The Effect of Jet-Induced Disturbances on the Flame Characteristics of Hydrogen–Air Mixtures
Abstract
1. Introduction
2. Methodology
2.1. Experimental System
2.2. Simulation Method
3. Results and Discussion
3.1. Various H2 Concentrations
3.1.1. The Influence of H2 Concentration on the Characteristics of the Jet Flow Field
3.1.2. The Influence of H2 Concentration on the Characteristics of the Jet Flow Field
3.2. Various Jet Media
3.2.1. The Influence of Jet Medium Type on the Characteristics of the Jet Flow Field
3.2.2. The Influence of Jet Medium Type on the Flame Characteristics of H2-Air Mixtures
4. Conclusions
- (1)
- Quantitative analysis reveals that increasing the H2 molar fraction induces both higher flow velocities and intensified turbulence, a consequence of the inverse relationship between the mixture molecular weight and H2 concentration, which enhances the diffusion of the jet medium toward regions of reduced molecular density.
- (2)
- The utilization of CO2 as the jet medium reveals the existence of a critical flame radius. Below this threshold radius, jet-generated disturbances reduce flame speed as a result of the dominant suppression by the diluent gas. Conversely, beyond this critical radius, the disturbances augment flame propagation as the enhancement effect of initial disturbances prevails.
- (3)
- The impact of jet-generated perturbations on flame morphology is most pronounced in 70% H2-air mixtures owing to their minimal flame propagation velocity, where the decreased flame speed amplifies perturbation-driven structural deformation. In contrast, at elevated propagation velocities, jet disturbances moderately alter the flame surface topology while maintaining overall spherical symmetry.
- (4)
- Experimental evidence has demonstrated that distinct jet media induce differential modifications to the evolution dynamics of the flame front. For He/N2 injection, the predominant longitudinal force component over horizontal forces generates localized flame front discontinuities, specifically at the 90° and 270° azimuthal positions, despite maintaining a globally smooth morphology. Conversely, CO2 injection results in substantial flame front wrinkling with stochastic spatial distribution characteristics.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evro, S.; Oni, B.A.; Tomomewo, O.S. Carbon neutrality and hydrogen energy systems. Int. J. Hydrogen Energy 2024, 78, 1449–1467. [Google Scholar] [CrossRef]
- Moudio, N.D.N.; Bian, X.Q.; Chinamo, D.S. Liquid hydrogen carriers for clean energy systems: A critical review of chemical hydrogen storage strategies. Fuel 2026, 404, 136329. [Google Scholar] [CrossRef]
- Cirrone, D.; Makarov, D.; Proust, C.; Molkov, V. Minimum ignition energy of hydrogen-air mixtures at ambient and cryogenic temperatures. Int. J. Hydrogen Energy 2023, 48, 16530–16544. [Google Scholar] [CrossRef]
- Shashidharan, S.; Velamati, R.K.; Kumar, S.; Veetil, J.E. Hot surface ignition of H2-air and CH4-H2-air mixtures for various equivalence ratios and heating Rates. Int. J. Hydrogen Energy 2024, 53, 770–779. [Google Scholar] [CrossRef]
- Plaksin, V.Y.; Kirillov, I.A. Hydrogen flammability and explosion concentration limits for a wide temperature range. J. Loss Prev. Process Ind. 2025, 94, 105554. [Google Scholar] [CrossRef]
- Kang, J.; Su, T.; Li, J.; Wang, Z.; Zhang, J. Research on risk evolution, prevention, and control of fire and explosion accidents in hydrogen refueling stations based on the AcciMap-FTA model. Process Saf. Environ. Protect. 2025, 194, 107–118. [Google Scholar] [CrossRef]
- Moses, J.K.; Tivfa, T.A.; Qasem, N.A.A.; Alquaity, A.B.S. Combustion characteristics of hydrogen, ammonia, and their blends: A review. Fuel 2025, 388, 30. [Google Scholar] [CrossRef]
