Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = transient receptor potential vanilloid type 1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1977 KiB  
Review
Capsaicin as a Microbiome Modulator: Metabolic Interactions and Implications for Host Health
by Iván Artemio Corral-Guerrero, Angela Elena Martínez-Medina, Litzy Yazmin Alvarado-Mata, Ana Cristina Figueroa Chávez, Roberto Muñoz-García, Miriam Paulina Luévanos-Escareño, Jazel Doménica Sosa-Martínez, María José Castro-Alonso, Padma Nimmakayala, Umesh K. Reddy and Nagamani Balagurusamy
Metabolites 2025, 15(6), 372; https://doi.org/10.3390/metabo15060372 - 5 Jun 2025
Viewed by 2969
Abstract
Background/Objectives: Capsaicin is the principal pungent compound in chili peppers and is increasingly recognized as a multifunctional phytochemical with systemic effects beyond its sensory properties. It has been linked to metabolic regulation, neuroprotection, inflammation control, and cancer modulation. This review aims to provide [...] Read more.
Background/Objectives: Capsaicin is the principal pungent compound in chili peppers and is increasingly recognized as a multifunctional phytochemical with systemic effects beyond its sensory properties. It has been linked to metabolic regulation, neuroprotection, inflammation control, and cancer modulation. This review aims to provide an integrative synthesis of capsaicin’s metabolism, its interaction with the gut microbiome, and its physiological implications across organ systems. Methods: We conducted a critical literature review of recent in vivo and in vitro studies exploring capsaicin’s metabolic fate, biotransformation by host enzymes and gut microbes, tissue distribution, and molecular pathways. The literature was analyzed thematically to cover gastrointestinal absorption, hepatic metabolism, microbiota interactions, and systemic cellular responses. Results: Capsaicin undergoes extensive hepatic metabolism, producing hydroxylated and dehydrogenated metabolites that differ in transient receptor potential vanilloid type 1 (TRPV1) receptor affinity and tissue-specific bioactivity. It crosses the blood–brain barrier, alters neurotransmitter levels, and accumulates in brain regions involved in cognition. In addition to its systemic effects, capsaicin appears to undergo microbial transformation and influences gut microbial composition, favoring short-chain fatty acid producers and suppressing pro-inflammatory taxa. These changes contribute to anti-obesity, anti-inflammatory, and potentially anticancer effects. Dose-dependent adverse outcomes, such as epithelial damage or tumor promotion, have also been observed. Conclusions: Capsaicin represents a diet-derived bioactive molecule whose systemic impact is shaped by dynamic interactions between host metabolism and the gut microbiota. Clarifying its biotransformation pathways and context-specific effects is essential for its safe and effective use in metabolic and neurological health strategies. Full article
Show Figures

Figure 1

22 pages, 5898 KiB  
Article
Adult Neurogenesis Is Regulated by the Endocannabinoid and Kisspeptin Systems
by Marianna Marino, Paola Di Pietro, Raffaella D’Auria, Martina Lombardi, Grazia Maria Giovanna Pastorino, Jacopo Troisi, Francesca Felicia Operto, Albino Carrizzo, Carmine Vecchione, Andrea Viggiano, Rosaria Meccariello and Antonietta Santoro
Int. J. Mol. Sci. 2025, 26(9), 3977; https://doi.org/10.3390/ijms26093977 - 23 Apr 2025
Viewed by 2898
Abstract
Neurogenesis is considered the most robust form of plasticity in the adult brain. To better decipher this process, we evaluated the potential crosstalk of Kisspeptin and Endocannabinoid Systems (KPS and ECS, respectively) on hippocampal neurogenesis. Male adolescent rats were exposed to kisspeptin-10 (KP10) [...] Read more.
Neurogenesis is considered the most robust form of plasticity in the adult brain. To better decipher this process, we evaluated the potential crosstalk of Kisspeptin and Endocannabinoid Systems (KPS and ECS, respectively) on hippocampal neurogenesis. Male adolescent rats were exposed to kisspeptin-10 (KP10) and the endocannabinoid anandamide (AEA) administered alone or in combination with the type 1 cannabinoid receptor (CB1R) antagonist SR141716A. The expression of Kiss1 and Kisspeptin receptor (Kiss1R) has been characterized for the first time in rat hippocampus together with the expression of the CB1R and the Transient Receptor Potential Vanilloid 1 ion channel receptor (TRPV1). Results show that both systems inhibit neurogenesis by reducing the extracellular signal-regulated kinase (ERK) signaling. Despite little differences in the expression of Kiss1R and CB1R, TRPV1 is enhanced by both KP10 and AEA treatments, suggesting TRPV1 as a common thread. KP10 administration reduces CB1R expression in the dentate gyrus, while AEA does not. KPS, unlike ECS, promotes the expression of estrogen receptor α (ER-α) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), also upregulating sirtuin 1 (SIRT1), brain-derived-neurotrophic factor (BDNF), and c-Jun. These findings suggest that the interaction between ECS and KPS could be involved in the fine-tuning of neurogenesis, highlighting a novel role for KPS. Full article
(This article belongs to the Collection Feature Papers in Molecular Neurobiology)
Show Figures

