Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,625)

Search Parameters:
Keywords = transient responses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2737 KiB  
Article
Thermogenic Activation of Adipose Tissue by Caffeine During Strenuous Exercising and Recovery: A Double-Blind Crossover Study
by Dany Alexis Sobarzo Soto, Diego Ignácio Valenzuela Pérez, Mateus Rossow de Souza, Milena Leite Garcia Reis, Naiara Ribeiro Almeida, Bianca Miarka, Esteban Aedo-Muñoz, Armin Isael Alvarado Oyarzo, Manuel Sillero-Quintana, Andreia Cristiane Carrenho Queiroz and Ciro José Brito
Metabolites 2025, 15(8), 517; https://doi.org/10.3390/metabo15080517 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: To investigate acute caffeine (CAF: 375 mg, ≈4.8 mg/kg body mass) effects on energy expenditure (EE) and substrate kinetics during high-intensity interval exercise in individuals with high (HBAT) versus low (LBAT) brown adipose tissue activity using time-trend polynomial modeling. Methods: This [...] Read more.
Background/Objectives: To investigate acute caffeine (CAF: 375 mg, ≈4.8 mg/kg body mass) effects on energy expenditure (EE) and substrate kinetics during high-intensity interval exercise in individuals with high (HBAT) versus low (LBAT) brown adipose tissue activity using time-trend polynomial modeling. Methods: This is a randomized, double-blind crossover study in which 35 highly-trained males [HBAT-CAF, HBAT-PLA (Placebo), LBAT-CAF, LBAT-PLA] performed 30-min treadmill HIIE. Infrared thermography (IRT) assessed BAT activity by measuring supraclavicular skin temperature (SST). Breath-by-breath ergospirometry measured EE (kcal/min) and carbohydrate (CHO), lipid (LIP), and protein (PTN) oxidation. We applied second- and third-order polynomial regression models to depict the temporal trajectories of metabolic responses. Results: HBAT groups showed 25% higher sustained EE versus LBAT (p < 0.001), amplified by CAF. CHO oxidation exhibited biphasic kinetics: HBAT had 40% higher initial rates (0.75 ± 0.05 vs. 0.45 ± 0.04 g/min; p < 0.001) with accelerated decline (k = −0.21 vs. −0.15/min; p = 0.01). LIP oxidation peaked later in LBAT (40 vs. 20 min in HBAT), with CAF increasing oxidation by 18% in LBAT (p = 0.01). HBAT-CAF uniquely showed transient PTN catabolism (peak: 0.045 g/min at 10 min; k = −0.0033/min; p < 0.001). Conclusions: BAT status determines EE magnitude and substrate-specific kinetic patterns, while CAF exerts divergent modulation, potentiating early glycogenolysis in HBAT and lipolysis in LBAT. The HBAT-CAF synergy triggers acute proteolysis, revealing BAT-mediated metabolic switching. Full article
(This article belongs to the Special Issue Energy Metabolism in Brown Adipose Tissue)
Show Figures

Figure 1

16 pages, 2055 KiB  
Article
The Transcription Factor Basic Pentacysteine 5, RsBPC5, Enhances Lead Stress Tolerance in Raphanus sativus
by Jian Xiao, Yongli Wen, Wenjing Kang, Fangzhou Yu, Chuan Liu, Zhenyu Peng and Dianheng Xu
Plants 2025, 14(15), 2362; https://doi.org/10.3390/plants14152362 - 1 Aug 2025
Abstract
Radish (Raphanus sativus), a commonly grown root vegetable prized for its nutrition and culinary use, is particularly vulnerable to lead (Pb) stress, which mainly results in Pb accumulation in the roots. However, the molecular mechanisms underlying Pb accumulation in radish remain [...] Read more.
Radish (Raphanus sativus), a commonly grown root vegetable prized for its nutrition and culinary use, is particularly vulnerable to lead (Pb) stress, which mainly results in Pb accumulation in the roots. However, the molecular mechanisms underlying Pb accumulation in radish remain largely unknown. In this study, we investigated the role of BASIC PENTACYSTEINE (BPC) genes in radish’s response to Pb stress. Phylogenetic analysis revealed that radish contains 10 BPC genes, which are distinctly clustered in Cluster III. Expression analysis revealed that, except for RsBPC2, RsBPC4, and RsBPC7, the expression of most RsBPC genes was significantly altered under Pb stress. Notably, the expression of RsBPC5 gradually decreased with prolonged Pb exposure. Subcellular localization analysis confirmed that RsBPC5 is localized in the nucleus and acts as a transcriptional repressor. Functional assays demonstrated that transient overexpression of RsBPC5 enhanced the tolerance of radish plants to Pb stress via reducing Pb accumulation and activating the antioxidant defense system. Collectively, our findings suggest that RsBPC5 plays a key role in radish’s response to Pb stress, potentially improving Pb tolerance by modulating Pb uptake and strengthening antioxidant defense mechanisms. Full article
(This article belongs to the Special Issue The Physiology of Abiotic Stress in Plants)
Show Figures

