Estimating and Projecting Forest Biomass Energy Potential in China: A Panel and Random Forest Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources and Indicator Selection
2.2. Calculation Method for Total Forest Biomass Energy Potential
2.3. Projection of Forest Biomass Energy Potential Using Random Forest
3. Results and Discussion
3.1. Time-Series Analysis of China’s Forest Biomass Energy Potential
3.2. Spatial Analysis of China’s Forest Biomass Energy Potential
3.3. Influencing Factors Analysis of Forest Biomass Energy Potential
3.4. Prediction of Forest Biomass Energy Potential Using Random Forest Model
3.5. Discussion
4. Conclusions and Suggestions
4.1. Conclusions
4.2. Suggestions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
| Region | Area |
|---|---|
| Central China | Henan, Hunan, Hubei |
| East China | Shandong, Shanghai, Jiangsu, Zhejiang, Anhui, Jiangxi, Fujian |
| North China | Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia |
| Northeast China | Liaoning, Jilin, Heilongjiang |
| Northwest China | Xinjiang, Gansu, Qinghai, Ningxia, Shaanxi |
| South China | Guangdong, Guangxi, Hainan |
| Southwest China | Sichuan, Yunnan, Guizhou, Chongqing, Tibet |
Appendix B
| Province | R2 | MSE | Province | R2 | MSE | Province | R2 | MSE |
|---|---|---|---|---|---|---|---|---|
| Anhui | 0.902 | 574.4893 | Beijing | 0.9034 | 216.6935 | Chongqing | 0.9453 | 864.793 |
| Fujian | 0.9153 | 557.9927 | Gansu | 0.9237 | 351.4694 | Guangdong | 0.9089 | 610.655 |
| Guangxi | 0.9546 | 769.2687 | Guizhou | 0.9362 | 552.9585 | Hainan | 0.9386 | 314.2889 |
| Hebei | 0.9168 | 841.0083 | Heilongjiang | 0.9308 | 567.9361 | Henan | 0.9097 | 912.4558 |
| Hubei | 0.9634 | 861.0792 | Hunan | 0.938 | 777.3764 | Inner Mongolia | 0.9527 | 634.186 |
| Jiangsu | 0.9495 | 669.4019 | Jiangxi | 0.9069 | 760.1159 | Jilin | 0.909 | 929.597 |
| Liaoning | 0.9094 | 813.1563 | Ningxia | 0.9069 | 677.6248 | Qinghai | 0.937 | 305.7115 |
| Shaanxi | 0.9252 | 718.5838 | Shandong | 0.909 | 959.6418 | Shanghai | 0.9087 | 203.8105 |
| Shanxi | 0.9165 | 974.6912 | Sichuan | 0.9225 | 501.4905 | Tianjin | 0.9011 | 283.081 |
| Tibet | 0.9233 | 255.6374 | Xinjiang | 0.9092 | 506.8906 | Yunnan | 0.916 | 967.3515 |
| Zhejiang | 0.9323 | 721.1873 |
Appendix C


References
- Scarlat, N.; Dallemand, J.-F.; Monforti-Ferrario, F.; Nita, V. The role of biomass and bioenergy in a future bioeconomy: Policies and facts. Environ. Dev. 2015, 15, 3–34. [Google Scholar] [CrossRef]
- Zhang, F.; Johnson, D.; Wang, J.; Liu, S.; Zhang, S. Measuring the Regional Availability of Forest Biomass for Biofuels and the Potential of GHG Reduction. Energies 2018, 11, 198. [Google Scholar] [CrossRef]
- Abbas, D.; Current, D.; Phillips, M.; Rossman, R.; Hoganson, H.; Brooks, K.N. Guidelines for harvesting forest biomass for energy: A synthesis of environmental considerations. Biomass Bioenergy 2011, 35, 4538–4546. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, Y.; van Le, Q.; Yang, H.; Hosseinzadeh-Bandbafha, H.; Yang, Y.; Sonne, C.; Tabatabaei, M.; Lam, S.S.; Peng, W. An Overview on the Conversion of Forest Biomass into Bioenergy. Front. Energy Res. 2021, 9, 47. [Google Scholar] [CrossRef]
- Birdsey, R.; Duffy, P.; Smyth, C.; Kurz, W.A.; Dugan, A.J.; Houghton, R. Climate, economic, and environmental impacts of producing wood for bioenergy. Environ. Res. Lett. 2018, 13, 50201. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, D.; Fang, X. Analysis on the policies of biomass power generation in China. Renew. Sustain. Energy Rev. 2014, 32, 926–935. [Google Scholar] [CrossRef]
- Zhao, Z.-Y.; Yan, H. Assessment of the biomass power generation industry in China. Renew. Energy 2012, 37, 53–60. [Google Scholar] [CrossRef]
