Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,324)

Search Parameters:
Keywords = transitions to sustainability and development

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
47 pages, 4215 KB  
Review
The Adoption of Digital Technologies in Circular Supply Chains: From Theoretical Developments to Practical Applications
by Mojdeh Morshedi, Vincent Hargaden, Nikolaos Papakostas and Pezhman Ghadimi
Logistics 2026, 10(1), 18; https://doi.org/10.3390/logistics10010018 (registering DOI) - 12 Jan 2026
Abstract
Background: Digital technologies are increasingly integrated into circular supply chains (CSCs) to enhance resource efficiency and extend product lifecycles. However, the practical adoption of intelligent circular supply chains (iCSCs) remains underexplored. Methods: This study provides a comprehensive review of how digital technologies enable [...] Read more.
Background: Digital technologies are increasingly integrated into circular supply chains (CSCs) to enhance resource efficiency and extend product lifecycles. However, the practical adoption of intelligent circular supply chains (iCSCs) remains underexplored. Methods: This study provides a comprehensive review of how digital technologies enable circular practices across industries. It systematically reviews 95 peer-reviewed articles from WoS and Scopus, identifying 107 real-world iCSC cases. The cases are categorized by (1) digital enablers including AI, Big Data, Blockchain, IoT, Digital Twin, Additive Manufacturing, Cloud Platforms, and Cyber-Physical Systems; (2) alignment with Circular Economy (CE); (3) sector-specific circular practices; and (4) mapping implementations to the EU Circular Economy Action Plan (CEAP). This study develops a conceptual model illustrating how digital technologies support data-driven decision-making, automation, and circular transitions. Results: The analysis shows IoT, Blockchain, and AI as the most frequently applied technologies, facilitating collaboration, traceability, sustainability, and cost efficiency. “Reduce” and “Recycle” dominate among CE strategies, while circular transition pathways such as sustainable design, waste prevention, and digital platforms link policy to practice. Conclusions: By integrating systematic evidence with a holistic framework, this work provides actionable insights, identifies key implementation gaps, and lays a foundation for advancing iCSCs in research and practice. Full article
(This article belongs to the Section Sustainable Supply Chains and Logistics)
Show Figures

Figure 1

19 pages, 1048 KB  
Article
Environmental and Institutional Factors Affecting Renewable Energy Development and Implications for Achieving SDGs 7 and 11 in Mozambique’s Major Cities
by Ambe J. Njoh, Irene Boane Tomás, Elisabeth N. M. Ayuk-Etang, Lucy Deba Enomah, Tangwan Pascar Tah and Tenguh A. Njoh
Urban Sci. 2026, 10(1), 47; https://doi.org/10.3390/urbansci10010047 - 12 Jan 2026
Abstract
Mozambique’s rapidly urbanizing landscape presents both opportunities and challenges for achieving Sustainable Development Goals (SDGs) 7 and 11, which aim to ensure access to clean energy and sustainable cities. This study employs the HESPECT analytical framework—emphasizing Historical, Economic, Social, Political, Ecological, Cultural, and [...] Read more.
Mozambique’s rapidly urbanizing landscape presents both opportunities and challenges for achieving Sustainable Development Goals (SDGs) 7 and 11, which aim to ensure access to clean energy and sustainable cities. This study employs the HESPECT analytical framework—emphasizing Historical, Economic, Social, Political, Ecological, Cultural, and Technological dimensions of the energy context—to examine the factors shaping renewable energy transitions in Mozambican cities. The analysis reveals a dual dynamic: facilitating factors such as abundant solar and wind potential, expanding urban energy demand, and growing policy support; and inhibiting factors including deforestation-driven ecological stress, poverty, infrastructural deficits, and uneven access to technology and education. By linking renewable energy development to urban planning, service delivery, and social inclusion, the study underscores how energy systems shape the sustainability and livability of Mozambique’s cities. The paper concludes that advancing Mozambique’s renewable energy agenda requires targeted interventions to mitigate constraints while leveraging enabling factors to strengthen institutional capacity, enhance social inclusion, and accelerate progress toward guaranteeing clean and affordable energy to all (SDG 7) and livable, sustainable cities (SDG 11). Full article
Show Figures