Figure 1

14 pages, 267 KiB  
Article
Impact of Short-Term Liraglutide Therapy on Non-Invasive Markers of Liver Fibrosis in Patients with MASLD
by Aleksandra Bołdys, Maciej Borówka, Łukasz Bułdak and Bogusław Okopień
Metabolites 2025, 15(8), 510; https://doi.org/10.3390/metabo15080510 (registering DOI) - 31 Jul 2025
Abstract
Background/Objectives: Affecting close to one-third of the global population, metabolic dysfunction-associated steatotic liver disease (MASLD) is a highly prevalent chronic liver disorder linked to metabolic risk factors such as obesity and insulin resistance. Liver fibrosis is a key determinant of prognosis, and [...] Read more.
Background/Objectives: Affecting close to one-third of the global population, metabolic dysfunction-associated steatotic liver disease (MASLD) is a highly prevalent chronic liver disorder linked to metabolic risk factors such as obesity and insulin resistance. Liver fibrosis is a key determinant of prognosis, and its progression increases the risk of liver-related and overall mortality. This exploratory research evaluated the potential impact of a 3-month intervention involving dietary counseling and liraglutide therapy on liver fibrosis and related metabolic markers in patients with MASLD and obesity without diabetes. Methods: In this prospective, single-arm exploratory intervention, 28 adult patients with MASLD and obesity received structured dietary counseling and daily subcutaneous liraglutide for 12 weeks. Liver fibrosis was assessed using non-invasive indices (FIB-4, APRI, BARD, ELF) and transient elastography performed with the FibroScan® device (Echosens, Paris, France). Results: After 3 months, a significant reduction in liver stiffness (−7.14%, p < 0.05) and ELF score (from 6.71 to 6.63; −1.2%, p < 0.05) was observed. APRI (p = 0.06) and FIB-4 (p = 0.09) showed trends toward improvement, while the BARD score and AST/ALT ratio remained unchanged. Conclusions: Short-term liraglutide therapy combined with lifestyle modification may improve early-stage liver fibrosis in patients with MASLD and obesity, as indicated by reductions in liver stiffness and ELF score. These preliminary findings highlight the potential of advanced non-invasive fibrosis markers in monitoring treatment response. However, as an exploratory study, results should be interpreted with caution, and larger, long-term trials are needed to confirm these observations and evaluate efficacy in patients with more advanced fibrosis stages. Full article
9 pages, 2757 KiB  
Article
Externally Triggered Activation of Nanostructure-Masked Cell-Penetrating Peptides
by Gayong Shim
Molecules 2025, 30(15), 3205; https://doi.org/10.3390/molecules30153205 - 30 Jul 2025
Abstract
Cell-penetrating peptides offer a promising strategy for intracellular delivery; however, non-specific uptake and off-target cytotoxicity limit their clinical utility. To address these limitations, a cold atmospheric plasma-responsive delivery platform was developed in which the membrane activity of a peptide was transiently suppressed upon [...] Read more.
Cell-penetrating peptides offer a promising strategy for intracellular delivery; however, non-specific uptake and off-target cytotoxicity limit their clinical utility. To address these limitations, a cold atmospheric plasma-responsive delivery platform was developed in which the membrane activity of a peptide was transiently suppressed upon complexation with a DNA-based nanostructure. Upon localized plasma exposure, DNA masking was disrupted, restoring the biological functions of the peptides. Transmission electron microscopy revealed that the synthesized DNA nanoflower structures were approximately 150–250 nm in size. Structural and functional analyses confirmed that the system remained inert under physiological conditions and was rapidly activated by plasma treatment. Fluorescence recovery, cellular uptake assays, and cytotoxicity measurements demonstrated that the peptide activity could be precisely controlled in both monolayer and three-dimensional spheroid models. This externally activatable nanomaterial-based system enables the spatial and temporal regulation of peptide function without requiring biochemical triggers or permanent chemical modifications. This platform provides a modular strategy for the development of potential peptide therapeutics that require precise control of activation in complex biological environments. Full article
(This article belongs to the Special Issue Nanomaterials for Advanced Biomedical Applications, 2nd Edition)
Show Figures

