Impact of Short-Term Liraglutide Therapy on Non-Invasive Markers of Liver Fibrosis in Patients with MASLD
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Inclusion and Exclusion Criteria
2.3. Anthropometric and Laboratory Assessments
2.4. Liver Fibrosis Assessment
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristic and Impact of Liraglutide Therapy on Anthropometric and Basic Laboratory Parameters
3.2. The Impact of Liraglutide Treatment on Liver Fibrosis (FibroScan®)
3.3. The Effect of Liraglutide Therapy on Liver Fibrosis as Assessed by Diagnostic Algorithms
3.4. Established and Exploratory Markers in Liver Fibrosis
3.5. Adverse Effects and Treatment’s Safety
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AASLD | American Association for the Study of Liver Diseases |
ALD | Alcohol Related Liver Disease |
ALP | Alkaline Phosphatase |
ALT | Alanine Aminotransferase |
a2M | Alpha-2-Macroglobulin |
APOA1 | Apolipoprotein A1 |
AST | Aspartate Aminotransferase |
APRI | Aspartate Aminotransferase to Platelet Ratio Index |
BARD | BMI, AST/ALT ratio, and Diabetes |
Bil | Bilirubin |
BMI | Body Mass Index |
BW | Body Weight |
CAP | Controlled Attenuation Parameter® |
CHI3L1 | Chitinase-3-like Protein 1 |
EASD | European Association for the Study of Diabetes |
EASL | European Association for the Study of the Liver |
EASO | European Association for the Study of Obesity |
EMA | European Medicines Agency |
ELF test | Enhanced Liver Fibrosis Test |
FIB-4 | Fibrosis-4 Index |
GGT | Gamma-glutamyl Transferase |
GLP-1 | Glucagon-Like Peptide-1 |
GLP-1 RA | Glucagon-Like Peptide-1 Receptor Agonist |
HDL | High-Density Lipoprotein |
HDL-c | High-Density Lipoprotein cholesterol |
HGF | Hepatocyte Growth Factor |
HOMA-IR | Homeostasis Model Assessment of Insulin Resistance |
HYA | Hyaluronic Acid |
IFN-γ | Interferon Gamma |
LDL | Low-Density Lipoprotein cholesterol |
MASH | Metabolic Dysfunction-Associated Steatohepatitis |
MASL | Metabolic Dysfunction-Associated Steatotic Liver |
MASLD | Metabolic Dysfunction-Associated Steatotic Liver Disease |
Met-ALD | MASLD with Moderate Alcohol Consumption |
METS-IR | Metabolic Score for Insulin Resistance |
MRI-PDFF | MRI Proton Density Fat Fraction |
NAFLD | Non-Alcoholic Fatty Liver Disease |
nHDL | Non-HDL Cholesterol |
PIIINP | N-terminal Propeptide of Type III Procollagen |
QUICKI | Quantitative Insulin Sensitivity Check Index |
TGF-α | Transforming Growth Factor-alpha |
TIMP1 | Tissue Inhibitor of Metalloproteinases 1 |
TCh | Total Cholesterol |
TyG | Triglyceride-Glucose index |
TG | Triglycerides |
TNF-α | Tumor Necrosis Factor alpha |
UA | Uric Acid |
WHR | Waist-to-Hip Ratio |
References
- Amini-Salehi, E.; Letafatkar, N.; Norouzi, N.; Joukar, F.; Habibi, A.; Javid, M.; Sattari, N.; Khorasani, M.; Farahmand, A.; Tavakoli, S.; et al. Global Prevalence of Nonalcoholic Fatty Liver Disease: An Updated Review Meta-Analysis Comprising a Population of 78 Million from 38 Countries. Arch. Med. Res. 2024, 55, 103043. [Google Scholar] [CrossRef]
- Chan, W.-K.; Chuah, K.-H.; Rajaram, R.B.; Lim, L.-L.; Ratnasingam, J.; Vethakkan, S.R. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A State-of-the-Art Review. J. Obes. Metab. Syndr. 2023, 32, 197–213. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The Global Epidemiology of Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH): A Systematic Review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef]
