Cao, Y.; Adeel, M.; Shakoor, N.; Jiang, Y.; Zhao, W.; Li, Y.; Li, M.; et al. Iron-based nanomaterials reduce cadmium toxicity in rice (Oryza sativa L.) by modulating phytohormones, phytochelatin, cadmium transport genes and iron plaque formation. Environ. Pollut. 2023, 320, 121063. [Google Scholar] [CrossRef]
- Castro, B.; Citterico, M.; Kimura, S.; Stevens, D.M.; Wrzaczek, M.; Coaker, G. Stress-induced reactive oxygen species compartmentalization, perception and signalling. Nat. Plants 2021, 7, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Bai, T.; Wei, H.; Gardea-Torresdey, J.L.; Keller, A.; White, J.C. Nanobiotechnology-based strategies for enhanced crop stress resilience. Nat. Food 2022, 3, 829–836. [Google Scholar] [CrossRef]
- Vicas, S.I.; Cavalu, S.; Laslo, V.; Tocai, M.; Costea, T.O.; Moldovan, L. Growth, Photosynthetic Pigments, Phenolic, Glucosinolates Content and Antioxidant Capacity of Broccoli Sprouts in Response to Nanoselenium Particles Supply. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 821–828. [Google Scholar] [CrossRef]
- Hong, M.; Gong, J.-L.; Cao, W.-C.; Fang, R.; Cai, Z.; Ye, J.; Chen, Z.-P.; Tang, W.-W. The combined toxicity and mechanism of multi-walled carbon nanotubes and nano zinc oxide toward the cabbage. Environ. Sci. Pollut. Res. 2022, 29, 3540–3554. [Google Scholar] [CrossRef]
- Sun, Y.; Zhu, G.; Zhao, W.; Jiang, Y.; Wang, Q.; Wang, Q.; Rui, Y.; Zhang, P.; Gao, L. Engineered Nanomaterials for Improving the Nutritional Quality of Agricultural Products: A Review. Nanomaterials 2022, 12, 4219. [Google Scholar] [CrossRef]
- Li, J.; Zafar, S.; Javaid, A.; Perveen, S.; Hasnain, Z.; Ihtisham, M.; Abbas, A.; Usman, M.; El-Sappah, A.H.; Abbas, M. Zinc Nanoparticles (ZnNPs): High-Fidelity Amelioration in Turnip (Brassica rapa L.) Production under Drought Stress. Sustainability 2023, 15, 6512. [Google Scholar] [CrossRef]
- Zhou, C.; Miao, P.; Xu, Z.; Yi, X.; Yin, X.; Li, D.; Pan, C. Exploring the mechanism of nano-selenium treatment on the nutritional quality and resistance in plum plants. Ecotoxicol. Environ. Saf. 2024, 284, 116957. [Google Scholar] [CrossRef]
- Li, Z.; Liu, G.; He, H.; Liu, Y.; Han, F.; Liu, W. Effects of nanocarbon solution treatment on the nutrients and glucosinolate metabolism in broccoli. Food Chem. X 2022, 15, 100429. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Y.; Su, W.H. Classification, uptake, translocation, and detection methods of nanoparticles in crop plants: A review. Environ. Sci. Nano 2024, 11, 1847–1870. [Google Scholar] [CrossRef]
- Wang, D.; Saleh, N.B.; Byro, A.; Zepp, R.; Sahle-Demessie, E.; Luxton, T.P.; Ho, K.T.; Burgess, R.M.; Flury, M.; White, J.C.; et al. Nano-enabled pesticides for sustainable agriculture and global food security. Nat. Nanotechnol. 2022, 17, 347–360. [Google Scholar] [CrossRef]
- Tang, Y.; Zhao, W.; Zhu, G.; Tan, Z.; Huang, L.; Zhang, P.; Gao, L.; Rui, Y. Nano-Pesticides and Fertilizers: Solutions for Global Food Security. Nanomaterials 2023, 14, 90. [Google Scholar] [CrossRef]
- Worrall, E.; Hamid, A.; Mody, K.; Mitter, N.; Pappu, H. Nanotechnology for Plant Disease Management. Agronomy 2018, 8, 285. [Google Scholar] [CrossRef]