- Xie, Y.; Yang, J.; Ahmed, P.; Thorne, B.J.A.; Gu, X. Three-dimensional dynamics of unstable lean premixed hydrogen-air flames: Intrinsic instabilities and morphological characteristics. Combust. Flame 2025, 271, 113800. [Google Scholar] [CrossRef]
- Xie, Y.; Morsy, M.E.; Li, J.; Yang, J. Intrinsic cellular instabilities of hydrogen laminar outwardly propagating spherical flames. Fuel 2022, 327, 125149. [Google Scholar] [CrossRef]
- Reyes, M.; Tinaut, F.V.; Giménez, B.; Camaño, A. Combustion and Flame Front Morphology Characterization of H2-CO Syngas Blends in Constant Volume Combustion Bombs. Energy Fuels 2021, 35, 3497–3511. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, B. Typical onset modes of DDT and behavior of strong transverse shocks. Chin. J. Aeronaut. 2025, 103602. [Google Scholar] [CrossRef]
- Xie, Y.; Yang, J.; Gu, X. Flame wrinkling and self-disturbance in cellularly unstable hydrogen-air laminar flames. Combust. Flame 2024, 265, 113505. [Google Scholar] [CrossRef]
- Kim, W.K.; Mogi, T.; Kuwana, K.; Dobashi, R. Self-similar propagation of expanding spherical flames in large scale gas explosions. Proc. Combust. Inst. 2015, 35, 2051–2058. [Google Scholar] [CrossRef]
- Bao, S.; Zhao, H.; Li, X.; Tian, F.; Liu, Z.; Li, G.; Yuan, C. Investigation on decelerated propagation of hydrogen-air premixed flames in confined space. Process Saf. Environ. Prot. 2024, 192, 973–982. [Google Scholar] [CrossRef]
- Mei, Y.; Shuai, J.; Li, Y.; Zhou, N.; Ren, W.; Ren, F. Flame acceleration process of premixed hydrogen in confined space with different obstacle shapes. Fuel 2023, 334, 126624. [Google Scholar] [CrossRef]
- Galmiche, B.; Mazellier, N.; Halter, F.; Foucher, F. Turbulence characterization of a high-pressure high-temperature fan-stirred combustion vessel using LDV, PIV and TR-PIV measurements. Exp. Fluids 2014, 55, 20. [Google Scholar] [CrossRef]
- Li, Y.; Bi, M.; Gao, W.; Zhou, Y.; Huang, L. Interaction of flame instabilities and pressure behavior of hydrogen-propane explosion. J. Loss Prev. Process Ind. 2020, 64, 104078. [Google Scholar] [CrossRef]
- Saeid, M.H.; Khadem, J.; Emami, S.; Oh, C.B. Numerical Investigation of the Effects of Diffusion Time on the Mechanisms of Transition from a Turbulent Jet Flame to Detonation in a H2-Air Mixture. Fire 2023, 6, 434. [Google Scholar] [CrossRef]
- Wang, L.; Ma, H.; Shen, Z.; Chen, D. The influence of an orifice plate on the explosion characteristics of hydrogen-methane-air mixtures in a closed vessel. Fuel 2019, 256, 115908. [Google Scholar] [CrossRef]
- Wang, K.; Su, M.; Wei, L.; Chen, S.; Kong, X.; Fang, Y. Effect of initial turbulence on explosion behavior of stoichiometric methane-ethylene-air mixtures in confined space. Process Saf. Environ. Prot. 2022, 161, 583–593. [Google Scholar] [CrossRef]
- Kundu, S.K.; Zanganeh, J.; Eschebach, D.; Badat, Y.; Moghtaderi, B. Confined explosion of methane-air mixtures under turbulence. Fuel 2018, 220, 471–480. [Google Scholar] [CrossRef]
- Cai, P.; Liu, Z.; Li, M.; Zhao, Y.; Li, P.; Li, S.; Li, Y. Experimental study of effect of equivalence ratio and initial turbulence on the explosion characteristics of LPG/DME clean blended fuel. Energy 2022, 250, 123858. [Google Scholar] [CrossRef]
- Chang, X.; Zhang, B.; Ng, H.D.; Bai, C. The effects of pre-ignition turbulence by gas jets on the explosion behavior of methane-oxygen mixtures. Fuel 2020, 277, 118190. [Google Scholar] [CrossRef]
- Chang, X.; Bai, C.; Zhang, B. The effect of gas jets on the explosion dynamics of hydrogen-air mixtures. Process Saf. Environ. Prot. 2022, 162, 384–394. [Google Scholar] [CrossRef]
- Dong, C.; Zhou, Q.; Zhang, X.; Zhao, Q.; Xu, T.; Hui, S. Experimental study on the laminar flame speed of hydrogen/natural gas/air mixtures. Front. Chem. Eng. China 2010, 4, 417–422. [Google Scholar] [CrossRef]