- Quek, J.; Chan, K.E.; Wong, Z.Y.; Tan, C.; Tan, B.; Lim, W.H.; Tan, D.J.H.; Tang, A.S.P.; Tay, P.; Xiao, J.; et al. Global Prevalence of Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis in the Overweight and Obese Population: A Systematic Review and Meta-Analysis. Lancet Gastroenterol. Hepatol. 2023, 8, 20–30. [Google Scholar] [CrossRef]
- Tacke, F.; Horn, P.; Wai-Sun Wong, V.; Ratziu, V.; Bugianesi, E.; Francque, S.; Zelber-Sagi, S.; Valenti, L.; Roden, M.; Schick, F.; et al. EASL–EASD–EASO Clinical Practice Guidelines on the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). J. Hepatol. 2024, 81, 492–542. [Google Scholar] [CrossRef]
- Hagström, H.; Kechagias, S.; Ekstedt, M. Risk for Hepatic and Extra-hepatic Outcomes in Nonalcoholic Fatty Liver Disease. J. Intern. Med. 2022, 292, 177–189. [Google Scholar] [CrossRef]
- Taylor, R.S.; Taylor, R.J.; Bayliss, S.; Hagström, H.; Nasr, P.; Schattenberg, J.M.; Ishigami, M.; Toyoda, H.; Wai-Sun Wong, V.; Peleg, N.; et al. Association Between Fibrosis Stage and Outcomes of Patients With Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Gastroenterology 2020, 158, 1611–1625.e12. [Google Scholar] [CrossRef]
- Chen, V.L.; Morgan, T.R.; Rotman, Y.; Patton, H.M.; Cusi, K.; Kanwal, F.; Kim, W.R. Resmetirom Therapy for Metabolic Dysfunction-Associated Steatotic Liver Disease: October 2024 Updates to AASLD Practice Guidance. Hepatology 2025, 81, 312–320. [Google Scholar] [CrossRef]
- European Medicines Agency CHMP Summary of Positive Opinion for Rezdiffra. Available online: https://www.ema.europa.eu/en/documents/smop-initial/chmp-summary-positive-opinion-rezdiffra_en.pdf (accessed on 21 June 2025).
- Bendotti, G.; Montefusco, L.; Lunati, M.E.; Usuelli, V.; Pastore, I.; Lazzaroni, E.; Assi, E.; Seelam, A.J.; El Essawy, B.; Jang, J.; et al. The Anti-Inflammatory and Immunological Properties of GLP-1 Receptor Agonists. Pharmacol. Res. 2022, 182, 106320. [Google Scholar] [CrossRef]
- Popoviciu, M.-S.; Păduraru, L.; Yahya, G.; Metwally, K.; Cavalu, S. Emerging Role of GLP-1 Agonists in Obesity: A Comprehensive Review of Randomised Controlled Trials. Int. J. Mol. Sci. 2023, 24, 10449. [Google Scholar] [CrossRef]
- Bołdys, A.; Bułdak, Ł.; Skudrzyk, E.; Machnik, G.; Okopień, B. The Impact of Glucagon and Exenatide on Oxidative Stress Levels and Antioxidative Enzyme Expression in in Vitro Induced Steatosis in HepG2 Cell Culture. Endokrynol. Pol. 2024, 75, 419–427. [Google Scholar] [CrossRef]
- Rinella, M.E.; Neuschwander-Tetri, B.A.; Siddiqui, M.S.; Abdelmalek, M.F.; Caldwell, S.; Barb, D.; Kleiner, D.E.; Loomba, R. AASLD Practice Guidance on the Clinical Assessment and Management of Nonalcoholic Fatty Liver Disease. Hepatology 2023, 77, 1797–1835. [Google Scholar] [CrossRef]
- Madrigal Pharmaceuticals Madrigal Receives Positive CHMP Opinion for Resmetirom (Rezdiffra) for the Treatment of MASH with Moderate to Advanced Liver Fibrosis. Available online: https://www.globenewswire.com/news-release/2025/06/20/3102620/0/en/Madrigal-Receives-Positive-CHMP-Opinion-for-Resmetirom-Rezdiffra-for-the-Treatment-of-MASH-with-Moderate-to-Advanced-Liver-Fibrosis.html (accessed on 21 June 2025).