Figure 1

23 pages, 5006 KiB  
Article
Expression, Distribution and Function of the Transient Receptor Potential Vanilloid Type 1 (TRPV1) in Endometrial Cancer
by Thangesweran Ayakannu, Anthony H. Taylor and Justin C. Konje
Int. J. Mol. Sci. 2025, 26(7), 3104; https://doi.org/10.3390/ijms26073104 - 27 Mar 2025
Viewed by 903
Abstract
The transient receptor potential vanilloid 1 receptor (TRPV1) is a calcium-sensitive membrane receptor activated by capsaicin and the endocannabinoid, anandamide (AEA). Once activated in vitro, endometrial cancer (EC) cell growth appears to be inhibited through increased apoptosis, but the mechanism remains unclear. Our [...] Read more.
The transient receptor potential vanilloid 1 receptor (TRPV1) is a calcium-sensitive membrane receptor activated by capsaicin and the endocannabinoid, anandamide (AEA). Once activated in vitro, endometrial cancer (EC) cell growth appears to be inhibited through increased apoptosis, but the mechanism remains unclear. Our aim was to investigate the expression and distribution of TRPV1 in normal and cancerous endometria and to determine the precise in vitro mechanism of decreased EC cellular growth. TRPV1 expression in patients with endometrial carcinoma (15 Type 1 EC, six Type 2 EC) and six normal patients (atrophic endometria) was assessed using quantitative RT-PCR and immunohistochemistry (IHC). Additionally, immunohistochemical staining for the proliferation marker Ki-67, the pro-apoptotic marker BAX and the anti-apoptotic marker Bcl-2 were explored. TRPV1 transcript (p = 0.0054) and immunoreactive protein (p < 0.0001) levels were significantly reduced in all EC tissues when compared to control (atrophic) endometria. The almost 50% reduction in TRPV1 transcript levels was mirrored by an almost complete loss of immunoreactive TRPV1 protein. The increased proliferation (Ki-67) of EC tissues correlated with the expression of mutated BAX and inversely correlated to Bcl-2, but only in Type 2 EC samples. In vitro, AEA caused a decrease in Ishikawa cell numbers, whilst capsaicin did not, suggesting the anti-proliferative effect of AEA in EC cells is not via the TRPV1 receptor. In conclusion, the loss of TRPV1 expression in vivo plays a role in the aetiopathogenesis of EC. Activation of cells by AEA also probably promotes EC cell loss through a pro-apoptotic mechanism not involving TRPV1. Full article
(This article belongs to the Special Issue Molecular Research in Gynecological Diseases—2nd Edition)
Show Figures

