Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (536)

Search Parameters:
Keywords = transition and turbulence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 15254 KB  
Article
Passive Control of Boundary-Layer Separation on a Wind Turbine Blade Using Varying-Parameter Flow Deflector
by Xin Chen, Jiaqian Qiu, Junwei Zhong, Chaolei Zhang and Yufeng Gan
Fluids 2025, 10(10), 270; https://doi.org/10.3390/fluids10100270 - 16 Oct 2025
Abstract
Horizontal-axis wind turbines are widely used for wind energy harvesting, but they often encounter flow separation near the blade root, leading to power loss and structural fatigue. A varying-parameter flow deflector (FD) is proposed as a passive flow control method. The FD adopts [...] Read more.
Horizontal-axis wind turbines are widely used for wind energy harvesting, but they often encounter flow separation near the blade root, leading to power loss and structural fatigue. A varying-parameter flow deflector (FD) is proposed as a passive flow control method. The FD adopts varying parameters along the blade spanwise direction to match the varying local angle of attack. Numerical simulation using the transition SST k-ω turbulence model combined with the response-surface methodology are used to investigate the effect of the varying-parameter FD on the flow structure and aerodynamic performance of the NREL Phase VI wind turbine. The results indicate that optimal performance can be achieved when the normal position of the FD increases from the blade root to the tip, and the install angle of the FD should be greater than 62° at blade section of r/R = 63.1%. Furthermore, response-surface methodology was employed to optimize the deflector parameters, with analysis of variance revealing the relative significance of geometric factors (l1 > l2 > θ1 > θ2). Compared with the original blade, the shaft torque of the controlled blade with the optimal FD is improved by 24.7% at 10 m/s. Full article
(This article belongs to the Special Issue Industrial CFD and Fluid Modelling in Engineering, 3rd Edition)
29 pages, 8899 KB  
Article
Aerodynamic Performance of a Natural Laminar Flow Swept-Back Wing for Low-Speed UAVs Under Take Off/Landing Flight Conditions and Atmospheric Turbulence
by Nikolaos K. Lampropoulos, Ioannis E. Sarris, Spyridon Antoniou, Odysseas Ziogas, Pericles Panagiotou and Kyros Yakinthos
Aerospace 2025, 12(10), 934; https://doi.org/10.3390/aerospace12100934 (registering DOI) - 16 Oct 2025
Abstract
The topic of the present study is the aerodynamic performance of a Natural Laminar Flow (NLF) wing for UAVs at low speed. The basis is a thoroughly tested NLF airfoil in the wind tunnel of NASA which is well-customized for light aircrafts. The [...] Read more.
The topic of the present study is the aerodynamic performance of a Natural Laminar Flow (NLF) wing for UAVs at low speed. The basis is a thoroughly tested NLF airfoil in the wind tunnel of NASA which is well-customized for light aircrafts. The aim of this work is the numerical verification that a typical wing design (tapered with moderate aspect ratio and wash-out), being constructed out of aerodynamically highly efficient NLF airfoils during cruise, can deliver high aerodynamic loading under minimal freestream turbulence as well as realistic atmospheric conditions of intermediate turbulence. Thus, high mission flexibility is achieved, e.g., short take off/landing capabilities on the deck of ship where moderate air turbulence is prevalent. Special attention is paid to the effect of the Wing Tip Vortex (WTV) under minimal inflow turbulence regimes. The flight conditions are take off or landing at moderate Reynolds number, i.e., one to two millions. The numerical simulation is based on an open source CFD code and parallel processing on a High Performance Computing (HPC) platform. The aim is the identification of both mean flow and turbulent structures around the wing and subsequently the formation of the wing tip vortex. Due to the purely three-dimensional character of the flow, the turbulence is resolved with advanced modeling, i.e., the Improved Delayed Detached Eddy Simulation (IDDES) which is well-customized to switch modes between Delayed Detached Eddy Simulation (DDES) and Wall-Modeled Large Eddy Simulation (WMLES), thus increasing the accuracy in the shear layer