Figure 1

23 pages, 4708 KiB  
Article
Mechanical Characteristics and Precision Analysis of Inflatable Deployable Parabolic Membrane Antenna Structures
by Yu Hu, Huichao Ji and Wujun Chen
Aerospace 2025, 12(8), 677; https://doi.org/10.3390/aerospace12080677 - 29 Jul 2025
Viewed by 135
Abstract
As accuracy of the reflector surface of a space parabolic deployable antenna is an important factor to determine its electrical characteristics (transmission gain and side lobes), mechanical characteristics of parabolic antennas under various internal pressures should be studied. The objective of this paper [...] Read more.
As accuracy of the reflector surface of a space parabolic deployable antenna is an important factor to determine its electrical characteristics (transmission gain and side lobes), mechanical characteristics of parabolic antennas under various internal pressures should be studied. The objective of this paper is to explore the force analysis of parabolic antennas by theoretical method and to estimate the effect of different air pressures on the surface precision of parabolic antennas via experiments in horizontal and vertical directions, and then a numerical analysis of the vibration characteristics of the parabolic antenna is proposed to explore the transient response of parabolic antennas. It is found that the ratio of tension reduces as depth of the parabolic membrane increases and can infinitely converge to 1/2. For precision analysis, it is concluded that precision of the parabolic membrane surface in a vertical state is higher than that in a horizontal state. Full article
Show Figures

Figure 1

25 pages, 1925 KiB  
Article
Distinctive Temporal Profiles of Interferon-Stimulated Genes in Natural Infection, Viral Challenge, and Vaccination
by Hongxing Lei
Viruses 2025, 17(8), 1060; https://doi.org/10.3390/v17081060 - 29 Jul 2025
Viewed by 177
Abstract
Interferon (IFN) signaling plays vital roles in host defense against viral infection. However, a variety of observations have been reported in the literature regarding the roles of IFN signaling in COVID-19. Thus, it would be important to reach a clearer picture regarding the [...] Read more.
Interferon (IFN) signaling plays vital roles in host defense against viral infection. However, a variety of observations have been reported in the literature regarding the roles of IFN signaling in COVID-19. Thus, it would be important to reach a clearer picture regarding the activation or suppression of IFN signaling in COVID-19. In this work, regulation of marker genes for IFN signaling was examined in natural infection, viral challenge, and vaccination based on 13 public transcriptome datasets. Three subsets of interferon-stimulated genes (ISGs) were selected for detailed examination, including one set of marker genes for type I IFN signaling (ISGa) and two sets of marker genes for type II IFN signaling (IFN-γ signaling, GBPs for the GBP gene cluster, and HLAd for the HLA-D gene cluster). In natural infection, activation of ISGa and GBPs was accompanied by the suppression of HLAd in hospitalized patients. Suppression of GBPs was also observed in certain critical conditions. The scale of regulation was much greater for ISGa than that of GBPs and HLAd. In addition, the suppression of HLAd was correlated with disease severity, and it took much longer for HLAd to return to the level of healthy controls than that for ISGa and GBPs. Upon viral challenge, the activation of ISGa and GBPs was similar to that of natural infection, while the suppression of HLAd was not observed. Moreover, GBPs’ return to the pre-infection level was at a faster pace than that of ISGa. Upon COVID-19 vaccination, activation was observed for all of these three gene sets, and the scale of activation was comparable for ISGa and GBPs. Notably, it took a much shorter time for GBPs and ISGa to return to the level of healthy controls than that in COVID-19 infection. In addition, the baseline values and transient activation of these gene sets were also associated with subsequent vaccination response. The intricate balance of IFN signaling was demonstrated in mild breakthrough infection, where attenuated response was observed in people with prior vaccination compared to that in vaccine-naïve subjects. Overall, distinctive temporal profiles of IFN signaling were observed in natural infection, viral challenge, and vaccination. The features observed in this work may provide novel insights into the disease management and vaccine development. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