Graphical abstract

14 pages, 1653 KiB  
Article
Association of TRPV1 and the SIRT3/SOD2 Signaling Pathway in Mononuclear Cells and Astrocyte-Derived Extracellular Vesicles in Patients with Schizophrenia
by Rui Xu, Hao Liu, Chang Shu, Yuan Li, Shijing Wang, Ying Xiong, Fashuai Chen, Xiaowei Wang, Huan Huang, Zhongchun Liu, Gaohua Wang and Huiling Wang
Brain Sci. 2025, 15(4), 339; https://doi.org/10.3390/brainsci15040339 - 25 Mar 2025
Viewed by 553
Abstract
Objectives: The transient receptor potential vanilloid type 1 (TRPV1) is a factor that mediates glial cell response with effects on mitochondrial function. It may affect the occurrence and development of schizophrenia. The aim of this study is to further explore schizophrenia biomarkers by [...] Read more.
Objectives: The transient receptor potential vanilloid type 1 (TRPV1) is a factor that mediates glial cell response with effects on mitochondrial function. It may affect the occurrence and development of schizophrenia. The aim of this study is to further explore schizophrenia biomarkers by analyzing TRPV1 and oxidative stress in astrocyte-derived extracellular vesicles (ADEs) and peripheral blood mononuclear cells (PBMCs). Methods: A case–control study was conducted. The Positive and Negative Syndrome Scale and the Brief Assessment of Cognition in Schizophrenia (BACS) clinical data were obtained from 50 symptomatic patients with schizophrenia and 50 controls, and fasting peripheral blood samples were collected for the isolation of PBMCs and ADEs. Western blotting was used to assess TRPV1, Sirtuin3 (Sirt3), SOD2, and acetyl-SOD2. Results: The patient group exhibited significantly reduced TRPV1 and Sirt3 expression levels in PBMCs and ADEs compared with the control group. In addition, there was a marked increase in SOD2 and acetyl-SOD2 levels. TRPV1 was negatively correlated with the negative symptom score in the patient PBMCs and ADEs. SOD2 showed positive correlations with the general psychopathology symptom score, and acetyl-SOD2 was positively correlated with the negative symptom score. The BACS total score was positively correlated with TRPV1 levels and negatively correlated with acetyl-SOD2 levels in the patient group. Conclusion: TRPV1 expressions in PBMCs and ADEs were reduced and closely correlated, and TRPV1 levels were associated with psychiatric symptoms and cognitive function in patients with schizophrenia. It was indicated that TRPV1 could be a biomarker for schizophrenia and reflect the disease severity. Full article
(This article belongs to the Section Neuropsychiatry)
Show Figures

Figure 1

12 pages, 3652 KiB  
Article
Spinal Involvement of TRPV1 and PI3K/AKT/mTOR Pathway During Chronic Postoperative Pain in Mice
by Gabriela Xavier Santos, Tayllon dos Anjos-Garcia, Ana Carolina de Jesus Vieira and Giovane Galdino
Brain Sci. 2025, 15(1), 53; https://doi.org/10.3390/brainsci15010053 - 8 Jan 2025
Viewed by 1255
Abstract
Background: Chronic postoperative pain (CPOP) is among the main consequences of surgical procedures, directly affecting the quality of life. Although many strategies have been used to treat this symptom, they are often ineffective. Thus, studies investigating CPOP-associated mechanisms may help to develop more [...] Read more.
Background: Chronic postoperative pain (CPOP) is among the main consequences of surgical procedures, directly affecting the quality of life. Although many strategies have been used to treat this symptom, they are often ineffective. Thus, studies investigating CPOP-associated mechanisms may help to develop more effective treatment strategies. Therefore, the present study investigated the spinal participation of the transient potential receptor vanilloid type 1 (TRPV1) and PI3K/AKT/mTOR pathway activation during CPOP. Methods: In this study C57BL/6 male mice were used, and CPOP was induced by muscle retraction and incision. The nociceptive threshold was measured by the von Frey filament test. For pharmacological evaluation, TRPV1 and PI3K/AKT/mTOR inhibitors were administered intrathecally. TRPV1 and PI3K/AKT/mTOR protein levels were evaluated by Western blotting. Results: The results showed that CPOP increased TRPV1 and mTOR protein levels, and pretreatment with the specific inhibitors alleviated CPOP. In addition, pretreatment with the TRPV1 antagonist SB-366791 attenuated mTOR protein levels. Conclusions: The results suggest that TRPV1 and the PI3K/AKT/mTOR pathway are involved in CPOP at the spinal level, and TRPV1 may activate mTOR during this process. Full article
(This article belongs to the Section Sensory and Motor Neuroscience)
Show Figures