regions, the tip vortex and the wake, while at the same time keeping the computational cost at reasonable levels. IDDES also has the capability to resolve the transition of the boundary layer from laminar to turbulent, at least with engineering accuracy; thus, it serves as a high-fidelity turbulence model in this work. The study comprises an initial benchmarking of the code against wind tunnel measurements of the airfoil and verifies the adequacy of mesh density that is used for the simulation around the wing. Subsequently, the wing is positioned at near-stall conditions so that the aerodynamic loading, the kinematics of the flow and the turbulence regime in the wing vicinity, the wake and far downstream can be estimated. In terms of the kinematics of the WTV, a thorough examination is attempted which comprises its inception, i.e., the detachment of the boundary layer on the cut-off wing tip, the roll-up of the shear layer to form the wake and the motion of the wake downstream. Moreover, the effect of inflow turbulence of moderate intensity is investigated that verifies the bibliography with regard to the performance degradation of static airfoils in a turbulent atmospheric regime. Full article
(This article belongs to the Section Aeronautics)
23 pages, 4494 KB  
Article
Investigating the Regulatory Mechanism of the Baffle Geometric Parameters on the Lubrication Transmission of High-Speed Gears
by Yunfeng Tan, Qihan Li, Lin Li and Dapeng Tan
Appl. Sci. 2025, 15(20), 11080; https://doi.org/10.3390/app152011080 - 16 Oct 2025
Abstract
Under extreme operating conditions, the internal lubricating flow field of high-speed gear transmission systems exhibits a transient oil–gas multiphase flow, predominantly governed by cavitation-induced phase transitions and turbulent shear. This phenomenon involves complex mechanisms of nonlinear multi-physical coupling and energy dissipation. Traditional lubrication [...] Read more.
Under extreme operating conditions, the internal lubricating flow field of high-speed gear transmission systems exhibits a transient oil–gas multiphase flow, predominantly governed by cavitation-induced phase transitions and turbulent shear. This phenomenon involves complex mechanisms of nonlinear multi-physical coupling and energy dissipation. Traditional lubrication theories and single-phase flow simplified models show significant limitations in capturing microsecond-scale flow features, dynamic interface evolution, and turbulence modulation mechanisms. To address these challenges, this study developed a cross-scale coupled numerical framework based on the Lattice Boltzmann method and large eddy simulation (LBM-LES). By incorporating an adaptive time relaxation algorithm, the framework effectively enhances the computational accuracy and stability for high-speed rotational flow fields, enabling the precise characterization of lubricant splashing, distribution, and its interaction with air. The research systematically reveals the spatiotemporal evolution characteristics of the internal flow field within the gearbox and focuses on analyzing the nonlinear regulatory effect of baffle geometric parameters on the system’s energy transport and dissipation characteristics. Numerical results indicate that the baffle structure significantly influences the spatial distribution of the vorticity field and turbulence intensity by reconstructing the shear layer topology. Low-profile baffles optimize the energy transfer pathway, effectively reducing the flow enthalpy, whereas excessively tall baffles induce strong secondary recirculation flows, exacerbating vortex-induced energy losses. Simultaneously, appropriately increasing the spacing between double baffles helps enhance global lubricant transport efficiency and suppresses unsteady dissipation caused by localized momentum accumulation. Furthermore, the geometrically optimized double-baffle configuration can achieve synergistic improvements in lubrication performance, oil film stability, and system energy efficiency by guiding the main shear flow and mitigating localized high-momentum impacts. This study provides crucial theoretical foundations and design guidelines for developing the next generation of theory-driven, energy-efficient lubrication design strategies for gear transmissions. Full article
Show Figures