- Taraszewska, A.; Wolnicka, K.; Korólczyk-Kowalczyk, M.; Narodowe Centrum Edukacji, Żywieniowej (Eds.) Żywienie w Chorobie Stłuszczeniowej Wątroby; Narodowy Instytut Zdrowia Publicznego PZH—Państwowy Instytut Badawczy: Warszawa, Poland, 2022; ISBN 978-83-65870-57-5. [Google Scholar]
- Niealkoholowa stłuszczeniowa choroba wątroby. Available online: https://ncez.pzh.gov.pl/wp-content/uploads/2024/05/zalecenia_dietetycy_stluszczeniowa-choroba-watroby.pdf (accessed on 29 November 2024).
- Li, Q.; Huang, C.; Xu, W.; Hu, Q.; Chen, L. Accuracy of FibroScan in Analysis of Liver Fibrosis in Patients with Concomitant Chronic Hepatitis B and Nonalcoholic Fatty Liver Disease. Medicine 2020, 99, e20616. [Google Scholar] [CrossRef]
- Indre, M.-G.; Leucuta, D.-C.; Lupsor-Platon, M.; Turco, L.; Ferri, S.; Hashim, A.; Orasan, O.H.; Procopet, B.; Stefanescu, H.; Morelli, M.C.; et al. Diagnostic Accuracy of 2D-SWE Ultrasound for Liver Fibrosis Assessment in MASLD: A Multilevel Random Effects Model Meta-Analysis. Hepatology 2025, 82, 454–469. [Google Scholar] [CrossRef]
- Imajo, K.; Kessoku, T.; Honda, Y.; Tomeno, W.; Ogawa, Y.; Mawatari, H.; Fujita, K.; Yoneda, M.; Taguri, M.; Hyogo, H.; et al. Magnetic Resonance Imaging More Accurately Classifies Steatosis and Fibrosis in Patients With Nonalcoholic Fatty Liver Disease Than Transient Elastography. Gastroenterology 2016, 150, 626–637.e7. [Google Scholar] [CrossRef]
- Sharpton, S.R.; Tamaki, N.; Bettencourt, R.; Madamba, E.; Jung, J.; Liu, A.; Behling, C.; Valasek, M.A.; Loomba, R. Diagnostic Accuracy of Two-Dimensional Shear Wave Elastography and Transient Elastography in Nonalcoholic Fatty Liver Disease. Therap. Adv. Gastroenterol. 2021, 14, 17562848211050436. [Google Scholar] [CrossRef]
- Long, L.; Wu, Y.; Tang, H.; Xiao, Y.; Wang, M.; Shen, L.; Shi, Y.; Feng, S.; Li, C.; Lin, J.; et al. Development and Validation of a Scoring System to Predict MASLD Patients with Significant Hepatic Fibrosis. Sci. Rep. 2025, 15, 9639. [Google Scholar] [CrossRef]
- Abdelhameed, F.; Kite, C.; Lagojda, L.; Dallaway, A.; Chatha, K.K.; Chaggar, S.S.; Dalamaga, M.; Kassi, E.; Kyrou, I.; Randeva, H.S. Non-Invasive Scores and Serum Biomarkers for Fatty Liver in the Era of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A Comprehensive Review From NAFLD to MAFLD and MASLD. Curr. Obes. Rep. 2024, 13, 510–531. [Google Scholar] [CrossRef]