Graphical abstract

16 pages, 468 KiB  
Review
Differential Effect of TRPV1 Modulators on Neural and Behavioral Responses to Taste Stimuli
by Mee-Ra Rhyu, Mehmet Hakan Ozdener and Vijay Lyall
Nutrients 2024, 16(22), 3858; https://doi.org/10.3390/nu16223858 - 12 Nov 2024
Cited by 3 | Viewed by 2199
Abstract
In our diet, we ingest a variety of compounds that are TRPV1 modulators. It is important to understand if these compounds alter neural and behavioral responses to taste stimuli representing all taste qualities. Here, we will summarize the effects of capsaicin, resiniferatoxin, cetylpyridinium [...] Read more.
In our diet, we ingest a variety of compounds that are TRPV1 modulators. It is important to understand if these compounds alter neural and behavioral responses to taste stimuli representing all taste qualities. Here, we will summarize the effects of capsaicin, resiniferatoxin, cetylpyridinium chloride, ethanol, nicotine, N-geranyl cyclopropylcarboxamide, Kokumi taste peptides, pH, and temperature on neural and behavioral responses to taste stimuli in rodent models and on human taste perception. The above TRPV1 agonists produced characteristic biphasic effects on chorda tympani taste nerve responses to NaCl in the presence of amiloride, an epithelial Na+ channel blocker, at low concentrations enhancing and at high concentrations inhibiting the response. Biphasic responses were also observed with KCl, NH4Cl, and CaCl2. In the presence of multiple stimuli, the effect is additive. These responses are blocked by TRPV1 antagonists and are not observed in TRPV1 knockout mice. Some TRPV1 modulators also increase neural responses to glutamate but at concentrations much above the concentrations that enhance salt responses. These modulators also alter human salt and glutamate taste perceptions at different concentration ranges. Glutamate responses are TRPV1-independent. Sweet and bitter responses are TRPV1-independent but the off-taste of sweeteners is TRPV1-dependent. Aversive responses to acids and ethanol are absent in animals in which both the taste system and the TRPV1-trigeminal system are eliminated. Thus, TRPV1 modulators differentially alter responses to taste stimuli. Full article
Show Figures

Figure 1

21 pages, 1442 KiB  
Review
Receptors Involved in COVID-19-Related Anosmia: An Update on the Pathophysiology and the Mechanistic Aspects
by Noor N. Al-Saigh, Amani A. Harb and Shtaywy Abdalla
Int. J. Mol. Sci. 2024, 25(15), 8527; https://doi.org/10.3390/ijms25158527 - 5 Aug 2024
Cited by 6 | Viewed by 4245
Abstract
Olfactory perception is an important physiological function for human well-being and health. Loss of olfaction, or anosmia, caused by viral infections such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has received considerable attention, especially in persistent cases that take a long time [...] Read more.
Olfactory perception is an important physiological function for human well-being and health. Loss of olfaction, or anosmia, caused by viral infections such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has received considerable attention, especially in persistent cases that take a long time to recover. This review discusses the integration of different components of the olfactory epithelium to serve as a structural and functional unit and explores how they are affected during viral infections, leading to the development of olfactory dysfunction. The review mainly focused on the role of receptors mediating the disruption of olfactory signal transduction pathways such as angiotensin converting enzyme 2 (ACE2), transmembrane protease serine type 2 (TMPRSS2), neuropilin 1 (NRP1), basigin (CD147), olfactory, transient receptor potential vanilloid 1 (TRPV1), purinergic, and interferon gamma receptors. Furthermore, the compromised function of the epithelial sodium channel (ENaC) induced by SARS-CoV-2 infection and its contribution to olfactory dysfunction are also discussed. Collectively, this review provides fundamental information about the many types of receptors that may modulate olfaction and participate in olfactory dysfunction. It will help to understand the underlying pathophysiology of virus-induced anosmia, which may help in finding and designing effective therapies targeting molecules involved in viral invasion and olfaction. To the best of our knowledge, this is the only review that covered all the receptors potentially involved in, or mediating, the disruption of olfactory signal transduction pathways during COVID-19 infection. This wide and complex spectrum of receptors that mediates the pathophysiology of olfactory dysfunction reflects the many ways in which anosmia can be therapeutically managed. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