- Yan, P.; Xiao, C.; Xu, L.; Yu, G.; Li, A.; Piao, S.; He, N. Biomass energy in China’s terrestrial ecosystems: Insights into the nation’s sustainable energy supply. Renew. Sustain. Energy Rev. 2020, 127, 109857. [Google Scholar] [CrossRef]
- Liu, J.; Wang, S.; Wei, Q.; Yan, S. Present situation, problems and solutions of China’s biomass power generation industry. Energy Policy 2014, 70, 144–151. [Google Scholar] [CrossRef]
- Šafařík, D.; Hlaváčková, P.; Michal, J. Potential of Forest Biomass Resources for Renewable Energy Production in the Czech Republic. Energies 2022, 15, 47. [Google Scholar] [CrossRef]
- Dudek, T. The Impacts of the Energy Potential of Forest Biomass on the Local Market: An Example of South-Eastern Poland. Energies 2020, 13, 4985. [Google Scholar] [CrossRef]
- McKendry, P. Energy production from biomass (part 2): Conversion technologies. Bioresour. Technol. 2002, 83, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Avelin, A.; Skvaril, J.; Aulin, R.; Odlare, M.; Dahlquist, E. Forest Biomass for Bioenergy production—Comparison of Different Forest Species. Energy Procedia 2014, 61, 1820–1823. [Google Scholar] [CrossRef]
- Tursi, A. A review on biomass: Importance, chemistry, classification, and conversion. Biofuel Res. J. 2019, 6, 962–979. [Google Scholar] [CrossRef]
- Shabani, N.; Akhtari, S.; Sowlati, T. Value chain optimization of forest biomass for bioenergy production: A review. Renew. Sustain. Energy Rev. 2013, 23, 299–311. [Google Scholar] [CrossRef]
- Turrado Fernández, S.; Paredes Sánchez, J.P.; Gutiérrez Trashorras, A.J. Analysis of forest residual biomass potential for bioenergy production in Spain. Clean. Technol. Environ. Policy 2016, 18, 209–218. [Google Scholar] [CrossRef]
- Ji, P.; Pang, W.; Su, R.; Gao, R.; Zhao, P.; Pang, L.; Yao, H. Forest Volume Estimation in Secondary Forests of the Southern Daxing’anling Mountains Using Multi-Source Remote Sensing and Machine Learning. Forests 2025, 16, 1280. [Google Scholar] [CrossRef]
- Song, C.; Li, Z.; Dai, Y.; Liu, T.; Li, J. Estimation of Forest Aboveground Biomass in North China Based on Landsat Data and Stand Features. Forests 2025, 16, 384. [Google Scholar] [CrossRef]
- Liu, J.; Yue, C.; Pei, C.; Li, X.; Zhang, Q. Prediction of Regional Forest Biomass Using Machine Learning: A Case Study of Beijing, China. Forests 2023, 14, 1008. [Google Scholar] [CrossRef]
- Zournatzidou, G. Advancing Sustainability through Machine Learning: Modeling and Forecasting Renewable Energy Consumption. Sustainability 2025, 17, 1304. [Google Scholar] [CrossRef]
- Benti, N.E.; Chaka, M.D.; Semie, A.G. Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects. Sustainability 2023, 15, 7087. [Google Scholar] [CrossRef]
- Suárez-Fernández, G.E.; Martínez-Sánchez, J.; Arias, P. Enhancing Carbon Stock Estimation in Forests: Integrating Multi-Data Predictors with Random Forest Method. Ecol. Inform. 2025, 86, 102997. [Google Scholar] [CrossRef]
- Kumar, A.; Adamopoulos, S.; Jones, D.; Amiandamhen, S.O. Forest biomass availability and utilization potential in Sweden: A review. Waste Biomass Valorization 2021, 12, 65–80. [Google Scholar] [CrossRef]
- Long, H.; Li, X.; Wang, H.; Jia, J. Biomass resources and their bioenergy potential estimation: A review. Renew. Sustain. Energy Rev. 2013, 26, 344–352. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, F.; Hu, H.; Yang, L.; Guo, P.; Xiao, B. Assessment of sustainable biomass resource for energy use in China. Biomass Bioenergy 2011, 35, 1–11. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, P.; Zhang, W.; Tian, Y.; Zheng, Y.; Wang, L. Quantitative appraisal and potential analysis for primary biomass resources for energy utilization in China. Renew. Sustain. Energy Rev. 2010, 14, 3050–3058. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, L.; Xie, G. Forest biomass energy resources in China: Quantity and distribution. Forests 2015, 6, 3970–3984. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, W.; Liu, J. Research on the temporal and spatial distribution and influencing factors of forestry output efficiency in China. Sustainability 2021, 13, 4687. [Google Scholar] [CrossRef]