- Albert, S.G.; Wood, E.M. FIB-4 as a Screening and Disease Monitoring Method in Pre-Fibrotic Stages of Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD). J. Diabetes Complicat. 2024, 38, 108777. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Felix, S.; Jeffers, T.; Younossi, E.; Nader, F.; Pham, H.; Afendy, A.; Cable, R.; Racila, A.; Younoszai, Z.; et al. Performance of the Enhanced Liver Fibrosis Test to Estimate Advanced Fibrosis Among Patients With Nonalcoholic Fatty Liver Disease. JAMA Netw. Open 2021, 4, e2123923. [Google Scholar] [CrossRef]
- Sohn, W. Essential Tools for Assessing Advanced Fibrosis in Metabolic Dysfunction-Associated Steatotic Liver Disease: Editorial on “Optimal Cut-Offs of Vibration-Controlled Transient Elastography and Magnetic Resonance Elastography in Diagnosing Advanced Liver Fibrosis in Patients with Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis”. Clin. Mol. Hepatol. 2025, 31, 277–280. [Google Scholar] [CrossRef]
- Sarkar Das, T.; Meng, X.; Abdallah, M.; Bilal, M.; Sarwar, R.; Shaukat, A. An Assessment of the Feasibility, Patient Acceptance, and Performance of Point-of-Care Transient Elastography for Metabolic-Dysfunction-Associated Steatotic Liver Disease (MASLD): A Systematic Review and Meta-Analysis. Diagnostics 2024, 14, 2478. [Google Scholar] [CrossRef]
- Bołdys, A.; Bułdak, Ł.; Nicze, M.; Okopień, B. Liraglutide Reduces Liver Steatosis and Improves Metabolic Indices in Obese Patients Without Diabetes: A 3-Month Prospective Study. Int. J. Mol. Sci. 2025, 26, 5883. [Google Scholar] [CrossRef]
- Smits, M.M.; Tonneijck, L.; Muskiet, M.H.A.; Kramer, M.H.H.; Pouwels, P.J.W.; Pieters-van den Bos, I.C.; Hoekstra, T.; Diamant, M.; van Raalte, D.H.; Cahen, D.L. Twelve Week Liraglutide or Sitagliptin Does Not Affect Hepatic Fat in Type 2 Diabetes: A Randomised Placebo-Controlled Trial. Diabetologia 2016, 59, 2588–2593. [Google Scholar] [CrossRef]
- Tan, Y.; Zhen, Q.; Ding, X.; Shen, T.; Liu, F.; Wang, Y.; Zhang, Q.; Lin, R.; Chen, L.; Peng, Y.; et al. Association between Use of Liraglutide and Liver Fibrosis in Patients with Type 2 Diabetes. Front. Endocrinol. 2022, 13, 935180. [Google Scholar] [CrossRef]
- Shiomi, M.; Tanaka, Y.; Takada, T.; Otori, K. Determining Whether the Effect of Liraglutide on Non-Alcoholic Fatty Liver Disease Depends on Reductions in the Body Mass Index. JGH Open 2020, 4, 995–1001. [Google Scholar] [CrossRef]
- Ohki, T.; Isogawa, A.; Iwamoto, M.; Ohsugi, M.; Yoshida, H.; Toda, N.; Tagawa, K.; Omata, M.; Koike, K. The Effectiveness of Liraglutide in Nonalcoholic Fatty Liver Disease Patients with Type 2 Diabetes Mellitus Compared to Sitagliptin and Pioglitazone. ScientificWorldJournal 2012, 2012, 496453. [Google Scholar] [CrossRef]