21 pages, 3802 KiB  
Article
Parameter Identification and Speed Control of a Small-Scale BLDC Motor: Experimental Validation and Real-Time PI Control with Low-Pass Filtering
by Ayman Ibrahim Abouseda, Resat Ozgur Doruk and Ali Amini
Machines 2025, 13(8), 656; https://doi.org/10.3390/machines13080656 - 27 Jul 2025
Viewed by 285
Abstract
This paper presents a structured and experimentally validated approach to the parameter identification, modeling, and real-time speed control of a brushless DC (BLDC) motor. Electrical parameters, including resistance and inductance, were measured through DC and AC testing under controlled conditions, respectively, while mechanical [...] Read more.
This paper presents a structured and experimentally validated approach to the parameter identification, modeling, and real-time speed control of a brushless DC (BLDC) motor. Electrical parameters, including resistance and inductance, were measured through DC and AC testing under controlled conditions, respectively, while mechanical and electromagnetic parameters such as the back electromotive force (EMF) constant and rotor inertia were determined experimentally using an AVL dynamometer. The back EMF was obtained by operating the motor as a generator under varying speeds, and inertia was identified using a deceleration method based on the relationship between angular acceleration and torque. The identified parameters were used to construct a transfer function model of the motor, which was implemented in MATLAB/Simulink R2024b and validated against real-time experimental data using sinusoidal and exponential input signals. The comparison between simulated and measured speed responses showed strong agreement, confirming the accuracy of the model. A proportional–integral (PI) controller was developed and implemented for speed regulation, using a low-cost National Instruments (NI) USB-6009 data acquisition (DAQ) and a Kelly controller. A first-order low-pass filter was integrated into the control loop to suppress high-frequency disturbances and improve transient performance. Experimental tests using a stepwise reference speed profile demonstrated accurate tracking, minimal overshoot, and robust operation. Although the modeling and control techniques applied are well known, the novelty of this work lies in its integration of experimental parameter identification, real-time validation, and practical hardware implementation within a unified and replicable framework. This approach provides a solid foundation for further studies involving more advanced or adaptive control strategies for BLDC motors. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

21 pages, 3892 KiB  
Article
Quantitative Analysis of the Fault Ride-Through Current and Control Parameters in Hybrid Modular Multilevel Converters
by Yi Xu and Bowen Tang
Appl. Sci. 2025, 15(15), 8331; https://doi.org/10.3390/app15158331 - 26 Jul 2025
Viewed by 206
Abstract
A quantitative analysis of the fault transient is critical for system resilience assessment and protection coordination. Focusing on hybrid modular multilevel converter (MMC)-based HVDC architecture with enhanced fault ride-through (FRT) capability, this study develops a mathematical calculation framework to quantify how controller configurations [...] Read more.
A quantitative analysis of the fault transient is critical for system resilience assessment and protection coordination. Focusing on hybrid modular multilevel converter (MMC)-based HVDC architecture with enhanced fault ride-through (FRT) capability, this study develops a mathematical calculation framework to quantify how controller configurations influence fault current profiles. Unlike conventional static topologies (e.g., RLC or fixed-voltage RL circuits), the proposed model integrates an RL network with a time-variant controlled voltage source, which can emulate closed-loop control response during the FRT transient. Then, the quantitative relationship is established to map the parameters of DC controllers to the fault current across diverse FRT strategies, including scenarios where control saturation dominates the transient response. Simulation studies conducted on a two-terminal MMC-HVDC architecture substantiate the efficacy and precision of the developed methodology. The proposed method enables the evaluation of DC fault behavior for hybrid MMCs, concurrently appraising FRT control strategies. Full article
(This article belongs to the Special Issue Power Electronics: Control and Applications)
Show Figures