- Ma, D.; Lin, Z.; Wang, Q.; Yu, Y.; Huang, Q.; Yan, Y. Evolution of Vegetation Coverage in the Jinan Section of the Basin of the Yellow River (China), 2008–2022: Spatial Dynamics and Drivers. Forests 2024, 15, 2219. [Google Scholar] [CrossRef]
- Wang, J.; Shi, K.; Hu, M. Measurement of forest carbon sink efficiency and its influencing factors empirical evidence from China. Forests 2022, 13, 1909. [Google Scholar] [CrossRef]
- Ibitoye, O.S.; Ayeni, O.H.; Ayanniyi, O.A.; Muritala, D.; Arabambi, I.; Kolejo, O.; Adekoya, O.O.; Adenika, O.A.; Aremu, E.A. A review: Sustainable forestry through biological control—The application of entomopathogenic nematodes. J. For. Res. 2025, 36, 42. [Google Scholar] [CrossRef]
- Xu, Y.; Smith, P.; Qin, Z. Sustainable bioenergy contributes to cost-effective climate change mitigation in China. iScience 2024, 27, 110232. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Li, J.; Wang, C.; Huang, G.; Fu, J.; Chang, S.; Li, H.; Ma, S.; Yu, L.; Cui, X.; et al. A fine-resolution estimation of the biomass resource potential across China from 2020 to 2100. Resour. Conserv. Recycl. 2022, 176, 105944. [Google Scholar] [CrossRef]
- Yin, S.; Gong, Z.; Gu, L.; Deng, Y.; Niu, Y. Driving forces of the efficiency of forest carbon sequestration production: Spatial panel data from the national forest inventory in China. J. Clean. Prod. 2022, 330, 129776. [Google Scholar] [CrossRef]
- Mi, L.; Huang, Y.; Sohail, M.T.; Ullah, S. Forest Products Trade and Sustainable Development in China and the USA: Do Bioenergy and Economic Policy Uncertainty Matter? Forests 2024, 15, 1505. [Google Scholar] [CrossRef]
- Sikkema, R.; Proskurina, S.; Banja, M.; Vakkilainen, E. How can solid biomass contribute to the EU’s renewable energy targets in 2020, 2030 and what are the GHG drivers and safeguards in energy-and forestry sectors? Renew. Energy 2021, 165, 758–772. [Google Scholar] [CrossRef]
- Page-Dumroese, D.S.; Franco, C.R.; Archuleta, J.G.; Taylor, M.E.; Kidwell, K.; High, J.C.; Adam, K. Forest biomass policies and regulations in the United States of America. Forests 2022, 13, 1415. [Google Scholar] [CrossRef]
- Garcia, G.; Mann, C.; Cremer, T. An Integrated Conflict Analysis Approach for the Sustainable Supply of Forest Ecosystem Services in Germany—The Case of Forest-Based Biofuel Production. For. Policy Econ. 2025, 170, 103361. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Ma, K.; Ma, C. Prediction of Long-Term Trends in Biomass Energy Development Suitability and Optimization of Feedstock Collection Layout Based on Deep Learning Algorithms. J. Clean. Prod. 2025, 495, 145079. [Google Scholar] [CrossRef]
- Bhatt, G.; Upadhyay, A.; Sahoo, K. Biomass Supply Chain Network Design: Integrating Fixed and Portable Preprocessing Depots for Cost Efficiency and Sustainability. Appl. Energy 2025, 389, 125757. [Google Scholar] [CrossRef]
- Kuang, Y.; Chen, X. Spatial Heterogeneity of Forest Carbon Stocks in the Xiangjiang River Basin Urban Agglomeration: Analysis and Assessment Based on the Multiscale Geographically Weighted Regression (MGWR) Model. Front. Environ. Sci. 2025, 13, 1573438. [Google Scholar] [CrossRef]
- Linh, N.H.D.; Lizhi, L. Policy Insights on the Contribution of Forest Bioenergy and Environmental Education Towards Achieving a Zero-Carbon Transition. Forests 2025, 16, 1824. [Google Scholar] [CrossRef]