- Makri, E.; Kita, M.; Goulas, A.; Papaioannidou, P.; Efstathiadou, Z.A.; Adamidou, F.; Polyzos, S.A. Comparative Effectiveness of Glucagon-like Peptide-1 Receptor Agonists versus Dipeptidyl Peptidase-4 Inhibitors on Noninvasive Indices of Hepatic Steatosis and Fibrosis in Patients with Type 2 Diabetes Mellitus. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 1913–1919. [Google Scholar] [CrossRef]
- Hachuła, M.; Kosowski, M.; Basiak, M.; Okopień, B. Does Therapy with Glucagon-like Peptide 1 Receptor Agonists Have an Effect on Biochemical Markers of Metabolic-Dysfunction-Associated Steatotic Liver Disease (MASLD)? Pleiotropic Metabolic Effect of Novel Antidiabetic Drugs in Patients with Diabetes-Interventional Study. Pharmaceuticals 2023, 16, 1190. [Google Scholar] [CrossRef]
- Loomba, R.; Abdelmalek, M.F.; Armstrong, M.J.; Jara, M.; Kjær, M.S.; Krarup, N.; Lawitz, E.; Ratziu, V.; Sanyal, A.J.; Schattenberg, J.M.; et al. Semaglutide 2·4 Mg Once Weekly in Patients with Non-Alcoholic Steatohepatitis-Related Cirrhosis: A Randomised, Placebo-Controlled Phase 2 Trial. Lancet Gastroenterol. Hepatol. 2023, 8, 511–522. [Google Scholar] [CrossRef]
- Kahal, H.; Abouda, G.; Rigby, A.S.; Coady, A.M.; Kilpatrick, E.S.; Atkin, S.L. Glucagon-like Peptide-1 Analogue, Liraglutide, Improves Liver Fibrosis Markers in Obese Women with Polycystic Ovary Syndrome and Nonalcoholic Fatty Liver Disease. Clin. Endocrinol. 2014, 81, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Jennison, E.; Byrne, C.D. Recent Advances in NAFLD: Current Areas of Contention. Fac. Rev. 2023, 12, 10. [Google Scholar] [CrossRef]
- Gawrieh, S.; Wilson, L.A.; Yates, K.P.; Cummings, O.W.; Vilar-Gomez, E.; Ajmera, V.; Kowdley, K.V.; Rosenberg, W.M.; Tonascia, J.; Chalasani, N. Relationship of ELF and PIIINP With Liver Histology and Response to Vitamin E or Pioglitazone in the PIVENS Trial. Hepatol. Commun. 2021, 5, 786–797. [Google Scholar] [CrossRef]
- Armstrong, M.J.; Gaunt, P.; Aithal, G.P.; Barton, D.; Hull, D.; Parker, R.; Hazlehurst, J.M.; Guo, K.; Abouda, G.; Aldersley, M.A.; et al. Liraglutide Safety and Efficacy in Patients with Non-Alcoholic Steatohepatitis (LEAN): A Multicentre, Double-Blind, Randomised, Placebo-Controlled Phase 2 Study. Lancet 2016, 387, 679–690. [Google Scholar] [CrossRef]
- Gad, A.I.; Ibrahim, N.F.; Almadani, N.; Mahfouz, R.; Nofal, H.A.; El-Rafey, D.S.; Ali, H.T.; El-Hawary, A.T.; Sadek, A.M.E.M. Therapeutic Effects of Semaglutide on Nonalcoholic Fatty Liver Disease with Type 2 Diabetes Mellitus and Obesity: An Open-Label Controlled Trial. Diseases 2024, 12, 186. [Google Scholar] [CrossRef]