Figure 1

19 pages, 8002 KiB  
Article
3D Forward Simulation of Borehole-Surface Transient Electromagnetic Based on Unstructured Finite Element Method
by Jiayi Liu, Tianjun Cheng, Lei Zhou, Xinyu Wang and Xingbing Xie
Minerals 2025, 15(8), 785; https://doi.org/10.3390/min15080785 - 26 Jul 2025
Viewed by 123
Abstract
The time-domain electromagnetic method has been widely applied in mineral exploration, oil, and gas fields in recent years. However, its response characteristics remain unclear, and there is an urgent need to study the response characteristics of the borehole-surface transient electromagnetic(BSTEM) field. This study [...] Read more.
The time-domain electromagnetic method has been widely applied in mineral exploration, oil, and gas fields in recent years. However, its response characteristics remain unclear, and there is an urgent need to study the response characteristics of the borehole-surface transient electromagnetic(BSTEM) field. This study starts from the time-domain electric field diffusion equation and discretizes the calculation area in space using tetrahedral meshes. The Galerkin method is used to derive the finite element equation of the electric field, and the vector interpolation basis function is used to approximate the electric field in any arbitrary tetrahedral mesh in the free space, thus achieving the three-dimensional forward simulation of the BSTEM field based on the finite element method. Following validation of the numerical simulation method, we further analyze the electromagnetic field response excited by vertical line sources.. Through comparison, it is concluded that measuring the radial electric field is the most intuitive and effective layout method for BSTEM, with a focus on the propagation characteristics of the electromagnetic field in both low-resistance and high-resistance anomalies at different positions. Numerical simulations reveal that BSTEM demonstrates superior resolution capability for low-resistivity anomalies, while showing limited detectability for high-resistivity anomalies Numerical simulation results of BSTEM with realistic orebody models, the correctness of this rule is further verified. This has important implications for our understanding of the propagation laws of BSTEM as well as for subsequent data processing and interpretation. Full article
(This article belongs to the Special Issue Geoelectricity and Electrical Methods in Mineral Exploration)
Show Figures

Figure 1

9 pages, 2733 KiB  
Data Descriptor
Investigating Mid-Latitude Lower Ionospheric Responses to Energetic Electron Precipitation: A Case Study
by Aleksandra Kolarski, Vladimir A. Srećković, Zoran R. Mijić and Filip Arnaut
Data 2025, 10(8), 121; https://doi.org/10.3390/data10080121 - 26 Jul 2025
Viewed by 171
Abstract
Localized ionization enhancements (LIEs) in altitude range corresponding to the D-region ionosphere, disrupting Very-Low-Frequency (VLF) signal propagation. This case study focuses on Lightning-induced Electron Precipitation (LEP), analyzing amplitude and phase variations in VLF signals recorded in Belgrade, Serbia, from worldwide transmitters. Due to [...] Read more.
Localized ionization enhancements (LIEs) in altitude range corresponding to the D-region ionosphere, disrupting Very-Low-Frequency (VLF) signal propagation. This case study focuses on Lightning-induced Electron Precipitation (LEP), analyzing amplitude and phase variations in VLF signals recorded in Belgrade, Serbia, from worldwide transmitters. Due to the localized, transient nature of Energetic Electron Precipitation (EEP) events and the path-dependence of VLF responses, research relies on event-specific case studies to model reflection height and sharpness via numerical simulations. Findings show LIEs are typically under 1000 × 500 km, with varying internal structure. Accumulated case studies and corresponding data across diverse conditions contribute to a broader understanding of ionospheric dynamics and space weather effects. These findings enhance regional modeling, support aerosol–electricity climate research, and underscore the value of VLF-based ionospheric monitoring and collaboration in Europe. Full article
(This article belongs to the Section Spatial Data Science and Digital Earth)
Show Figures

Figure 1

20 pages, 5404 KiB  
Article
Adaptive Transient Synchronization Support Strategy for Grid-Forming Energy Storage Facing Inverter Faults
by Chao Xing, Jiajie Xiao, Peiqiang Li, Xinze Xi, Yunhe Chen and Qi Guo
Electronics 2025, 14(15), 2980; https://doi.org/10.3390/electronics14152980 - 26 Jul 2025
Viewed by 220
Abstract
Aiming at the transient synchronization instability problem of grid-forming energy storage under a fault in the grid-connected inverter, this paper proposes an adaptive transient synchronization support strategy for grid-forming energy storage facing inverter faults. First, the equal area rule is employed to analyze [...] Read more.
Aiming at the transient synchronization instability problem of grid-forming energy storage under a fault in the grid-connected inverter, this paper proposes an adaptive transient synchronization support strategy for grid-forming energy storage facing inverter faults. First, the equal area rule is employed to analyze the transient response mechanism of the grid-forming energy storage grid-connected inverter under faults, revealing the negative coupling relationship between active power output and transient stability, as well as the positive coupling relationship between reactive power output and transient stability. Based on this, through the analysis of the dynamic characteristics of the fault overcurrent, the negative correlation between the fault inrush current and impedance and the positive correlations among the fault steady-state current, active power, and voltage at the point of common coupling are identified. Then, a variable proportional–integral controller is designed to adaptively correct the active power reference value command, and the active power during the fault is gradually restored via the frequency feedback mechanism. Meanwhile, the reactive power reference value is dynamically adjusted according to the voltage at the point of common coupling to effectively support the voltage. Finally, the effectiveness of the proposed strategy is verified in MATLAB/Simulink. Full article
(This article belongs to the Special Issue Energy Saving Management Systems: Challenges and Applications)
Show Figures