- Hassaan, M.A.; Hosny, S.; ElKatory, M.R.; Ali, R.M.; Rangreez, T.A.; El Nemr, A. Dual action of both green and chemically synthesized zinc oxide nanoparticles: Antibacterial activity and removal of Congo red dye. Desalination Water Treat. 2021, 218, 423–435. [Google Scholar] [CrossRef]
- Servin, A.; Elmer, W.; Mukherjee, A.; De La Torre-Roche, R.; Hamdi, H.; White, J.C.; Bindraban, P.; Dimkpa, C. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J. Nanoparticle Res. 2015, 17, 92. [Google Scholar] [CrossRef]
- Singh, R.; Loona, D.; Chittaragi, A.; Patil, B. Field evaluation of new fungicides in controlling downy mildew of broccoli—A mixed-effects model analysis. Crop Prot. 2025, 190, 107107. [Google Scholar] [CrossRef]
- Nandhini, M.; Rajini, S.B.; Udayashankar, A.C.; Niranjana, S.R.; Lund, O.S.; Shetty, H.S.; Prakash, H.S. Biofabricated zinc oxide nanoparticles as an eco-friendly alternative for growth promotion and management of downy mildew of pearl millet. Crop Prot. 2019, 121, 103–112. [Google Scholar] [CrossRef]
- Nagai, H.; Miyake, N.; Kato, S.; Maekawa, D.; Inoue, Y.; Takikawa, Y. Improved control of black rot of broccoli caused by Xanthomonas campestris pv. campestris using a bacteriophage and a nonpathogenic Xanthomonas sp. strain. J. Gen. Plant Pathol. 2017, 83, 373–381. [Google Scholar] [CrossRef]
- Anar, M.; Akbar, M.; Tahir, K.; Chaudhary, H.J.; Munis, M.F.H. Biosynthesized manganese oxide nanoparticles maintain firmness of tomato fruit by modulating soluble solids and reducing sugars under biotic stress. Physiol. Mol. Plant Pathol. 2023, 127, 102126. [Google Scholar] [CrossRef]
- Nieto, D.J.; Shennan, C.; Settle, W.H.; O’malley, R.; Bros, S.; Honda, J.Y. How Natural Enemies and Cabbage Aphid (Brevicoryne brassicae L.) Population Dynamics Affect Organic Broccoli Harvest. Environ. Entomol. 2006, 35, 94–101. [Google Scholar] [CrossRef]
- Papanikolaou, N.E.; Kalaitzaki, A.; Karamaouna, F.; Michaelakis, A.; Papadimitriou, V.; Dourtoglou, V.; Papachristos, D.P. Nano-formulation enhances insecticidal activity of natural pyrethrins against Aphis gossypii (Hemiptera: Aphididae) and retains their harmless effect to non-target predators. Environ. Sci. Pollut. Res. 2018, 25, 10243–10249. [Google Scholar] [CrossRef] [PubMed]
- Nizamani, M.M.; Hughes, A.C.; Zhang, H.-L.; Wang, Y. Revolutionizing agriculture with nanotechnology: Innovative approaches in fungal disease management and plant health monitoring. Sci. Total Environ. 2024, 928, 172473. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Zeng, Z.; Cui, H.; Verheggen, F. Polymer-based nanoinsecticides: Current developments, environmental risks and future challenges. A review. Biotechnol. Agron. Société Environ. 2020, 24, 59–69. [Google Scholar] [CrossRef]
- Naaz, H.; Rawat, K.; Saffeullah, P.; Umar, S. Silica nanoparticles synthesis and applications in agriculture for plant fertilization and protection: A review. Environ. Chem. Lett. 2023, 21, 539–559. [Google Scholar] [CrossRef]