Figure 1

23 pages, 8069 KB  
Article
The Effect of Jet-Induced Disturbances on the Flame Characteristics of Hydrogen–Air Mixtures
by Xinyu Chang, Mengyuan Ge, Kai Wang, Bo Zhang, Sheng Xue and Yu Sun
Fire 2025, 8(10), 393; https://doi.org/10.3390/fire8100393 - 7 Oct 2025
Viewed by 453
Abstract
To mitigate explosion hazards arising from hydrogen leakage and subsequent mixing with air, the injection of inert gases can substantially diminish explosion risk. However, prevailing research has predominantly characterized inert gas dilution effects on explosion behavior under quiescent conditions, largely neglecting the turbulence-mediated [...] Read more.
To mitigate explosion hazards arising from hydrogen leakage and subsequent mixing with air, the injection of inert gases can substantially diminish explosion risk. However, prevailing research has predominantly characterized inert gas dilution effects on explosion behavior under quiescent conditions, largely neglecting the turbulence-mediated explosion enhancement inherent to dynamic mixing scenarios. A comprehensive investigation was conducted on the combustion behavior of 30%, 50%, and 70% H2-air mixtures subjected to jet-induced (CO2, N2, He) turbulent flow, incorporating quantitative characterization of both the evolving turbulent flow field and flame front dynamics. Research has demonstrated that both an increased H2 concentration and a higher jet medium molecular weight increase the turbulence intensity: the former reduces the mixture molecular weight to accelerate diffusion, whereas the latter results in more pronounced disturbances from heavier molecules. In addition, when CO2 serves as the jet medium, a critical flame radius threshold emerges where the flame propagation velocity decreases below this threshold because CO2 dilution effects suppress combustion, whereas exceeding it leads to enhanced propagation as initial disturbances become the dominant factor. Furthermore, at reduced H2 concentrations (30–50%), flow disturbances induce flame front wrinkling while preserving the spherical geometry; conversely, at 70% H2, substantial flame deformation occurs because of the inverse correlation between the laminar burning velocity and flame instability governing this transition. Through systematic quantitative analysis, this study elucidates the evolutionary patterns of both turbulent fields and flame fronts, offering groundbreaking perspectives on H2 combustion and explosion propagation in turbulent environments. Full article
Show Figures

Figure 1

20 pages, 3033 KB  
Review
Particle-Laden Two-Phase Boundary Layer: A Review
by Aleksey Yu. Varaksin and Sergei V. Ryzhkov
Aerospace 2025, 12(10), 894; https://doi.org/10.3390/aerospace12100894 - 2 Oct 2025
Viewed by 390
Abstract
The presence of solid particles (or droplets) in a flow leads to a significant increase in heat fluxes, the occurrence of chemical reactions, and erosive surface wear of various aircraft moving in the dusty (or rainy) atmosphere of Earth or Mars. A review [...] Read more.
The presence of solid particles (or droplets) in a flow leads to a significant increase in heat fluxes, the occurrence of chemical reactions, and erosive surface wear of various aircraft moving in the dusty (or rainy) atmosphere of Earth or Mars. A review of computational, theoretical, and experimental work devoted to the study of the characteristics of the boundary layers (BL) of gas with solid particles was performed. The features of particle motion in laminar and turbulent boundary layers, as well as their inverse effect on gas flow, are considered. Available studies on the stability of the laminar boundary layer and the effect of particles on the laminar–turbulent transition are analyzed. At the end of the review, conclusions are drawn, and priorities for future research are discussed. Full article
(This article belongs to the Special Issue Fluid Flow Mechanics (4th Edition))
Show Figures

Figure 1

20 pages, 4517 KB  
Article
An Investigation of the Laminar–Turbulent Transition Mechanisms of Low-Pressure Turbine Boundary Layers with Linear Stability Theories
by Alice Fischer and Frank Eulitz
Int. J. Turbomach. Propuls. Power 2025, 10(4), 33; https://doi.org/10.3390/ijtpp10040033 - 2 Oct 2025
Viewed by 478
Abstract
Stability theory offers a practical method on parametric studies that encompass scales in the boundary layer typically not captured in Large Eddy (LES) or Reynolds-Averaged Navier–Stokes (RANS) simulations. We investigated the transition modes of a Low-Pressure Turbine (LPT) with Linear Stability Theory (LST) [...] Read more.
Stability theory offers a practical method on parametric studies that encompass scales in the boundary layer typically not captured in Large Eddy (LES) or Reynolds-Averaged Navier–Stokes (RANS) simulations. We investigated the transition modes of a Low-Pressure Turbine (LPT) with Linear Stability Theory (LST) and Linear Parabolized Stability Equations (LPSEs) over a wider parametric space. A parametric study was done to examine the wall-shear stress, shape factor, momentum thickness, as well as the growth rate and N-factor envelope. Additionally, the methodology was applied to active control techniques like suction and blowing. The results are consistent with the expected physical behavior and initial observations, while also offering a quantitative description of trends in frequencies, amplitude growth, and wavelengths. This confirms the suitability of the two stability theories, laying the base for their future validation to ensure accuracy and reliability. Full article
Show Figures