Graphical abstract

44 pages, 3186 KB  
Article
Social Responsibility of Science in the Sustainable Development of Mining and Post-Mining Areas
by Lucyna Florkowska and Izabela Bryt-Nitarska
Appl. Sci. 2026, 16(2), 776; https://doi.org/10.3390/app16020776 - 12 Jan 2026
Abstract
Ensuring the long-term sustainability of mining and post-mining practices is crucial for balancing resource extraction with environmental and social responsibilities. This study critically examines the role of science in addressing the complex challenges posed by mining, particularly in the context of the Sustainable [...] Read more.
Ensuring the long-term sustainability of mining and post-mining practices is crucial for balancing resource extraction with environmental and social responsibilities. This study critically examines the role of science in addressing the complex challenges posed by mining, particularly in the context of the Sustainable Development Goals (SDGs). It identifies key responsibilities for science, including the development of sustainable extraction technologies, innovative land reclamation and ecosystem restoration strategies, and equitable frameworks for resource distribution that prioritize affected communities. The study emphasizes the importance of interdisciplinary approaches, the concept of Responsible Research and Innovation (RRI), and effective knowledge dissemination to minimize adverse impacts while enhancing mining’s contribution to renewable energy transitions. By exploring the interplay between mining, renewable energy, and sustainable development, this study underscores the transformative potential of science to balance humanity’s resource needs with ecological preservation and social equity. The findings offer actionable insights for aligning mining practices with sustainability principles, fostering resilience and equity in mining-impacted regions. Full article
(This article belongs to the Special Issue Sustainable Research on Rock Mechanics and Geotechnical Engineering)
Show Figures

Figure 1

35 pages, 802 KB  
Review
Integrated Microalgal–Aquaponic Systems for Enhanced Water Treatment and Food Security: A Critical Review of Recent Advances in Process Integration and Resource Recovery
by Charith Akalanka Dodangodage, Jagath C. Kasturiarachchi, Induwara Arsith Wijesekara, Thilini A. Perera, Dilan Rajapakshe and Rangika Halwatura
Phycology 2026, 6(1), 14; https://doi.org/10.3390/phycology6010014 - 12 Jan 2026
Abstract
The convergence of food insecurity, water scarcity, and environmental degradation has intensified the global search for sustainable agricultural models. Integrated Microalgal–Aquaponic Systems (IAMS) have emerged as a novel multi-trophic platform that unites aquaculture, hydroponics, and microalgal cultivation into a closed-loop framework for resource-efficient [...] Read more.
The convergence of food insecurity, water scarcity, and environmental degradation has intensified the global search for sustainable agricultural models. Integrated Microalgal–Aquaponic Systems (IAMS) have emerged as a novel multi-trophic platform that unites aquaculture, hydroponics, and microalgal cultivation into a closed-loop framework for resource-efficient food production and water recovery. This critical review synthesizes empirical findings and engineering advancements published between 2008 and 2024, evaluating IAMS performance relative to traditional agriculture and recirculating aquaculture systems (RAS). Reported under controlled laboratory and pilot-scale conditions, IAMS have achieved nitrogen and phosphorus recovery efficiencies exceeding 95% while potentially reducing water consumption by up to 90% compared to conventional farming. The integration of microalgal photobioreactors enhances nutrient retention, may contribute to internal carbon capture, and enables the generation of diversified co-products, including biofertilizers and protein-rich aquafeeds. Nevertheless, significant barriers to commercial scalability persist, including the biological complexity of maintaining multi-trophic synchrony, high initial capital expenditure (CAPEX), and regulatory ambiguity regarding the safety of waste-derived algal biomass. Technical challenges such as photobioreactor upscaling, biofouling control, and energy optimization are critically discussed. Finally, the review evaluates the alignment of IAMS with UN Sustainable Development Goals 2, 6, and 13, and outlines future research priorities in techno-economic modeling, automation, and policy development to facilitate the transition of IAMS from pilot-scale innovations to viable industrial solutions. Full article
Show Figures