- Chen, J.; Wang, W.; Xu, Y.; Zhang, X. Slow-Release Formulation of a New Biological Pesticide, Pyoluteorin, with Mesoporous Silica. J. Agric. Food Chem. 2011, 59, 307–311. [Google Scholar] [CrossRef]
- Fincheira, P.; Hoffmann, N.; Tortella, G.; Ruiz, A.; Cornejo, P.; Diez, M.C.; Seabra, A.B.; Benavides-Mendoza, A.; Rubilar, O. Eco-Efficient Systems Based on Nanocarriers for the Controlled Release of Fertilizers and Pesticides: Toward Smart Agriculture. Nanomaterials 2023, 13, 1978. [Google Scholar] [CrossRef]
- Gao, X.; Shi, F.; Peng, F.; Shi, X.; Cheng, C.; Hou, W.; Xie, H.; Lin, X.; Wang, X. Formulation of nanopesticide with graphene oxide as the nanocarrier of pyrethroid pesticide and its application in spider mite control. RSC Adv. 2021, 11, 36089–36097. [Google Scholar] [CrossRef]
- Qi, J.; Li, Y.; Yao, X.; Li, G.; Xu, W.; Chen, L.; Xie, Z.; Gu, J.; Wu, H.; Li, Z. Rational design of ROS scavenging and fluorescent gold nanoparticles to deliver siRNA to improve plant resistance to Pseudomonas syringae. J. Nanobiotechnol. 2024, 22, 446. [Google Scholar] [CrossRef]
- Wang, X.; Guo, J.; Ren, H.; Jin, J.; He, H.; Jin, P.; Wu, Z.; Zheng, Y. Research progress of nanocellulose-based food packaging. Trends Food Sci. Technol. 2023, 143, 104289. [Google Scholar] [CrossRef]
- Liu, H.; Chuai, C.Z.; Li, Q. Study of Antibacterial Fresh-Keeping Films Based on LDPE/Nano-ZnO and LDPE/Nano-Silver Materials. Appl. Mech. Mater. 2013, 469, 130–134. [Google Scholar] [CrossRef]
- Deng, J.; Chen, Q.J.; Chen, D.J.; Zheng, L.J.; Li, W.; Wang, J.H.; Wang, X.L.; Wei, Y.C.; Chen, Z.; Chen, S.; et al. Nano-titanium dioxide/basic magnesium hypochlorite-containing linear low-density polyethylene composite film on food packaging application. Mater. Express 2020, 10, 771–779. [Google Scholar] [CrossRef]
- Upadhyay, A.; Kumar, P.; Kardam, S.K.; Gaikwad, K.K. Ethylene scavenging film based on corn starch-gum acacia impregnated with sepiolite clay and its effect on quality of fresh broccoli florets. Food Biosci. 2022, 46, 101556. [Google Scholar] [CrossRef]
- Singhal, U.; Khanuja, M.; Prasad, R.; Varma, A. Impact of Synergistic Association of ZnO-Nanorods and Symbiotic Fungus Piriformospora indica DSM 11827 on Brassica oleracea var. botrytis (Broccoli). Front. Microbiol. 2017, 8, 1909. [Google Scholar] [CrossRef]
- Henderson, C.W.L.; Cairns, R. Post emergence spraying of clopyralid, picloram or pyridate in broccoli, Chinese cabbage, cabbage, or cauliflower kills weeds, with minimal crop damage. Aust. J. Exp. Agric. 2002, 42, 1113. [Google Scholar] [CrossRef]
- Li, C.-C.; Jhou, S.-M.; Li, Y.-C.; Ciou, J.-W.; Lin, Y.-Y.; Hung, S.-C.; Chang, J.-H.; Chang, J.-C.; Sun, D.-S.; Chou, M.-L.; et al. Exposure to low levels of photocatalytic TiO2 nanoparticles enhances seed germination and seedling growth of amaranth and cruciferous vegetables. Sci. Rep. 2022, 12, 18228. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhao, P.; Luo, J.; Tian, L.; Tian, Z. Effects of Liquid Nano-Carbon Biological Fertilizer on Physiological Characters and Yield of Chinese Cabbage. J. Biobased Mater. Bioenergy 2019, 13, 221–224. [Google Scholar] [CrossRef]
- Liao, Y.; Yang, J. Remediation of vanadium contaminated soil by nano-hydroxyapatite. J. Soils Sediments 2020, 20, 1534–1544. [Google Scholar] [CrossRef]