- Stratina, E.; Stanciu, C.; Nastasa, R.; Zenovia, S.; Stafie, R.; Rotaru, A.; Cuciureanu, T.; Muzica, C.; Sfarti, C.; Girleanu, I.; et al. New Insights on Using Oral Semaglutide versus Dapagliflozin in Patients with Type 2 Diabetes and Metabolic Dysfunction-Associated Steatotic Liver Disease. Diagnostics 2024, 14, 1475. [Google Scholar] [CrossRef]
- Korakas, E.; Kountouri, A.; Pavlidis, G.; Oikonomou, E.; Vrentzos, E.; Michalopoulou, E.; Tsigkou, V.; Katogiannis, K.; Pliouta, L.; Balampanis, K.; et al. Semaglutide Concurrently Improves Vascular and Liver Indices in Patients With Type 2 Diabetes and Fatty Liver Disease. J. Endocr. Soc. 2024, 8, bvae122. [Google Scholar] [CrossRef]
- Arai, T.; Atsukawa, M.; Tsubota, A.; Oikawa, T.; Tada, T.; Matsuura, K.; Ishikawa, T.; Abe, H.; Kato, K.; Morishita, A.; et al. Beneficial Effect of Oral Semaglutide for Type 2 Diabetes Mellitus in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease: A Prospective, Multicentre, Observational Study. Diabetes Obes. Metab. 2024, 26, 4958–4965. [Google Scholar] [CrossRef]
Number of Patients | Age—Years (Mean ± SD) | BMI Before—kg/m2 (Mean ± SD or Median; Q1, Q3) | BMI After—kg/m2 (Mean ± SD or Median; Q1, Q3) | p-Value | BW Before—kg (Mean ± SD) | BW After—kg (Mean ± SD) | p-Value | |
---|---|---|---|---|---|---|---|---|
Total | 28 | 49.1 ± 11.6 | 35.63 ± 5.10 | 33.81 ± 4.97 | <0.001 | 102.32 ± 17.53 | 97.41 (89.28; 100) | <0.001 |
Women | 19 | 49.9 ± 12.9 | 35.27 ± 4.72 | 33.5 ± 4.65 | <0.001 | 96.68 ± 11.58 | 91.86 ± 11.78 | <0.001 |
Men | 9 | 47.3 ± 8.6 | 35.06 (33.16, 36.39) | 34.47 ± 5.83 | <0.05 | 114.22 ± 22.36 | 109.13 ± 21.98 | <0.05 |
Parameter | Prior to Intervention | Subsequent to Intervention | p-Value | Reference Range/Desired Value | ||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||||
TCh (mg/dL) | 189.45 | 44.25 | 174.66 | 50.86 | 0.22 | <190 | ||
LDL (mg/dL) | 104.27 | 43.94 | 96.91 | 46.95 | 0.55 | <135 | ||
HDL (mg/dL) | 55.34 | 15.84 | 52.99 | 13.68 | 0.11 | >60 | ||
TG (mg/dL) | 151.09 | 86.91 | 121.44 | 58.47 | <0.05 | <150 | ||
nHDL (mg/dL) | 134.10 | 44.93 | 121.67 | 48.82 | 0.32 | <145 | ||
UA (mg/dL) | 6.36 | 1.46 | 6.08 | 1.47 | 0.09 | 2.40–5.70 | ||
Cr (mg/dL) | 0.87 | 0.13 | 0.89 | 0.15 | 0.21 | 0.51–0.95 | ||
PLT (103/μL) | 267.89 | 62.25 | 289.39 | 67.83 | 0.11 | 130–400 | ||
Median | Q1 | Q3 | Median | Q1 | Q3 | |||
ALT (UI/mL) | 30.20 | 22.15 | 47.80 | 28.15 | 21.53 | 43.33 | 0.07 | <35.0 |
AST (UI/mL) | 23.75 | 20.78 | 33.45 | 24.55 | 20.35 | 33.48 | 0.52 | <35.0 |
GGT (UI/mL) | 27.90 | 20.93 | 39.73 | 22.85 | 16.19 | 35.13 | <0.05 | <40 |
Bil (mg/dL) | 0.48 | 0.39 | 0.72 | 0.46 | 0.37 | 0.59 | <0.05 | 0.30–1.20 |