- Raman, R.; Sreenivasan, A.; Kulkarni, N.V.; Suresh, M.; Nedungadi, P. Analyzing the Contributions of Biofuels, Biomass, and Bioenergy to Sustainable Development Goals. iScience 2025, 28, 112157. [Google Scholar] [CrossRef]






| Category | Indicator | Definition/Meaning | Unit | Data Source |
|---|---|---|---|---|
| Forest Growth Residues | Shrubland area | Area of shrubland that generates residual biomass through harvesting and tending | 104 ha | National Forest Resource Inventory Report; China Forestry Statistical Yearbook |
| Economic forest area | Area of economic forests generating pruning and management residues | 104 ha | China Forestry Statistical Yearbook | |
| Number of trees on non-forest land | Number of scattered trees on farmland, villages, roadsides, etc., generating trimming residues | 104 trees | China Forestry Statistical Yearbook | |
| Forestry Production Residues | Seedling yield | Quantity of seedlings producing trimming and pruning residues during cultivation | 104 units | China Forestry Statistical Yearbook |
| Tending area of young and middle-aged forests | Area undergoing tending and pruning, producing silvicultural residues | 104 ha | National Forest Resource Inventory Report | |
| Annual allowable cutting quota | Officially approved harvesting quota, producing harvesting residues | 104 m3 | Summary Table of Annual Cutting Quotas | |
| Commercial timber output | Output of processed timber, producing processing residues | 104 m3 | China Forestry Statistical Yearbook | |
| Bamboo output | Bamboo used for energy-related processing, generating bamboo residues | 104 culms | China Forestry Statistical Yearbook | |
| Energy Forests | Fuelwood forest area | Area of dedicated fuelwood forests producing biomass for energy | 104 ha | China Forestry Statistical Yearbook |
| Indicator | Shrubland | Economic Forest | Economic Forest | Seedlings | Tending of Young and Middle-Aged Forests | Forest Harvesting | Commercial Timber | Bamboo | Fuelwood Forest |
|---|---|---|---|---|---|---|---|---|---|
| Conversion Coefficient | 10 | 7.2 | 2 | 0.125 | 7.2 | 1.17 | 0.9 | 5 | 16 |
| Availability Coefficient | 0.32 | 1 | 1 | 1 | 0.11 | 0.57 | 0.20 | 0.21 | 0.24 |
| Utilization Coefficient | 0.56 | 0.23 | 0.34 | 0.66 | 2.21 | 0.06 | 0.24 | 0.27 | 1 |
| Variable | Mean | Standard Deviation | Maximum | Minimum |
|---|---|---|---|---|
| Per capita GDP (CNY) | 32,377 | 27,376 | 164,158 | 2489 |
| Proportion of forestry output (%) | 4.54 | 3.65 | 41.00 | 0.41 |
| Share of highly educated staff in grassroots forestry stations (%) | 42.15 | 22.10 | 97.00 | 1.23 |
| Forest pest and rodent control rate (%) | 72.00 | 21.83 | 100.00 | 5.00 |
| Variables | Coef. | Std.Err. | t |
|---|---|---|---|
| VAL | 0.028 *** | 0.006 | 4.654 |
| lnPGDP | 0.004 | 0.045 | 0.086 |
| EDU | –0.007 *** | 0.002 | –3.744 |
| ORG | –0.002 ** | 0.001 | –2.157 |
| _Cons | 6.553 *** | 0.385 | 17.015 |
| F-statistic | 0.000 *** | R2-statistic | 0.135 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ren, F.; He, J.; Zhang, Y.; Kong, F. Estimating and Projecting Forest Biomass Energy Potential in China: A Panel and Random Forest Analysis. Land 2026, 15, 152. https://doi.org/10.3390/land15010152
Ren F, He J, Zhang Y, Kong F. Estimating and Projecting Forest Biomass Energy Potential in China: A Panel and Random Forest Analysis. Land. 2026; 15(1):152. https://doi.org/10.3390/land15010152
Chicago/Turabian StyleRen, Fangrong, Jiakun He, Youyou Zhang, and Fanbin Kong. 2026. "Estimating and Projecting Forest Biomass Energy Potential in China: A Panel and Random Forest Analysis" Land 15, no. 1: 152. https://doi.org/10.3390/land15010152
APA StyleRen, F., He, J., Zhang, Y., & Kong, F. (2026). Estimating and Projecting Forest Biomass Energy Potential in China: A Panel and Random Forest Analysis. Land, 15(1), 152. https://doi.org/10.3390/land15010152