24 pages, 2140 KiB  
Review
Achilles’ Heel—The Significance of Maintaining Microenvironmental Homeostasis in the Nucleus Pulposus for Intervertebral Discs
by Zhangbin Luo, Ziyan Wei, Guangzhi Zhang, Haiwei Chen, Lei Li and Xuewen Kang
Int. J. Mol. Sci. 2023, 24(23), 16592; https://doi.org/10.3390/ijms242316592 - 22 Nov 2023
Cited by 10 | Viewed by 2525
Abstract
The dysregulation of intracellular and extracellular environments as well as the aberrant expression of ion channels on the cell membrane are intricately linked to a diverse array of degenerative disorders, including intervertebral disc degeneration. This condition is a significant contributor to low back [...] Read more.
The dysregulation of intracellular and extracellular environments as well as the aberrant expression of ion channels on the cell membrane are intricately linked to a diverse array of degenerative disorders, including intervertebral disc degeneration. This condition is a significant contributor to low back pain, which poses a substantial burden on both personal quality of life and societal economics. Changes in the number and function of ion channels can disrupt the water and ion balance both inside and outside cells, thereby impacting the physiological functions of tissues and organs. Therefore, maintaining ion homeostasis and stable expression of ion channels within the cellular microenvironment may prove beneficial in the treatment of disc degeneration. Aquaporin (AQP), calcium ion channels, and acid-sensitive ion channels (ASIC) play crucial roles in regulating water, calcium ions, and hydrogen ions levels. These channels have significant effects on physiological and pathological processes such as cellular aging, inflammatory response, stromal decomposition, endoplasmic reticulum stress, and accumulation of cell metabolites. Additionally, Piezo 1, transient receptor potential vanilloid type 4 (TRPV4), tension response enhancer binding protein (TonEBP), potassium ions, zinc ions, and tungsten all play a role in the process of intervertebral disc degeneration. This review endeavors to elucidate alterations in the microenvironment of the nucleus pulposus during intervertebral disc degeneration (IVDD), with a view to offer novel insights and approaches for exploring therapeutic interventions against disc degeneration. Full article
Show Figures

Figure 1

30 pages, 2073 KiB  
Review
Capsaicinoids and Their Effects on Cancer: The “Double-Edged Sword” Postulate from the Molecular Scale
by Francisco Luján-Méndez, Octavio Roldán-Padrón, J. Eduardo Castro-Ruíz, Josué López-Martínez and Teresa García-Gasca
Cells 2023, 12(21), 2573; https://doi.org/10.3390/cells12212573 - 4 Nov 2023
Cited by 10 | Viewed by 5250
Abstract
Capsaicinoids are a unique chemical species resulting from a particular biosynthesis pathway of hot chilies (Capsicum spp.) that gives rise to 22 analogous compounds, all of which are TRPV1 agonists and, therefore, responsible for the pungency of Capsicum fruits. In addition to [...] Read more.
Capsaicinoids are a unique chemical species resulting from a particular biosynthesis pathway of hot chilies (Capsicum spp.) that gives rise to 22 analogous compounds, all of which are TRPV1 agonists and, therefore, responsible for the pungency of Capsicum fruits. In addition to their human consumption, numerous ethnopharmacological uses of chili have emerged throughout history. Today, more than 25 years of basic research accredit a multifaceted bioactivity mainly to capsaicin, highlighting its antitumor properties mediated by cytotoxicity and immunological adjuvancy against at least 74 varieties of cancer, while non-cancer cells tend to have greater tolerance. However, despite the progress regarding the understanding of its mechanisms of action, the benefit and safety of capsaicinoids’ pharmacological use remain subjects of discussion, since capsaicin also promotes epithelial–mesenchymal transition, in an ambivalence that has been referred to as “the double-edge sword”. Here, we update the comparative discussion of relevant reports about capsaicinoids’ bioactivity in a plethora of experimental models of cancer in terms of selectivity, efficacy, and safety. Through an integration of the underlying mechanisms, as well as inherent aspects of cancer biology, we propose mechanistic models regarding the dichotomy of their effects. Finally, we discuss a selection of in vivo evidence concerning capsaicinoids’ immunomodulatory properties against cancer. Full article
(This article belongs to the Special Issue Natural Products in the Treatment of Cancer)
Show Figures