Graphical abstract

26 pages, 863 KB  
Article
How Green HRM Enhances Sustainable Organizational Performance: A Capability-Building Explanation Through Green Innovation and Organizational Culture
by Moges Assefa Legese, Shenbei Zhou, Wudie Atinaf Tiruneh and Yinghai Hua
Sustainability 2026, 18(2), 764; https://doi.org/10.3390/su18020764 - 12 Jan 2026
Abstract
This study examines how Green Human Resource Management (GHRM) is linked to sustainable organizational performance, encompassing environmental, economic, and social outcomes through the capability-building mechanisms of green innovation (GI) and green organizational culture (GOCL) in emerging manufacturing systems. Drawing on the Resource-Based View [...] Read more.
This study examines how Green Human Resource Management (GHRM) is linked to sustainable organizational performance, encompassing environmental, economic, and social outcomes through the capability-building mechanisms of green innovation (GI) and green organizational culture (GOCL) in emerging manufacturing systems. Drawing on the Resource-Based View and capability-based sustainability perspectives, GHRM is conceptualized as a strategic organizational capability that enables firms in developing economies to beyond short-term regulatory compliance toward measurable and integrated sustainability performance outcomes. Survey data were collected from 446 managerial and technical respondents in Ethiopia’s garment and textile industrial parks, one of Africa’s fastest-growing industrial sectors facing significant sustainability challenges. Using Partial Least Squares Structural Equation Modeling (PLS-SEM) with bootstrapping-based mediation analysis, the results show that GHRM is positively associated with sustainable organizational performance, with GI and GOCL operating as key mediating mechanisms that translate HR-related practices into measurable sustainability outcomes. The findings highlight the role of GHRM in strengthening firms’ adaptive and developmental sustainability capabilities by fostering pro-sustainability mindsets and innovation-oriented behaviors, which are particularly critical in resource-constrained and weak-institutional contexts. The study contributes to sustainability and management literature by explicitly linking Green HRM to triple-bottom-line performance through a capability-building framework and by providing rare firm-level empirical evidence from a low-income emerging economy. Practically, the results provide guidance for managers and policy makers to design, monitor, and evaluate HRM systems that intentionally cultivate human, cultural, and innovative capabilities to support long-term organizational sustainability transitions. Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Figure 1

20 pages, 2922 KB  
Article
Estimating and Projecting Forest Biomass Energy Potential in China: A Panel and Random Forest Analysis
by Fangrong Ren, Jiakun He, Youyou Zhang and Fanbin Kong
Land 2026, 15(1), 152; https://doi.org/10.3390/land15010152 - 12 Jan 2026
Abstract
Understanding the spatiotemporal evolution of forest biomass energy potential is essential for supporting low-carbon land-use planning and regional energy transitions. China, characterized by pronounced spatial heterogeneity in forest resources and ecological conditions, provides an ideal case for examining how biophysical endowments and management [...] Read more.
Understanding the spatiotemporal evolution of forest biomass energy potential is essential for supporting low-carbon land-use planning and regional energy transitions. China, characterized by pronounced spatial heterogeneity in forest resources and ecological conditions, provides an ideal case for examining how biophysical endowments and management factors shape biomass energy potential. This study constructs a province-level panel dataset for China covering the period from 1998 to 2018 and investigates long-term spatial patterns, regional disparities, and driving mechanisms using spatial visualization, Dagum Gini decomposition, and fixed-effects estimation. The results reveal a gradual spatial reorganization of forest biomass energy potential, with the national center of gravity shifting westward and northwestward, alongside a moderate dispersion of high-potential clusters from coastal areas toward the interior. Interregional transvariation is identified as the dominant source of regional inequality, indicating persistent structural differences among major regions. To explore future dynamics, a random forest model is employed to project provincial forest biomass energy potential from 2018 to 2028. The projections suggest moderate overall growth, smoother distributional structures, and a partial reduction in extreme provincial disparities. Central, southwestern, and northwestern provinces are expected to emerge as important contributors to future growth, reflecting ecological restoration efforts, expanding plantation forests, and improved forest management. The findings highlight a continued upward trend in national forest biomass energy potential, accompanied by a spatial shift toward inland regions and evolving regional disparities. This study provides empirical evidence to support region-specific development strategies, optimized spatial allocation of forest biomass resources, and integrated policies linking ecological sustainability with renewable energy development. Full article
(This article belongs to the Section Water, Energy, Land and Food (WELF) Nexus)
Show Figures