Figure 1

23 pages, 24962 KB  
Article
Effect of Piston Velocity on Microstructural Consistency and Critical Regions in a High-Pressure Die Cast AlSi9Cu3(Fe) Alloy Component
by Dana Bolibruchová, Marek Matejka, Richard Pastirčák and Radka Podprocká
Metals 2025, 15(10), 1065; https://doi.org/10.3390/met15101065 - 23 Sep 2025
Viewed by 267
Abstract
High-pressure die casting (HPDC) is a highly efficient method for producing aluminum parts that require high dimensional accuracy and complex shapes. However, the quality of the resulting castings, specifically their porosity and microstructure, is critically dependent on the setting of process parameters. Any [...] Read more.
High-pressure die casting (HPDC) is a highly efficient method for producing aluminum parts that require high dimensional accuracy and complex shapes. However, the quality of the resulting castings, specifically their porosity and microstructure, is critically dependent on the setting of process parameters. Any deficiencies in these aspects can lead to a significant reduction in the mechanical properties of the components. This article deals with the influence of plunger speed during high-pressure die casting on microstructure homogeneity and the occurrence of porosity in critical areas of AlSi9Cu3(Fe) alloy castings. Numerical simulations and experimental evaluation demonstrated that with increasing plunger speed, there is a transition from a transitional to a laminar flow regime to a fully turbulent regime, which affects the homogeneity of the alloy and its solidification. Turbulent flow minimizes shrinkage porosity in castings but increases the risk of gas porosity and oxide inclusions due to reoxidation processes, leading to the entrainment of air and oxide layers. Microporosity analysis showed that the lowest occurrence of shrinkage-type pores was found at a plunger speed of 4 m/s due to rapid filling and shorter solidification time. The optimal plunger speed range is between 3 and 3.6 m/s, ensuring a compromise between microstructure stability and minimization of porosity in critical areas. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

19 pages, 10875 KB  
Article
CFD Analysis of Transition Models for Low-Reynolds Number Aerodynamics
by Enrico Giacomini and Lars-Göran Westerberg
Appl. Sci. 2025, 15(18), 10299; https://doi.org/10.3390/app151810299 - 22 Sep 2025
Viewed by 475
Abstract
Low Reynolds number flows are central to the performance of airfoils used in small unmanned aerial vehicles (UAVs), micro air vehicles (MAVs), and aerodynamic platforms operating in rarefied atmospheres. Consequently, a deep understanding of airfoil behavior and accurate prediction of aerodynamic performance are [...] Read more.
Low Reynolds number flows are central to the performance of airfoils used in small unmanned aerial vehicles (UAVs), micro air vehicles (MAVs), and aerodynamic platforms operating in rarefied atmospheres. Consequently, a deep understanding of airfoil behavior and accurate prediction of aerodynamic performance are essential for the optimal design of such systems. The present study employs Computational Fluid Dynamics (CFD) simulations to analyze the aerodynamic performance of a cambered plate at a Reynolds number of 10,000. Two Reynolds-Averaged Navier–Stokes (RANS) turbulence models, γReθ and k-kL-ω, are utilized, along with the Unsteady Navier–Stokes (UNS) equations. The simulation results are compared against experimental data, with a focus on lift, drag, and pressure coefficients. The models studied perform moderately well at small angles of attack. The γReθ model yields the lowest lift and drag errors (below 0.17 and 0.04, respectively), while the other models show significantly higher discrepancies, particularly in lift prediction. The γReθ model demonstrates good overall accuracy, with notable deviation only in the prediction of the stall angle. In contrast, the k-kL-ω model and the UNS equations capture the general flow trend up to stall but fail to provide reliable predictions beyond that point. These findings indicate that the γReθ model is the most suitable among those tested for low Reynolds number transitional flow simulations. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics in Mechanical Engineering)
Show Figures