Graphical abstract

18 pages, 17254 KiB  
Article
Expression of Cannabinoid Receptors in the Trigeminal Ganglion of the Horse
by Rodrigo Zamith Cunha, Alberto Semprini, Giulia Salamanca, Francesca Gobbo, Maria Morini, Kirstie J. Pickles, Veronica Roberts and Roberto Chiocchetti
Int. J. Mol. Sci. 2023, 24(21), 15949; https://doi.org/10.3390/ijms242115949 - 3 Nov 2023
Cited by 6 | Viewed by 2456
Abstract
Cannabinoid receptors are expressed in human and animal trigeminal sensory neurons; however, the expression in the equine trigeminal ganglion is unknown. Ten trigeminal ganglia from five horses were collected post-mortem from an abattoir. The expression of cannabinoid receptors type 1 (CB1R) and type [...] Read more.
Cannabinoid receptors are expressed in human and animal trigeminal sensory neurons; however, the expression in the equine trigeminal ganglion is unknown. Ten trigeminal ganglia from five horses were collected post-mortem from an abattoir. The expression of cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), and the cannabinoid-related receptors like transient receptor potential vanilloid type 1 (TRPV1), peroxisome proliferator-activated receptor gamma (PPARɣ), and G protein-related receptor 55 (GPR55) in the trigeminal ganglia (TG) of the horse were studied, using immunofluorescence on cryosections and formalin-fixed paraffin-embedded (FFPE) sections. Neurons and glial cells were identified using fluorescent Nissl staining NeuroTrace® and an antibody directed against the glial marker glial fibrillary acidic protein (GFAP), respectively. Macrophages were identified by means of an antibody directed against the macrophages/microglia marker ionized calcium-binding adapter molecule 1 (IBA1). The protein expression of CB1R, CB2R, TRPV1, and PPARɣ was found in the majority of TG neurons in both cryosections and FFPE sections. The expression of GPR55 immunoreactivity was mainly detectable in FFPE sections, with expression in the majority of sensory neurons. Some receptors were also observed in glial cells (CB2R, TRPV1, PPARγ, and GPR55) and inflammatory cells (PPARγ and GPR55). These results support further investigation of such receptors in disorders of equine trigeminal neuronal excitability. Full article
Show Figures

Figure 1

9 pages, 1751 KiB  
Communication
IL-31RA and TRPV1 Expression in Atopic Dermatitis Induced with Trinitrochlorobenzene in Nc/Nga Mice
by Seokwoo Lee, Na Yeon Lim, Min Soo Kang, Yunho Jeong, Jin-Ok Ahn, Jung Hoon Choi and Jin-Young Chung
Int. J. Mol. Sci. 2023, 24(17), 13521; https://doi.org/10.3390/ijms241713521 - 31 Aug 2023
Cited by 8 | Viewed by 2234
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory skin disease. Interleukin 31 (IL-31), a novel cytokine in AD, causes pruritus, typically characteristic of AD patients. The transient receptor potential vanilloid type 1 (TRPV1) is a cation channel activated by diverse noxious stimuli that [...] Read more.
Atopic dermatitis (AD) is a common chronic inflammatory skin disease. Interleukin 31 (IL-31), a novel cytokine in AD, causes pruritus, typically characteristic of AD patients. The transient receptor potential vanilloid type 1 (TRPV1) is a cation channel activated by diverse noxious stimuli that has been studied in a variety of pruritic skin diseases. In this study, the AD animal model was generated by administering the hapten, trinitrochlorobenzene (TNCB), to Nc/Nga mice, and the degree of expression of the IL-31 receptor alpha (IL-31RA) and TRPV1 in the skin of these atopic models was evaluated. The Nc/Nga mice were divided into 3 groups: control, TNCB 2-weeks treated, and TNCB 8-weeks treated. After inducing AD, the skin lesions in each group were scored and compared, and the histology of the skin lesions and the IL-31RA and TRPV1 expression for each group were evaluated by analyzing immunohistochemistry. The results show a significant difference in the skin lesion scores between the groups. The immunohistochemistry evaluation highlighted the remarkable expression of IL-31RA and TRPV1 in the nerve fibers of the TNCB 8-weeks-treated group. We thus confirmed that the long-term application of TNCB induced chronic atopic-like dermatitis and that IL-31RA and TRPV1 were overexpressed in the peripheral nerve fibers in this AD model. Full article
(This article belongs to the Special Issue Molecular Studies of Dermatitis: From Mechanism to Therapy)
Show Figures