Figure 1

19 pages, 6035 KB  
Review
TGF-β Signaling in the Pathophysiology of the Ovary: A Double-Edged Regulator
by Nicole Bertani, Alessandra Alteri, Luciana Cacciottola, Giorgia D’Addato, Gina La Sala, Biliana Lozanoska-Ochser, Micol Massimiani, Edoardo Parrella, Alessio Reggio, Eleonora Russo, Federica Campolo and Francesca Gioia Klinger
Biomolecules 2026, 16(1), 130; https://doi.org/10.3390/biom16010130 - 12 Jan 2026
Abstract
The Transforming Growth Factor-β (TGF-β) superfamily comprises highly conserved cytokines that orchestrate key cellular functions, including proliferation, differentiation, and apoptosis. Within the ovary, TGF-β family members serve as pivotal regulators of folliculogenesis, exerting stage-specific actions from embryonic germ cell development to advanced follicular [...] Read more.
The Transforming Growth Factor-β (TGF-β) superfamily comprises highly conserved cytokines that orchestrate key cellular functions, including proliferation, differentiation, and apoptosis. Within the ovary, TGF-β family members serve as pivotal regulators of folliculogenesis, exerting stage-specific actions from embryonic germ cell development to advanced follicular maturation. During fetal development, activins and SMAD-dependent signaling pathways are essential for primordial germ cell proliferation, survival, and the breakdown of germ cell cysts, enabling the establishment of the primordial follicle pool. Throughout folliculogenesis, TGF-β supports follicle activation, promotes the transition from dormant to growing follicles, stimulates granulosa cell proliferation, sustains follicular viability, and modulates steroidogenesis through theca cell regulation. Notably, anti-müllerian hormone, a TGF-β family member, plays a central role in inhibiting premature follicle recruitment and serves as a key biomarker of ovarian reserve. Dysregulation of TGF-β signaling contributes to various ovarian disorders, including polycystic ovary syndrome and premature ovarian insufficiency. A deeper understanding of these complex signaling networks is critical for identifying novel therapeutic targets and advancing clinical interventions in female reproductive pathologies. This review provides an integrated overview of the roles of the TGF-β superfamily in ovarian physiology and its contributions to disease development. Full article
(This article belongs to the Special Issue Molecular Aspects of Female Infertility)
Show Figures

