Abstract
The transition to Outcome-Based Education (OBE) in engineering demands instructional tools that bridge theoretical knowledge and practical engineering competencies. However, traditional Learning Management Systems (LMS) primarily function as static resource repositories, lacking the semantic structure necessary to support deep learning and precise competency tracking. To address this, this study developed a three-layer domain Knowledge Graph (KG) for Structural Geology and integrated it into the ChaoXing LMS (a widely used Learning Management System in Chinese higher education). A semester-long quasi-experimental study (N = 84) was conducted to evaluate its impact on student performance and specific graduation attribute achievement compared to a conventional folder-based approach. Empirical results demonstrate that the KG-integrated group significantly outperformed the control group (p < 0.01, Cohen’s d = 0.74). Notably, while performance on rote memorization tasks was similar, the experimental group showed marked improvement in identifying and solving complex engineering problems. LMS log analysis confirmed a strong positive correlation (r = 0.68) between graph navigation depth and academic success. KG effectively bridged the gap between theoretical knowledge and practical engineering applications (e.g., geohazard analysis). This research confirms that explicit semantic visualization acts as vital cognitive scaffolding, effectively enhancing higher-order thinking and ensuring the rigorous alignment of instruction with engineering accreditation standards. Ultimately, this approach promotes sustainable learning capabilities and prepares future engineers to address complex, interdisciplinary challenges in sustainable development.