Figure 1

18 pages, 891 KB  
Article
Emerging Near-Surface Solar MHD Dynamos
by Alexander Bershadskii
Foundations 2025, 5(3), 31; https://doi.org/10.3390/foundations5030031 - 19 Sep 2025
Viewed by 240
Abstract
Using the results of numerical simulations and solar observations, this study shows that the transition from deterministic chaos to hard turbulence in the magnetic field generated by the emerging small-scale, near-surface (within the Sun’s outer 5–10% convection zone) solar MHD dynamos occurs through [...] Read more.
Using the results of numerical simulations and solar observations, this study shows that the transition from deterministic chaos to hard turbulence in the magnetic field generated by the emerging small-scale, near-surface (within the Sun’s outer 5–10% convection zone) solar MHD dynamos occurs through a randomization process. This randomization process has been described using the concept of distributed chaos, and the main parameter of distributed chaos β has been employed to quantify the degree of randomization (the wavenumber spectrum characterising distributed chaos has a stretched exponential form E(k)exp(k/kβ)β). The dissipative (Loitsianskii and Birkhoff–Saffman integrals) and ideal (magnetic helicity) magnetohydrodynamic invariants govern the randomization process and determine the degree of randomization 0<β1 at various stages of the emerging MHD dynamos, directly or through Kolmogorov–Iroshnikov phenomenology (the magnetoinertial range of scales as a precursor of hard turbulence). Despite the considerable differences in the scales and physical parameters, the results of numerical simulations are in quantitative agreement with solar observations (magnetograms) within this framework. The Hall magnetohydrodynamic dynamo is also briefly discussed in this context. Full article
(This article belongs to the Section Physical Sciences)
Show Figures

Figure 1

19 pages, 1640 KB  
Article
Investigation of Turbulence and Turbulent Prandtl Number Models for He-Xe Thermal Hydraulics in Quasi-Triangular Channel
by Yue Xie, Wei Zeng, Zonglan Wei, Junlong Li and Rui Li
Energies 2025, 18(18), 4895; https://doi.org/10.3390/en18184895 - 15 Sep 2025
Viewed by 339
Abstract
Compact nuclear reactor systems usually use helium–xenon (He-Xe) mixtures as coolants. Tight-lattice rod-bundled channels, serving as primary core configurations in compact nuclear reactor designs, exhibit quasi-triangular cross-sections where fluid dynamics substantially deviate from circular tube behavior. This study evaluates the applicability of turbulence [...] Read more.
Compact nuclear reactor systems usually use helium–xenon (He-Xe) mixtures as coolants. Tight-lattice rod-bundled channels, serving as primary core configurations in compact nuclear reactor designs, exhibit quasi-triangular cross-sections where fluid dynamics substantially deviate from circular tube behavior. This study evaluates the applicability of turbulence models and turbulent Prandtl number (Prt) models in quasi-triangular channels through systematic numerical simulations. The results demonstrate that the Transition SST model accurately resolves flow dynamics and turbulence development in helium–xenon mixtures, while implementing Prt models significantly enhances temperature prediction accuracy. Among the evaluated models, the Weigand model achieves optimal performance by dynamically adapting Prt values across flow regimes. Further refinements targeting parameters governing near-wall Prt distribution are identified as critical pathways for improving numerical simulation precision of low-Prandtl-number fluids in geometrically complex nuclear systems. Full article
(This article belongs to the Special Issue Advances in Nuclear Power Plants and Nuclear Safety)
Show Figures

Figure 1

24 pages, 495 KB  
Review
Dynamical Transitions in Trapped Superfluids Excited by Alternating Fields
by Vyacheslav I. Yukalov and Elizaveta P. Yukalova
Physics 2025, 7(3), 41; https://doi.org/10.3390/physics7030041 - 12 Sep 2025
Viewed by 354
Abstract
The paper presents a survey of some dynamical transitions in nonequilibrium trapped Bose-condensed systems subject to the action of alternating fields. Nonequilibrium states of trapped systems can be implemented in two ways: resonant and nonresonant. Under resonant excitation, several coherent modes are generated [...] Read more.
The paper presents a survey of some dynamical transitions in nonequilibrium trapped Bose-condensed systems subject to the action of alternating fields. Nonequilibrium states of trapped systems can be implemented in two ways: resonant and nonresonant. Under resonant excitation, several coherent modes are generated by external alternating fields with the frequencies been tuned to resonance with some transition frequencies of the trapped system. A Bose system of trapped atoms with Bose–Einstein condensate can display two types of the Josephson effect, the standard one, when the system is separated into two or more parts in different locations, or the internal Josephson effect, when there are no any separation barriers but the system becomes nonuniform due to the coexistence of several coherent modes interacting one with another. The mathematics in both these cases is similar. We focus on the internal Josephson effect. Systems with nonlinear coherent modes demonstrate rich dynamics, including Rabi oscillations, the Josephson effect, and chaotic motion. Under the Josephson effect, there exist dynamic transitions that are similar to phase transitions in equilibrium systems. The bosonic Josephson effect is shown to be implementable not only for quite weakly interacting systems, but also in superfluids with not necessarily as weak interactions. Sufficiently strong nonresonant excitation can generate several types of nonequilibrium states comprising vortex germs, vortex rings, vortex lines, vortex turbulence, droplet turbulence, and wave turbulence. Nonequilibrium states are shown to be characterized and distinguished by effective temperature, effective Fresnel number, and dynamic scaling laws. Full article
Show Figures