ALP (UI/mL) | 63.00 | 60.00 | 79.25 | 65.00 | 55.50 | 75.25 | 0.06 | 35–104 |
HbA1c (%) | 5.65 | 5.33 | 5.93 | 5.53 | 5.23 | 5.95 | <0.05 | 4.80–5.90 |
Insulin (µU/mL) | 17.30 | 9.62 | 26.65 | 18.25 | 11.87 | 24.43 | 0.56 | 2.6–24.9 |
Glu (mg/dL) | 98.45 | 88.90 | 105.00 | 90.85 | 83.48 | 100 | <0.05 | 70.00–99.00 |
Parameter | Prior to Intervention | Subsequent to Intervention | p-Value | ||||
---|---|---|---|---|---|---|---|
Median | Q1 | Q3 | Median | Q1 | Q3 | ||
E (kPa) | 5.60 | 3.90 | 6.45 | 5.20 | 3.60 | 6.00 | <0.05 |
Fibrosis stage (F) | 1.0 | 1.0 | 0.0 | 1.0 | 1.0 | 0.0 | 0.18 |
Parameter | Prior to Intervention | Subsequent to Intervention | p-Value | ||||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
ELF | 6.71 | 0.24 | 6.63 | 0.25 | <0.05 | ||
Median | Q1 | Q3 | Median | Q1 | Q3 | ||
Fib-4 | 0.84 | 0.64 | 1.26 | 0.81 | 0.62 | 1.16 | 0.09 |
APRI | 0.32 | 0.25 | 0.51 | 0.32 | 0.24 | 0.41 | 0.06 |
BARD | 1.00 | 1.00 | 3.0 | 2.50 | 1.00 | 3.00 | 0.24 |
AST/ALT | 0.75 | 0.71 | 0.97 | 0.87 | 0.73 | 0.93 | 0.06 |
Parameter | Prior to Intervention | Subsequent to Intervention | p-Value | ||||
---|---|---|---|---|---|---|---|
Median | Q1 | Q3 | Median | Q1 | Q3 | ||
PIIINP (ng/mL) | 243.80 | 168.35 | 341.95 | 192.75 | 139.10 | 301.48 | 0.06 |
TIMP1 (µg/mL) | 129.35 | 99.50 | 150.90 | 131.35 | 94.25 | 145.15 | 0.16 |
HYA (ng/mL) | 130.70 | 115.05 | 149.45 | 126.20 | 112.08 | 149.78 | 0.26 |
TGF-α (pg/mL) | 165.30 | 146.20 | 183.45 | 192.90 | 166.40 | 211.95 | 0.68 |
HGF (pg/mL) | 525.90 | 448.08 | 664.65 | 511.75 | 478.73 | 650.18 | 0.36 |
CHI3L1 (pg/mL) | 1122.20 | 1006.4 | 1508.7 | 1231.95 | 1070.1 | 1531.5 | 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bołdys, A.; Borówka, M.; Bułdak, Ł.; Okopień, B. Impact of Short-Term Liraglutide Therapy on Non-Invasive Markers of Liver Fibrosis in Patients with MASLD. Metabolites 2025, 15, 510. https://doi.org/10.3390/metabo15080510
Bołdys A, Borówka M, Bułdak Ł, Okopień B. Impact of Short-Term Liraglutide Therapy on Non-Invasive Markers of Liver Fibrosis in Patients with MASLD. Metabolites. 2025; 15(8):510. https://doi.org/10.3390/metabo15080510
Chicago/Turabian StyleBołdys, Aleksandra, Maciej Borówka, Łukasz Bułdak, and Bogusław Okopień. 2025. "Impact of Short-Term Liraglutide Therapy on Non-Invasive Markers of Liver Fibrosis in Patients with MASLD" Metabolites 15, no. 8: 510. https://doi.org/10.3390/metabo15080510
APA StyleBołdys, A., Borówka, M., Bułdak, Ł., & Okopień, B. (2025). Impact of Short-Term Liraglutide Therapy on Non-Invasive Markers of Liver Fibrosis in Patients with MASLD. Metabolites, 15(8), 510. https://doi.org/10.3390/metabo15080510