- Tan, J.; Zhao, S.; Chen, J.; Pan, X.; Li, C.; Liu, Y.; Wu, C.; Li, W.; Zheng, M. Preparation of nitrogen-doped carbon dots and their enhancement on lettuce yield and quality. J. Mater. Chem. B 2023, 11, 3113–3123. [Google Scholar] [CrossRef]
- Alklaf, S.A.; Zhang, S.; Zhu, J.; Manirakiza, B.; Addo, F.G.; Guo, S.; Alnadari, F. Impacts of nano-titanium dioxide toward Vallisneria natans and epiphytic microbes. J. Hazard. Mater. 2022, 436, 129066. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, D.K.; Tripathi, A.; Shweta; Singh, S.; Singh, Y.; Vishwakarma, K.; Yadav, G.; Sharma, S.; Singh, V.K.; Mishra, R.K.; et al. Uptake, Accumulation and Toxicity of Silver Nanoparticle in Autotrophic Plants, and Heterotrophic Microbes: A Concentric Review. Front. Microbiol. 2017, 8, 7. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Weng, Y.; Liu, Y.; Wang, H.; Ye, L.; Gu, Y.; Bai, X. A Review on the Toxicity Mechanisms and Potential Risks of Engineered Nanoparticles to Plants. Rev. Environ. Contam. Toxicol. 2023, 261, 5. [Google Scholar] [CrossRef]
- Nair, P.M.G.; Chung, I.M. Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere 2014, 112, 105–113. [Google Scholar] [CrossRef]
- Qian, H.; Peng, X.; Han, X.; Ren, J.; Sun, L.; Fu, Z. Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J. Environ. Sci. 2013, 25, 1947–1956. [Google Scholar] [CrossRef]
Nano Technologies | Crops | Influence | Reference |
---|---|---|---|
NKSi | Chinese cabbage | Cabbage has a higher amino acid content | [22] |
Zinc oxide nanoparticles | Chinese cabbage | Reduced the growth of the roots and seedlings of the Chinese cabbage | [57] |
NiO NPs | Cabbage | Increased the amounts of phytochemicals (phenolic compounds and mustard oleoresins) and triggered harmful effects. | [58] |
MWCNTs | Cabbage | Causes oxidative damage to cabbage | [67] |
Ce-CDs NMs | Lettuce | Increased soluble sugar and soluble protein content | [70] |
TiO2 nanoparticles | amaranth | Promote seed germination and growth | [97] |
Liquid nano carbon bio-fertilizer | Chinese cabbage | Encourage cabbage root growth to boost Chinese cabbage production | [98] |
n-HAP | Cabbage | Improve the resistance of plants | [99] |
N-CDs | Lettuce | Raise lettuce’s soluble protein, soluble sugar, and vitamin C contents | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Sun, Y.; Rui, Y. Nanomaterials in Broccoli Production: Current Applications and Future Prospects. Agronomy 2025, 15, 1193. https://doi.org/10.3390/agronomy15051193
Liu X, Sun Y, Rui Y. Nanomaterials in Broccoli Production: Current Applications and Future Prospects. Agronomy. 2025; 15(5):1193. https://doi.org/10.3390/agronomy15051193
Chicago/Turabian StyleLiu, Xinyi, Yi Sun, and Yukui Rui. 2025. "Nanomaterials in Broccoli Production: Current Applications and Future Prospects" Agronomy 15, no. 5: 1193. https://doi.org/10.3390/agronomy15051193
APA StyleLiu, X., Sun, Y., & Rui, Y. (2025). Nanomaterials in Broccoli Production: Current Applications and Future Prospects. Agronomy, 15(5), 1193. https://doi.org/10.3390/agronomy15051193