Figure 1

43 pages, 1982 KB  
Article
Dynamic and Balanced Monitoring of the Path to Carbon Neutrality Among European Union Countries: The DETA Framework for Energy Transition Assessment
by Magdalena Tutak, Jarosław Brodny and Wieslaw Wes Grebski
Energies 2026, 19(2), 358; https://doi.org/10.3390/en19020358 - 11 Jan 2026
Abstract
This paper addresses the highly important and timely issue of the energy transition, a topic of particular relevance within the European Union (EU), which has long been a global leader in pursuing climate neutrality. The article proposes a novel framework for monitoring energy [...] Read more.
This paper addresses the highly important and timely issue of the energy transition, a topic of particular relevance within the European Union (EU), which has long been a global leader in pursuing climate neutrality. The article proposes a novel framework for monitoring energy transition progress and its temporal dynamics across the EU countries, adopting a decade-long analytical horizon. The research employs the Dynamic Energy Transition Assessment (DETA) method, which is structured around five key pillars of the energy transition: (1) decarbonization and the shift toward clean energy; (2) energy security and system resilience; (3) energy justice, health impacts, and affordability; (4) energy efficiency and energy management; (5) development, innovation, and modernization of energy infrastructure. Applying this method enabled the study to meet its central objective: evaluating the level of development of these pillars, analyzing the balance among them, and examining both the direction and speed of changes over time. This dynamic approach integrates three core components of transformation processes, state, quality (coherence), and pace of change, offering an innovative combination of structural and temporal perspectives. The originality of this framework lies in its ability to capture the multidimensional and evolving nature of the energy transition. The study is based on 19 indicators, with indicator weights determined through Entropy and Criteria Importance Through Intercriteria Correlation (CRITIC) analytical methods, while pillar weights were assigned using the AHP method in alignment with EU strategic priorities. The findings reveal substantial variation and dynamism in the implementation of energy transition processes across the EU countries. Denmark, Sweden, Germany, France, Portugal, and Spain demonstrate the highest performance in terms of both quality and dynamism, whereas Malta, Cyprus, and Luxembourg perform the weakest. The proposed methodology and the resulting assessment of the level, quality, and dynamics of transformation processes offer broad practical applications. In particular, they can support the monitoring of progress toward EU climate and energy policy goals and inform management and decision-making aimed at achieving a resilient, sustainable, and equitable energy transition. Full article
29 pages, 18465 KB  
Review
Optimizing Urban Green Space Ecosystem Services for Resilient and Sustainable Cities: Research Landscape, Evolutionary Trajectories, and Future Directions
by Junhui Sun, Jun Xia and Luling Qu
Forests 2026, 17(1), 97; https://doi.org/10.3390/f17010097 - 11 Jan 2026
Abstract
Urban forests and green spaces are increasingly promoted as Nature-Based Solutions (NbS) to mitigate climate risks, enhance human well-being, and support resilient and sustainable cities. Focusing on the theme of optimizing urban green space ecosystem services to foster resilient and sustainable cities, this [...] Read more.
Urban forests and green spaces are increasingly promoted as Nature-Based Solutions (NbS) to mitigate climate risks, enhance human well-being, and support resilient and sustainable cities. Focusing on the theme of optimizing urban green space ecosystem services to foster resilient and sustainable cities, this study systematically analyzes 861 relevant publications indexed in the Web of Science Core Collection from 2005 to 2025. Using bibliometric analysis and scientific knowledge mapping methods, the research examines publication characteristics, spatial distribution patterns, collaboration networks, knowledge bases, research hotspots, and thematic evolution trajectories. The results reveal a rapid upward trend in this field over the past two decades, with the gradual formation of a multidisciplinary knowledge system centered on environmental science and urban research. China, the United States, and several European countries have emerged as key nodes in global knowledge production and collaboration networks. Keyword co-occurrence and cluster analyses indicate that research themes are mainly concentrated in four clusters: (1) ecological foundations and green process orientation, (2) nature-based solutions and blue–green infrastructure configuration, (3) social needs and environmental justice, and (4) macro-level policies and the sustainable development agenda. Overall, the field has evolved from a focus on ecological processes and individual service functions toward a comprehensive transition emphasizing climate resilience, human well-being, and multi-actor governance. Based on these findings, this study constructs a knowledge ecosystem framework encompassing knowledge base, knowledge structure, research hotspots, frontier trends, and future pathways. It further identifies prospective research directions, including climate change adaptation, integrated planning of blue–green infrastructure, refined monitoring driven by remote sensing and spatial big data, and the embedding of urban green space ecosystem services into the Sustainable Development Goals and multi-level governance systems. These insights provide data support and decision-making references for deepening theoretical understanding of Urban Green Space Ecosystem Services (UGSES), improving urban green infrastructure planning, and enhancing urban resilience governance capacity. Full article