Figure 1

26 pages, 4297 KB  
Article
Numerical Simulation of Transient Two-Phase Flow in the Filling Process of the Vertical Shaft Section of a Water Conveyance Tunnel
by Shuaihui Sun, Jinyang Ma, Bo Zhang, Yangyang Lian, Yulong Xiao and Denglu Zhong
Processes 2025, 13(9), 2832; https://doi.org/10.3390/pr13092832 - 4 Sep 2025
Viewed by 505
Abstract
Long-distance water conveyance systems require controlled filling after initial operation or maintenance. This process is complex and challenging to manage accurately. It involves transient two-phase flow with rapid velocity and pressure changes, which can risk pipeline damage. Studying the filling process is thus [...] Read more.
Long-distance water conveyance systems require controlled filling after initial operation or maintenance. This process is complex and challenging to manage accurately. It involves transient two-phase flow with rapid velocity and pressure changes, which can risk pipeline damage. Studying the filling process is thus essential to ensure the safe and efficient operation of the system. Combining a specific engineering case, this work investigates gas–liquid two-phase flow in tunnel sections during filling. We employ a coupled Volume of Fluid (VOF) multiphase model and a Realizable k-ε turbulence model for our simulations. Hydraulic parameters (flow patterns, pressure, velocity) are analyzed using the results. Key findings indicate that higher filling flow rates destabilize the process. Gas retention behavior in low-pressure caverns varies, and gas–liquid eruptions occur at shaft water surfaces. Increased flow rates also intensify phase–pattern transitions, elevate peak pressure and velocity values, and amplify pressure pulsations and velocity fluctuations. Furthermore, faster gas transport in low-pressure caverns triggers flow instability, compromising exhaust efficiency. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

25 pages, 7391 KB  
Article
Assessment of Transitional RANS Models and Implementation of Transitional IDDES Method for Boundary Layer Transition and Separated Flows in OpenFOAM-V2312
by Sandip Ghimire, Xiang Ni and Yue Wang
Fluids 2025, 10(9), 230; https://doi.org/10.3390/fluids10090230 - 1 Sep 2025
Viewed by 628
Abstract
Traditional hybrid RANS/LES methods often struggle to accurately capture both the boundary layer transition and flow separation simultaneously due to their reliance on fully turbulent RANS models. To address this limitation, the present study first evaluates three transitional RANS models (γ-Reθt-SST, [...] Read more.
Traditional hybrid RANS/LES methods often struggle to accurately capture both the boundary layer transition and flow separation simultaneously due to their reliance on fully turbulent RANS models. To address this limitation, the present study first evaluates three transitional RANS models (γ-Reθt-SST, γ-SST, and Kγ-SST) on the E387 airfoil. The results demonstrate that the γ-SST model offers the best balance of accuracy and computational efficiency in predicting laminar separation bubbles (LSBs) and transition points. Building on this, we implement the γ-SST-IDDES model into OpenFOAM-v2312, which integrates the γ-SST transitional RANS model with the Improved Delayed Detached Eddy Simulation (IDDES) approach. This coupling allows for the simultaneous prediction of the laminar-turbulent transition and high-fidelity resolution of separated flows. The γ-SST-IDDES model is rigorously validated across three airfoil cases with distinct separation characteristics: E387 (small separation), DBLN-526 (moderate separation), and NACA 0021 (massive separation). The results show that the γ-SST-IDDES model outperforms conventional methods, capturing leading-edge LSBs with high accuracy compared to fully turbulent IDDES. Additionally, it successfully resolves complex 3D vortical structures in separated regions, whereas unsteady URANS provides only quasi-2D results. Full article
(This article belongs to the Section Turbulence)
Show Figures