Figure 1

12 pages, 2927 KiB  
Article
Real-Time Observation of Capsaicin-Induced Intracellular Domain Dynamics of TRPV1 Using the Diffracted X-ray Tracking Method
by Kazuhiro Mio, Tatsunari Ohkubo, Daisuke Sasaki, Tatsuya Arai, Mayui Sugiura, Shoko Fujimura, Shunsuke Nozawa, Hiroshi Sekiguchi, Masahiro Kuramochi and Yuji C. Sasaki
Membranes 2023, 13(8), 708; https://doi.org/10.3390/membranes13080708 - 30 Jul 2023
Cited by 7 | Viewed by 2390
Abstract
The transient receptor potential vanilloid type 1 (TRPV1) is a multimodal receptor which responds to various stimuli, including capsaicin, protons, and heat. Recent advances in cryo-electron microscopy have revealed the structures of TRPV1. However, due to the large size of TRPV1 and its [...] Read more.
The transient receptor potential vanilloid type 1 (TRPV1) is a multimodal receptor which responds to various stimuli, including capsaicin, protons, and heat. Recent advances in cryo-electron microscopy have revealed the structures of TRPV1. However, due to the large size of TRPV1 and its structural complexity, the detailed process of channel gating has not been well documented. In this study, we applied the diffracted X-ray tracking (DXT) technique to analyze the intracellular domain dynamics of the TRPV1 protein. DXT enables the capture of intramolecular motion through the analysis of trajectories of Laue spots generated from attached gold nanocrystals. Diffraction data were recorded at two different frame rates: 100 μs/frame and 12.5 ms/frame. The data from the 100 μs/frame recording were further divided into two groups based on the moving speed, using the lifetime filtering technique, and they were analyzed separately. Capsaicin increased the slope angle of the MSD curve of the C-terminus in 100 μs/frame recording, which accompanied a shifting of the rotational bias toward the counterclockwise direction, as viewed from the cytoplasmic side. This capsaicin-induced fluctuation was not observed in the 12.5 ms/frame recording, indicating that it is a high-frequency fluctuation. An intrinsiccounterclockwise twisting motion was observed in various speed components at the N-terminus, regardless of the capsaicin administration. Additionally, the competitive inhibitor AMG9810 induced a clockwise twisting motion, which is the opposite direction to capsaicin. These findings contribute to our understanding of the activation mechanisms of the TRPV1 channel. Full article
Show Figures

Figure 1

15 pages, 4171 KiB  
Article
L-Carnitine Suppresses Transient Receptor Potential Vanilloid Type 1 Activation in Human Corneal Epithelial Cells
by Alexander Lucius, Sirjan Chhatwal, Monika Valtink, Peter S. Reinach, Aruna Li, Uwe Pleyer and Stefan Mergler
Int. J. Mol. Sci. 2023, 24(14), 11815; https://doi.org/10.3390/ijms241411815 - 23 Jul 2023
Cited by 11 | Viewed by 2453
Abstract
Tear film hyperosmolarity induces dry eye syndrome (DES) through transient receptor potential vanilloid type 1 (TRPV1) activation. L-carnitine is a viable therapeutic agent since it protects against this hypertonicity-induced response. Here, we investigated whether L-carnitine inhibits TRPV1 activation by blocking heat- or capsaicin-induced [...] Read more.
Tear film hyperosmolarity induces dry eye syndrome (DES) through transient receptor potential vanilloid type 1 (TRPV1) activation. L-carnitine is a viable therapeutic agent since it protects against this hypertonicity-induced response. Here, we investigated whether L-carnitine inhibits TRPV1 activation by blocking heat- or capsaicin-induced increases in Ca2+ influx or hyperosmotic stress-induced cell volume shrinkage in a human corneal epithelial cell line (HCE-T). Single-cell fluorescence imaging of calcein/AM-loaded cells or fura-2/AM-labeled cells was used to evaluate cell volume changes and intracellular calcium levels, respectively. Planar patch-clamp technique was used to measure whole-cell currents. TRPV1 activation via either capsaicin (20 µmol/L), hyperosmolarity (≈450 mosmol/L) or an increase in ambient bath temperature to 43 °C induced intracellular calcium transients and augmented whole-cell currents, whereas hypertonicity induced cell volume shrinkage. In contrast, either capsazepine (10 µmol/L) or L-carnitine (1–3 mmol/L) reduced all these responses. Taken together, L-carnitine and capsazepine suppress hypertonicity-induced TRPV1 activation by blocking cell volume shrinkage. Full article
(This article belongs to the Special Issue TRP Channels in Physiology and Pathophysiology)
Show Figures