- Ganatra, K.A.; Chattopadhyay, H.; Mathur, A. Investigation of free and impinging jets using generalized k-ω (GEKO) turbulence model. Int. J. Heat Fluid Flow 2025, 111, 109660. [Google Scholar] [CrossRef]
- Kumar, S.; Huang, R.; Hsu, C.M. Effects of pulsation intensity on the flow and dispersion of pulsed dual plane jets. Int. J. Mech. Sci. 2021, 193, 106182. [Google Scholar] [CrossRef]
- Yuan, M.; Hu, Q.; Yang, H.; Wang, X.; Wang, J.; Qian, X.; Li, P.; Pang, L.; Gao, Y. Evolution of Explosion-Venting Flow Field and Hazard Induced by a Vented Hydrogen Explosion in a 45 m3 Container. Energy Fuels 2024, 38, 16924–16935. [Google Scholar] [CrossRef]
- Kong, X.; Zhang, Y.; Li, G.; Lu, X.; Zhu, J.; Xu, J. Effects of Mainstream Velocity and Turbulence Intensity on the Sweeping Jet and Film Composite Cooling. Machines 2023, 11, 356. [Google Scholar] [CrossRef]
- Maghrabie, H.M. Heat transfer intensification of jet impingement using exciting jets—A comprehensive review. Renew. Sust. Energy Rev. 2021, 139, 110684. [Google Scholar] [CrossRef]
- Seif, A.A.; Zedan, M.F.; Shibl, A. Effect of Nozzle Exit Geometry on the Development of Turbulent jets. J. King Saud Univ.-Eng. Sci. 1994, 6, 217–239. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, B. Numerical and experimental analysis of detonation induced by shock wave focusing. Combust. Flame 2023, 251, 112691. [Google Scholar] [CrossRef]
- Sementa, P.; Tornatore, C.; Catapano, F.; Altieri, N. Impact of injection parameters on hydrogen combustion: Flame propagation and stability in ultra-lean mixtures. Int. J. Hydrogen Energy 2025, 143, 615–626. [Google Scholar] [CrossRef]
- Czwielong, F.; Becker, S. Active Turbulence Grid-Controlled Inflow Turbulence and Replication of Heat Exchanger Flow Fields in Fan Applications. Int. J. Turbomach. Propuls. Power 2023, 8, 1. [Google Scholar] [CrossRef]
- Arabkhalaj, A.; Verwey, C.; Birouk, M. Background vapor effect on droplet evaporation in a turbulent flow at elevated pressure. Proc. Combust. Inst. 2024, 40, 105523. [Google Scholar] [CrossRef]
- Arabkhalaj, A.; Verwey, C.; Birouk, M. Experimental study of butanol droplet evaporation in a turbulent, high-pressure environment. Fuel 2023, 353, 129143. [Google Scholar] [CrossRef]
- Nishino, T.; Willden, R.H.J. Effects of 3-D channel blockage and turbulent wake mixing on the limit of power extraction by tidal turbines. Int. J. Heat Fluid Flow 2012, 37, 123–135. [Google Scholar] [CrossRef]
- Kang, Y.; Lee, G.; Lee, K.M. Experimental study of turbulence and flame characteristics on low swirl burner integrated with modified square fractal grids. Appl. Therm. Eng. 2025, 258, 124440. [Google Scholar] [CrossRef]
- Lu, Y.S.; Zhong, X.X.; Liu, Z.Q.; Zhong, Q.; Chen, T.F. Bidirectional propagation characteristics of gas explosion disturbed by accumulated obstacles with varied blockage ratios. Fuel 2024, 374, 132472. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Y.; Liu, H. Analysis of the ignition induced by shock wave focusing equipped with conical and hemispherical reflectors. Combust. Flame 2022, 236, 111763. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, B. Experimental Study on the Detonation Propagation Behavior in a Thin Cylindrical Chamber. Aerosp. Sci. Technol. 2025, 159, 109988. [Google Scholar] [CrossRef]
- Chakraborty, N.; Dopazo, C. Timescales Associated with the Evolution of Reactive Scalar Gradient in Premixed Turbulent Combustion: A Direct Numerical Simulation Analysis. Fire 2024, 7, 73. [Google Scholar] [CrossRef]
- Yan, B.; Sun, C.; Feng, Q.; Chen, J.; Gao, Y.; Tao, C. The Study of Hydrogen Volume Fraction Effects on the Flame Temperature of Turbulence Diffusion Propane Jet Flames. Fire 2024, 7, 10. [Google Scholar] [CrossRef]
- Gopinathan, S.M.; Surendran, A.; Heckl, M.A. Hydrogen-blended fuels: Nonlinear flame dynamics and safe operation limits. Int. J. Hydrogen Energy 2025, 111, 371–384. [Google Scholar] [CrossRef]