(This article belongs to the Special Issue Sustainable Urban Forests and Green Environments in a Changing World)
15 pages, 986 KB  
Article
Knowledge Graphs as Cognitive Scaffolding for Sustainable Engineering Education: A Quasi-Experimental Study in Structural Geology
by Xiaoling Tang, Jinlong Ni, Yuanku Meng, Qiao Chen and Liping Zhang
Sustainability 2026, 18(2), 736; https://doi.org/10.3390/su18020736 - 10 Jan 2026
Viewed by 40
Abstract
The transition to Outcome-Based Education (OBE) in engineering demands instructional tools that bridge theoretical knowledge and practical engineering competencies. However, traditional Learning Management Systems (LMS) primarily function as static resource repositories, lacking the semantic structure necessary to support deep learning and precise competency [...] Read more.
The transition to Outcome-Based Education (OBE) in engineering demands instructional tools that bridge theoretical knowledge and practical engineering competencies. However, traditional Learning Management Systems (LMS) primarily function as static resource repositories, lacking the semantic structure necessary to support deep learning and precise competency tracking. To address this, this study developed a three-layer domain Knowledge Graph (KG) for Structural Geology and integrated it into the ChaoXing LMS (a widely used Learning Management System in Chinese higher education). A semester-long quasi-experimental study (N = 84) was conducted to evaluate its impact on student performance and specific graduation attribute achievement compared to a conventional folder-based approach. Empirical results demonstrate that the KG-integrated group significantly outperformed the control group (p < 0.01, Cohen’s d = 0.74). Notably, while performance on rote memorization tasks was similar, the experimental group showed marked improvement in identifying and solving complex engineering problems. LMS log analysis confirmed a strong positive correlation (r = 0.68) between graph navigation depth and academic success. KG effectively bridged the gap between theoretical knowledge and practical engineering applications (e.g., geohazard analysis). This research confirms that explicit semantic visualization acts as vital cognitive scaffolding, effectively enhancing higher-order thinking and ensuring the rigorous alignment of instruction with engineering accreditation standards. Ultimately, this approach promotes sustainable learning capabilities and prepares future engineers to address complex, interdisciplinary challenges in sustainable development. Full article
(This article belongs to the Special Issue AI for Sustainable and Creative Learning in Education)
24 pages, 1677 KB  
Article
Forestry Green Development Efficiency in China’s Yellow River Basin: Evidence from the Super-SBM Model and the Global Malmquist-Luenberger Index
by Yu Li, Longzhen Ni, Wenhui Chen, Yibai Wang and Dongzhuo Xie
Land 2026, 15(1), 147; https://doi.org/10.3390/land15010147 - 10 Jan 2026
Viewed by 48
Abstract
The Yellow River Basin (YRB), a typical river system facing the challenge of balancing ecological conservation and economic development, offers valuable insights for global sustainable watershed governance through its forestry green transformation. Based on panel data from nine provinces in the basin from [...] Read more.
The Yellow River Basin (YRB), a typical river system facing the challenge of balancing ecological conservation and economic development, offers valuable insights for global sustainable watershed governance through its forestry green transformation. Based on panel data from nine provinces in the basin from 2005 to 2022, this study constructs an efficiency evaluation indicator system for forestry green development. This system incorporates four inputs (labor, land, capital, and energy), two desirable outputs (economic and ecological benefits), and three undesirable outputs (wastewater, waste gas, and solid waste). By systematically integrating the undesirable outputs-based super-SBM model and the global Malmquist–Luenberger (GML) index, this study provides an assessment from both static and dynamic perspectives. The findings are as follows. (1) Forestry green development efficiency showed fluctuations over the study period, with the basin-wide average remaining below the production frontier. Spatially, it exhibits a pattern of “downstream > upstream > midstream”. (2) The average GML index is 0.984 during the study period, representing an average annual decline in forestry green total factor productivity of 1.6%. The growth dynamics transitioned from a stage dominated solely by technological progress to a dual-driver model involving both technological progress and technical efficiency. (3) The drivers of forestry green total factor productivity growth in the basin show profound regional heterogeneity. The downstream region demonstrates a synergistic dual-driver model of technical efficiency and technological progress, the midstream region is trapped in “dual stagnation” of both technical efficiency and technological progress, and the upstream region differentiates into four distinct pathways: technology-driven yet foundationally weak, efficiency-improving yet technology-lagged, endowment-advantaged yet transformation-constrained, and condition-constrained with efficiency limitations. The assessment framework and empirical findings established in this study can provide empirical evidence and policy insights for basins worldwide to resolve the ecological-development dilemma and promote forestry green transformation. Full article
Show Figures