Figure 1

26 pages, 9137 KB  
Article
Synergistic Effects of Sediment Size and Concentration on Performance Degradation in Centrifugal Irrigation Pumps: A Southern Xinjiang Case Study
by Rui Xu, Shunjun Hong, Zihai Yang, Xiaozhou Hu, Yang Jiang, Yuqi Han, Chungong Gao and Xingpeng Wang
Agriculture 2025, 15(17), 1843; https://doi.org/10.3390/agriculture15171843 - 29 Aug 2025
Viewed by 589
Abstract
Centrifugal irrigation pumps in Southern Xinjiang face severe performance degradation due to high fine-sediment loads in canal water. This study combines Eulerian multiphase simulations with experimental validation to investigate the coupled effects of sediment size (0.05~0.8 mm) and concentration (5~20%) on hydraulic performance. [...] Read more.
Centrifugal irrigation pumps in Southern Xinjiang face severe performance degradation due to high fine-sediment loads in canal water. This study combines Eulerian multiphase simulations with experimental validation to investigate the coupled effects of sediment size (0.05~0.8 mm) and concentration (5~20%) on hydraulic performance. Numerical models incorporating Realizable kε turbulence closure and discrete phase tracking reveal two critical thresholds: (1) particle sizes ≥ 0.4 mm trigger a phase transition from localized disturbance to global flow disorder, expanding low-pressure zones by 37% at equivalent concentrations; (2) concentrations exceeding 13% accelerate nonlinear pressure decay through collective particle interactions. Velocity field analysis demonstrates size-dependent attenuation mechanisms: fine sediments (≤0.2 mm) cause gradual dissipation via micro-scale drag, while coarse sediments (≥0.6 mm) induce “cliff-like” velocity drops through inertial impact-blockade chains. Experimental wear tests confirm simulation accuracy in predicting erosion hotspots at impeller inlets/outlets. The identified synergistic thresholds provide critical guidelines for anti-wear design in sediment-laden irrigation systems. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

35 pages, 15457 KB  
Article
The Impact of the Continental Environment on Boundary Layer Evolution for Landfalling Tropical Cyclones
by Gabriel J. Williams
J 2025, 8(3), 31; https://doi.org/10.3390/j8030031 - 28 Aug 2025
Viewed by 636
Abstract
Although numerous observational and theoretical studies have examined the mean and turbulent structure of the tropical cyclone boundary layer (TCBL) over the open ocean, there have been comparatively fewer studies that have examined the kinematic and thermal structure of the TCBL across the [...] Read more.
Although numerous observational and theoretical studies have examined the mean and turbulent structure of the tropical cyclone boundary layer (TCBL) over the open ocean, there have been comparatively fewer studies that have examined the kinematic and thermal structure of the TCBL across the land–ocean interface. This study examines the impact of different continental environments on the thermodynamic evolution of the TCBL during the landfall transition using high-resolution, full-physics numerical simulations. During landfall, the changes in the wind field within the TCBL due to the development of the internal boundary layer (IBL), combined with the formation of a surface cold pool, generates a pronounced thermal asymmetry in the boundary layer. As a result, the maximum thermodynamic boundary layer height occurs in the rear-right quadrant of the storm relative to its motion. In addition, azimuthal and vertical advection by the mean flow lead to enhanced turbulent kinetic energy (TKE) in front of the vortex (enhancing dissipative heating immediately onshore) and onshore precipitation to the left of the storm track (stabilizing the environment). The strength and depth of thermal asymmetry in the boundary layer depend on the contrast in temperature and moisture between the continental and storm environments. Dry air intrusion enhances cold pool formation and stabilizes the onshore boundary layer, reducing mechanical mixing and accelerating the decay of the vortex. The temperature contrast between the continental and storm environments establishes a coastal baroclinic zone, producing stronger baroclinicity and inflow on the left of the track and weaker baroclinicity on the right. The resulting gradient imbalance in the front-right quadrant triggers radial outflow through a gradient adjustment process that redistributes momentum and mass to restore dynamical balance. Therefore, the surface thermodynamic conditions over land play a critical role in shaping the evolution of the TCBL during landfall, with the strongest asymmetries in thermodynamic boundary layer height emerging when there are large thermal contrasts between the hurricane and the continental environment. Full article
(This article belongs to the Section Physical Sciences)
Show Figures

Figure 1

Back to TopTop