- Dinesh, K.; Shalaby, H.; Luo, K.; Oijen, J.A.; Thévenin, D. High hydrogen content syngas fuel burning in lean premixed spherical flames at elevated pressures: Effects of preferential diffusion. Int. J. Hydrogen Energy 2016, 41, 18231–18249. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M.; Huang, Z.; Kudo, T.; Kobayashi, H. Measurement of the instantaneous flame front structure of syngas turbulent premixed flames at high pressure. Combust. Flame 2013, 160, 2434–2441. [Google Scholar] [CrossRef]
- Sun, S.; Qiu, Y.; Xing, H.; Wang, M. Effects of concentration and initial turbulence on the vented explosion characteristics of methane-air mixtures. Fuel 2020, 267, 117103. [Google Scholar] [CrossRef]
- Kaminski, C.F.; Hult, J.; Aldén, M.; Lindenmaier, S.; Dreizler, A.; Maas, U.; Baum, M. Spark ignition of turbulent methane/air mixtures revealed by time-resolved planar laser-induced fluorescence and direct numerical simulations. Proc. Combust. Inst. 2000, 28, 399–405. [Google Scholar] [CrossRef]
- Haq, M.Z.; Sheppard, C.G.W.; Woolley, R.; Greenhalgh, D.A.; Lockett, R.D. Wrinkling and curvature of laminar and turbulent premixed flames. Combust. Flame 2002, 131, 1–15. [Google Scholar] [CrossRef]
- Chang, X.Y.; Li, Y.F.; Yao, N.; Wang, K.; Zhou, B. Propagation characteristics and inherent instability of hydrogen-air premixed flame with inert gas dilution. Int. J. Hydrogen Energy 2024, 84, 132–145. [Google Scholar] [CrossRef]
Apparatus | Type/Parameters |
---|---|
20 L sphere chamber | UNS S30400; Internal Diameter: 340 mm |
High speed camera | Phantom V710L; Sampling frequency: 10 kHz; Exposure time: 5 μs |
Oscilloscope | DS1104Z |
Solenoid Valve | BS22A |
Omega pressure gauges | PXM309, Pressure range 0–0.7 MPa; Accuracy scale: ±0.25% |
Concave mirror | The focal length: 2 m |
LED light source | Exposure frequency: 10 kHz; Exposure time: 5 μs |
Jet Device | Solenoid valve: BS22A; Maximum working pressure: 1.6 MPa; Response time: 7 ms; Nozzle internal Diameter: 4 mm; Nozzle external Diameter: 6 mm; Nozzle Position: 12 mm from the spherical wall; Jet velocity: 165 m/s |
Symbol | Frequency Band (Relative to Original Signal) | General Meaning & Typical Use |
---|---|---|
D1 | Highest | Finest details & noise. Used for detecting sharp transitions, denoising (by discarding D1). |
D2 | Mid-High | Coarser details. Often contains important signal patterns; used for feature extraction. |
D3 | Medium | Medium-scale oscillations. Key for identifying specific frequencies of interest (e.g., faults). |
D4 | Low-Medium | Slow modulations. Analyzes behaviors over longer durations within the signal. |
D5 | Low | Slowest variations. Captures significant low-frequency events close to the main trend. |
A5 | Lowest (Core Trend) | The smooth, underlying outline of the signal after details D1–D5 are removed. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, X.; Ge, M.; Wang, K.; Zhang, B.; Xue, S.; Sun, Y. The Effect of Jet-Induced Disturbances on the Flame Characteristics of Hydrogen–Air Mixtures. Fire 2025, 8, 393. https://doi.org/10.3390/fire8100393
Chang X, Ge M, Wang K, Zhang B, Xue S, Sun Y. The Effect of Jet-Induced Disturbances on the Flame Characteristics of Hydrogen–Air Mixtures. Fire. 2025; 8(10):393. https://doi.org/10.3390/fire8100393
Chicago/Turabian StyleChang, Xinyu, Mengyuan Ge, Kai Wang, Bo Zhang, Sheng Xue, and Yu Sun. 2025. "The Effect of Jet-Induced Disturbances on the Flame Characteristics of Hydrogen–Air Mixtures" Fire 8, no. 10: 393. https://doi.org/10.3390/fire8100393
APA StyleChang, X., Ge, M., Wang, K., Zhang, B., Xue, S., & Sun, Y. (2025). The Effect of Jet-Induced Disturbances on the Flame Characteristics of Hydrogen–Air Mixtures. Fire, 8(10), 393. https://doi.org/10.3390/fire8100393