Figure 1

39 pages, 4702 KB  
Review
Biopolymer-Based Active and Intelligent Food Packaging: Recent Advances in Materials, Technologies, and Applications
by Shakila Parveen Asrafali, Thirukumaran Periyasamy and Jaewoong Lee
Polymers 2026, 18(2), 196; https://doi.org/10.3390/polym18020196 - 10 Jan 2026
Viewed by 73
Abstract
The food packaging industry is undergoing a paradigm shift from conventional petroleum-based materials toward sustainable biopolymer-based alternatives that offer enhanced functionality beyond mere containment and protection. This comprehensive review examines recent advances in the development of active and intelligent food packaging systems utilizing [...] Read more.
The food packaging industry is undergoing a paradigm shift from conventional petroleum-based materials toward sustainable biopolymer-based alternatives that offer enhanced functionality beyond mere containment and protection. This comprehensive review examines recent advances in the development of active and intelligent food packaging systems utilizing natural biopolymers including polysaccharides, proteins, and their composites. The integration of antimicrobial agents, natural colorimetric indicators, nanofillers, and advanced fabrication techniques has enabled the creation of multifunctional packaging materials capable of extending shelf life, monitoring food quality in real-time, and reducing environmental impact. This review organizes the current research on starch, chitosan-, cellulose-, pectin-, bacterial cellulose-, pullulan-, gelatin-, zein-, and dextran-based packaging systems, with particular emphasis on their physicochemical properties, functional performance, and practical applications for preserving various food products, including meat, fish, fruits, and other perishables. The challenges associated with mechanical strength, water resistance, scalability, and commercial viability are critically evaluated alongside emerging solutions involving chemical modifications, nanocomposite formulations, and innovative processing technologies. Future perspectives highlight the need for standardization, life cycle assessments, regulatory frameworks, and consumer acceptance studies to facilitate the transition from laboratory innovations to industrial-scale implementation of sustainable biopolymer packaging solutions. Full article
Show Figures

Figure 1

26 pages, 32788 KB  
Article
AI-Supported Detection of Vegetation Degradation and Urban Expansion Using Sentinel-2 Multispectral Data: Case Study
by Mihai Valentin Herbei, Ana Cornelia Badea, Sorin Mihai Radu, Csaba Lorinț, Roxana Claudia Herbei, Radu Bertici, Lucian Octavian Dragomir, George Popescu, Adrian Smuleac and Florin Sala
Land 2026, 15(1), 140; https://doi.org/10.3390/land15010140 - 10 Jan 2026
Viewed by 92
Abstract
Peri-urban areas in Eastern Europe are undergoing rapid land transformation driven by suburban housing expansion and infrastructure development, yet the processes through which vegetation is progressively degraded and built-up areas intensify remain insufficiently documented. This study analyses vegetation loss and urban expansion in [...] Read more.
Peri-urban areas in Eastern Europe are undergoing rapid land transformation driven by suburban housing expansion and infrastructure development, yet the processes through which vegetation is progressively degraded and built-up areas intensify remain insufficiently documented. This study analyses vegetation loss and urban expansion in the peri-urban belt of Timișoara, Western Romania, between 2020 and 2025 using Sentinel-2 multispectral imagery, two key spectral indices (NDVI and NDBI), and a Random Forest (RF) classifier. The results reveal a gradual, multi-stage transformation trajectory, where dense vegetation transitions first into sparse vegetation and bare soil before consolidating into built-up surfaces, rather than being replaced abruptly. Substantial vegetation decline is accompanied by notable increases in built-up land, with strong spatial differences between communes depending on development pressure. The integration of RF classification with spectral index analysis allows these transitions to be validated and interpreted more reliably, helping distinguish structural suburbanisation from short-term spectral variability. Overall, the study demonstrates the value of combining NDVI, NDBI and AI-supported land-cover classification to capture nuanced peri-urban transformation dynamics and provides actionable insights for spatial planning and sustainable land management in rapidly growing metropolitan regions. Full article
(This article belongs to the Special Issue AI’s Role in Land Use Management)
Show Figures