Figure 1

16 pages, 1160 KiB  
Article
PMSM Control Paradigm Shift: Hybrid Dual Fractional-Order Sliding Mode Control with Evolutionary Parameter Learning
by Peng Gao, Liandi Fang and Huihui Pan
Fractal Fract. 2025, 9(8), 491; https://doi.org/10.3390/fractalfract9080491 - 25 Jul 2025
Viewed by 175
Abstract
This study introduces a paradigm shift in permanent magnet synchronous motor (PMSM) control through the development of hybrid dual fractional-order sliding mode control (HDFOSMC) architecture integrated with evolutionary parameter learning (EPL). Conventional PMSM control frameworks face critical limitations in ultra-precision applications due to [...] Read more.
This study introduces a paradigm shift in permanent magnet synchronous motor (PMSM) control through the development of hybrid dual fractional-order sliding mode control (HDFOSMC) architecture integrated with evolutionary parameter learning (EPL). Conventional PMSM control frameworks face critical limitations in ultra-precision applications due to their inability to reconcile dynamic agility with steady-state precision under time-varying parameters and compound disturbances. The proposed HDFOSMC framework addresses these challenges via two synergistic innovations: (1) a dual fractional-order sliding manifold that fuses the rapid transient response of non-integer-order differentiation with the small steady-state error capability of dual-integral compensation, and (2) an EPL mechanism enabling real-time adaptation to thermal drift, load mutations, and unmodeled nonlinearities. Validation can be obtained through the comparison of the results on PMSM testbenches, which demonstrate superior performance over traditional fractional-order sliding mode control (FOSMC). By integrating fractional-order theory, sliding mode control theory, and parameter self-tuning theory, this study proposes a novel control framework for PMSM. The developed system achieves high-precision performance under extreme operational uncertainties through this innovative theoretical synthesis and comparative results. Full article
Show Figures

Figure 1

22 pages, 7102 KiB  
Article
Electrolytic Plasma Hardening of 20GL Steel: Thermal Modeling and Experimental Characterization of Surface Modification
by Bauyrzhan Rakhadilov, Rinat Kurmangaliyev, Yerzhan Shayakhmetov, Rinat Kussainov, Almasbek Maulit and Nurlat Kadyrbolat
Appl. Sci. 2025, 15(15), 8288; https://doi.org/10.3390/app15158288 - 25 Jul 2025
Viewed by 94
Abstract
This study investigates the thermal response and surface modification of low-carbon manganese-alloyed 20GL steel during electrolytic plasma hardening. The objective was to evaluate the feasibility of surface hardening 20GL steel—traditionally considered difficult to quench—by combining high-rate surface heating with rapid cooling in an [...] Read more.
This study investigates the thermal response and surface modification of low-carbon manganese-alloyed 20GL steel during electrolytic plasma hardening. The objective was to evaluate the feasibility of surface hardening 20GL steel—traditionally considered difficult to quench—by combining high-rate surface heating with rapid cooling in an electrolyte medium. To achieve this, a transient two-dimensional heat conduction model was developed to simulate temperature evolution in the steel sample under three voltage regimes. The model accounted for dynamic thermal properties and non-linear boundary conditions, focusing on temperature gradients across the thickness. Experimental temperature measurements were obtained using a K-type thermocouple embedded at a depth of 2 mm, with corrections for sensor inertia based on exponential response behavior. A comparison between simulation and experiment was conducted, focusing on peak temperatures, heating and cooling rates, and the effective thermal penetration depth. Microhardness profiling and metallographic examination confirmed surface strengthening and structural refinement, which intensified with increasing voltage. Importantly, the study identified a critical cooling rate threshold of approximately 50 °C/s required to initiate martensitic transformation in 20GL steel. These findings provide a foundation for future optimization of quenching strategies for low-carbon steels by offering insight into the interplay between thermal fluxes, surface kinetics, and process parameters. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