Figure 1

15 pages, 4741 KiB  
Article
Endocannabinoid System Components of the Female Mouse Reproductive Tract Are Modulated during Reproductive Aging
by Gianna Rossi, Valentina Di Nisio, Alessandro Chiominto, Sandra Cecconi and Mauro Maccarrone
Int. J. Mol. Sci. 2023, 24(8), 7542; https://doi.org/10.3390/ijms24087542 - 19 Apr 2023
Cited by 8 | Viewed by 2231
Abstract
The endocannabinoid (eCB) system has gained ground as a key modulator of several female fertility-related processes, under physiological/pathological conditions. Nevertheless, its modulation during reproductive aging remains unclear. This study aimed to investigate the expression levels of the main receptors (cannabinoid receptor 1,CB1 [...] Read more.
The endocannabinoid (eCB) system has gained ground as a key modulator of several female fertility-related processes, under physiological/pathological conditions. Nevertheless, its modulation during reproductive aging remains unclear. This study aimed to investigate the expression levels of the main receptors (cannabinoid receptor 1,CB1; cannabinoid receptor 2, CB2; G-protein coupled receptor, GPR55; and transient receptor potential vanilloid type 1 channel, TRPV1) and metabolic enzymes (N-acylphosphatidylethanolamine phospholipase D, NAPE-PLD; fatty acid amide hydrolase, FAAH; monoacylglycerol lipase, MAGL; and diacylglycerol lipase, DAGL-α and -β) of this system in the ovaries, oviducts, and uteri of mice at prepubertal, adult, late reproductive, and post-reproductive stages through quantitative ELISA and immunohistochemistry. The ELISA showed that among the receptors, TRPV1 had the highest expression and significantly increased during aging. Among the enzymes, NAPE-PLD, FAAH, and DAGL-β were the most expressed in these organs at all ages, and increased age-dependently. Immunohistochemistry revealed that, regardless of age, NAPE-PLD and FAAH were mainly found in the epithelial cells facing the lumen of the oviduct and uteri. Moreover, in ovaries, NAPE-PLD was predominant in the granulosa cells, while FAAH was sparse in the stromal compartment. Of note, the age-dependent increase in TRPV1 and DAGL-β could be indicative of increased inflammation, while that of NAPE-PLD and FAAH could suggest the need to tightly control the levels of the eCB anandamide at late reproductive age. These findings offer new insights into the role of the eCB system in female reproduction, with potential for therapeutic exploitation. Full article
Show Figures

Figure 1

14 pages, 2483 KiB  
Article
Oral Cancer Pain Includes Thermal Allodynia That May Be Attenuated by Chronic Alcohol Consumption
by Cara B. Gonzales, Jorge J. De La Chapa, Amol M. Patwardhan and Kenneth M. Hargreaves
Pharmaceuticals 2023, 16(4), 518; https://doi.org/10.3390/ph16040518 - 31 Mar 2023
Cited by 2 | Viewed by 2424
Abstract
Background: Oral cancer is one of the most painful cancer types, and is often refractory to existing analgesics. Oral cancer patients frequently develop a tolerance to opioids, the mainstay of current cancer pain therapy, leaving them with limited therapeutic options. Thus, there is [...] Read more.
Background: Oral cancer is one of the most painful cancer types, and is often refractory to existing analgesics. Oral cancer patients frequently develop a tolerance to opioids, the mainstay of current cancer pain therapy, leaving them with limited therapeutic options. Thus, there is a great need to identify molecular mechanisms driving oral cancer pain in an effort to develop new analgesics. Previous reports demonstrate that oral cancer patients experience intense mechanical pain and pain in function. To date, no studies have examined thermal pain in oral cancer patients or the role that alcohol consumption plays in oral cancer pain. This study aims to evaluate patient-reported pain levels and thermal allodynia, potential molecular mechanisms mediating thermal allodynia, and the effects of alcohol consumption on patient-perceived pain. Methods: This study evaluated human oral squamous cell carcinoma (OSCC) cell lines for their ability to activate thermosensitive channels in vitro and validated these findings in a rat model of orofacial pain. Patient-reported pain in a south Texas OSCC cohort (n = 27) was examined using a visual analog scale (VAS). Covariant analysis examined variables such as tobacco and alcohol consumption, ethnicity, gender, and cancer stage. Results: We determined that OSCC secretes factors that stimulate both the Transient Receptor Potential Ankyrin type 1 channel (TRPA1; noxious cold sensor) and the Transient Receptor Potential Vanilloid type 1 channel (TRPV1; noxious heat sensor) in vitro and that OSCC-secreted factors sensitize TRPV1 nociceptors in vivo. These findings were validated in this cohort, in which allodynia to cold and heat were reported. Notably, subjects that reported regular alcohol consumption also reported lower pain scores for every type of pain tested, with significantly reduced cold-induced pain, aching pain, and burning pain. Conclusion: Oral cancer patients experience multiple types of cancer pain, including thermal allodynia. Alcohol consumption correlates with reduced OSCC pain and reduced thermal allodynia, which may be mediated by TRPA1 and TRPV1. Hence, reduced pain in these patients may contribute to a delay in seeking care, and thus a delay in early detection and treatment. Full article
Show Figures

Figure 1

Back to TopTop