Figure 1

18 pages, 815 KB  
Article
Circularity in Agri-Food Value Chains in Developing Countries: A Case in Indonesia
by Elena Garnevska, Dwi Ratna Hidayati and Sarah McLaren
Sustainability 2026, 18(2), 708; https://doi.org/10.3390/su18020708 - 9 Jan 2026
Viewed by 201
Abstract
The adoption of circular economy approaches in agri-food value chains in developing countries remains underexplored, particularly in contexts dominated by smallholder farmers. This paper aims to analyze existing circular practices and identify key barriers to circular transformation in developing country agri-food value chains, [...] Read more.
The adoption of circular economy approaches in agri-food value chains in developing countries remains underexplored, particularly in contexts dominated by smallholder farmers. This paper aims to analyze existing circular practices and identify key barriers to circular transformation in developing country agri-food value chains, with a specific focus on Indonesia. Using a qualitative research design, the study draws on semi-structured interviews, with different value chain players, to empirically examine circularity within the cashew value chain in Indonesia. The findings reveal that while a range of circular practices are undertaken by individual actors across the value chain, these activities remain largely fragmented and weakly coordinated. Key barriers to further circular transformation include limited awareness, economic imperatives, constrained access to appropriate technologies, and insufficient institutional support. Notably, access to finance was not perceived as a major constraint. This study contributes to the literature by providing a multi-actor, value chain perspective on circularity in smallholder-based agri-food systems in developing countries. It offers novel empirical evidence that existing informal circular practices play an important role and should be preserved as value chains modernize. The findings further highlight the importance of stronger vertical and horizontal coordination to scale and integrate circular activities and support a more holistic sustainable transition. Full article
Show Figures

Figure 1

22 pages, 2330 KB  
Article
The Evolutionary Trends, Regional Differences, and Influencing Factors of Agricultural Green Total Factor Productivity in the Beijing–Tianjin–Hebei Region
by Wen Liu, Jiang Zhao, Ailing Wang, Hongjia Wang, Dongyuan Zhang and Zhi Xue
Agriculture 2026, 16(2), 171; https://doi.org/10.3390/agriculture16020171 - 9 Jan 2026
Viewed by 61
Abstract
Enhancing agricultural green total factor productivity (AGTFP) under ecological and environmental constraints is essential for advancing green agricultural development in the Beijing–Tianjin–Hebei (BTH) region. Using panel data from 13 prefecture-level cities from 2001 to 2022, this study applies a super-efficiency EBM model incorporating [...] Read more.
Enhancing agricultural green total factor productivity (AGTFP) under ecological and environmental constraints is essential for advancing green agricultural development in the Beijing–Tianjin–Hebei (BTH) region. Using panel data from 13 prefecture-level cities from 2001 to 2022, this study applies a super-efficiency EBM model incorporating undesirable outputs together with the Malmquist–Luenberger index to measure AGTFP. Global and local Moran’s I indices as well as the spatial Durbin model are then employed to examine the temporal evolution, spatial disparities, and spatial interaction effects of AGTFP during 2001–2022. The findings indicate that: (1) From 2001 to 2022, the AGTFP in the BTH region grew at an average annual rate of 7.7%. This trend reflects a growth pattern primarily driven by green technological progress in agriculture, while substantial disparities in AGTFP persist across different subregions. (2) the global Moran’s I values show frequent shifts between positive and negative spatial autocorrelation, suggesting that a stable and effective regional coordination mechanism for green agricultural development has yet to be formed; (3) the determinants of AGTFP exhibit pronounced spatiotemporal heterogeneity, and the fundamental drivers of the region’s green agricultural transition increasingly rely on endogenous growth generated by technological innovation and rural human capital; (4) policy recommendations include strengthening benefit-sharing and policy coordination mechanisms, promoting cross-regional cooperation in agricultural science and technology, and implementing differentiated industrial layouts to support green agricultural development in the BTH region. These results provide valuable insights for promoting coordinated and sustainable green agricultural development across regions. Full article
Back to TopTop