22 pages, 7542 KiB  
Article
Flow-Induced Vibration Stability in Pilot-Operated Control Valves with Nonlinear Fluid–Structure Interaction Analysis
by Lingxia Yang, Shuxun Li and Jianjun Hou
Actuators 2025, 14(8), 372; https://doi.org/10.3390/act14080372 - 25 Jul 2025
Viewed by 113
Abstract
Control valves in nuclear systems operate under high-pressure differentials generating intense transient fluid forces that induce destructive structural vibrations, risking resonance and the valve stem fracture. In this study, computational fluid dynamics (CFD) was employed to characterize the internal flow dynamics of the [...] Read more.
Control valves in nuclear systems operate under high-pressure differentials generating intense transient fluid forces that induce destructive structural vibrations, risking resonance and the valve stem fracture. In this study, computational fluid dynamics (CFD) was employed to characterize the internal flow dynamics of the valve, supported by experiment validation of the fluid model. To account for nonlinear structural effects such as contact and damping, a coupled fluid–structure interaction approach incorporating nonlinear perturbation analysis was applied to evaluate the dynamic response of the valve core assembly under fluid excitation. The results indicate that flow separation, re-circulation, and vortex shedding within the throttling region are primary contributors to structural vibrations. A comparative analysis of stability coefficients, modal damping ratios, and logarithmic decrements under different valve openings revealed that the valve core assembly remains relatively stable overall. However, critical stability risks were identified in the lower-order modal frequency range at 50% and 70% openings. Notably, at a 70% opening, the first-order modal frequency of the valve core assembly closely aligns with the frequency of fluid excitation, indicating a potential for critical resonance. This research provides important insights for evaluating and enhancing the vibration stability and operational safety of control valves under complex flow conditions. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

13 pages, 1895 KiB  
Article
Class-Dependent Solar Flare Effects on Mars’ Upper Atmosphere: MAVEN NGIMS Observations of X8.2 and M6.0 from September 2017
by Junaid Haleem and Shican Qiu
Universe 2025, 11(8), 245; https://doi.org/10.3390/universe11080245 - 25 Jul 2025
Viewed by 179
Abstract
Transient increments of X-ray radiation and extreme ultraviolet (EUV) during solar flares are strong drivers of thermospheric dynamics on Mars, yet their class-dependent impacts remain poorly measured. This work provides the first direct, side-by-side study of Martian thermospheric reactions to flares X8.2 on [...] Read more.
Transient increments of X-ray radiation and extreme ultraviolet (EUV) during solar flares are strong drivers of thermospheric dynamics on Mars, yet their class-dependent impacts remain poorly measured. This work provides the first direct, side-by-side study of Martian thermospheric reactions to flares X8.2 on 10 September 2017 and M6.0 on 17 September 2017. This study shows nonlinear, class-dependent effects, compositional changes, and recovery processes not recorded in previous investigations. Species-specific responses deviated significantly from irradiance proportionality, even though the soft X-ray flux in the X8.2 flare was 13 times greater. Argon (Ar) concentrations rose 3.28× (compared to 1.13× for M6.0), and radiative cooling led CO2 heating to approach a halt at ΔT = +40 K (X8.2) against +19 K (M6.0) at exobase altitudes (196–259 km). N2 showed the largest class difference, where temperatures rose by +126 K (X8.2) instead of +19 K (M6.0), therefore displaying flare-magnitude dependent thermal sensitivity. The 1.95× increase in O concentrations during X8.2 and the subsequent decrease following M6.0 (−39 K cooling) illustrate the contradiction between photochemical production and radiative loss. The O/CO2 ratio at 225 km dropped 46% during X8.2, revealing compositional gradients boosted by flares. Recovery timeframes varied by class; CO2 quickly re-equilibrated because of effective cooling, whereas inert species (Ar, N2) stabilized within 1–2 orbits after M6.0 but needed >10 orbits of the MAVEN satellite after the X8.2 flare. The observations of the X8.2 flare came from the western limb of the Sun, but the M6.0 flare happened on the far side. The CME shock was the primary driver of Mars’ EUV reaction. These findings provide additional information on atmospheric loss and planetary habitability by indicating that Mars’ thermosphere has a saturation threshold where strong flares induce nonlinear energy partitioning that encourages the departure of lighter species. Full article
Show Figures

Figure 1

Back to TopTop